Achieving Interoperability Using Open Standards and Specifications David Danko, Esri Marten Hogeweg, Esri Abstracting Geographic Knowledge
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Show Guideguide Web Searching for GIS Services and Web Mapping Have Been Either Published Or an Introduction Adopted by OGC
showshow guideguide Web searching for GIS services and Web Mapping have been either published or An Introduction adopted by OGC. Who are OGC’s members? to OpenGIS There are three main levels of OGC membership: Principal, Technical and By Adam Gawne-Cain and Chris Holcroft Associate. The higher membership levels confer more voting rights. There are now OpenGIS is the activity pursued by the Open GIS over 300 members featuring 20 Principal members and 25 Technical members from Consortium (OGC). OpenGIS seeks to achieve around the globe. transparent access to disparate geo-data and geo- The membership of OGC is impressively processing resources in a networked environment by broad. Most major GIS companies are members, along with database companies, providing a rich suite of open interface specifications. operating system companies, national mapping agencies, large government These interface specifications will enable GIS developers departments, universities and research to create inter-operable components that provide this institutes. The membership is international, but mainly focused in North transparency. America and Europe. The difference between OpenGIS and A second advantage of OGC’s interface- How does OGC make Interface previous attempts to standardise GIS is based approach is that users can be sure Specifications? that OGC agrees interfaces, and not that they are looking at genuine, live data, Every two months, the OGC Technical neutral file formats. The problem with and not at a static file generated some time Committee (TC) and Management neutral file formats (e.g. SDTS or NTF) in the past. Committee (MC) meet for a week. was that specifications grew so complex The meetings are held in different that each GIS could only support a sub-set A third, practical advantage of interfaces locations around the world, hosted by one of the format. -
Implementing OGC Web Map Service Client Applications Using JSP, JSTL and XMLC
Implementing OGC Web Map Service Client Applications Using JSP, JSTL and XMLC Hao Ding , Richard Pascoe & Neville Churcher Department of Computer Science University of Canterbury. Christchurch, New Zealand Phone: +64 3 364-2362 Fax: +64 3 364-2569 Email: [email protected] , {richard, neville}@cosc.canterbury.ac.nz Presented at SIRC 2002 – The 14th Annual Colloquium of the Spatial Information Research Centre University of Otago, Dunedin, New Zealand th December 3-5 2002 ABSTRACT Java technologies are widely used in web application development. In this paper are described three approaches to developing Java-based web applications and our experiences with applying each to the development of client that interact with servers implementing the OGC (Open GIS Consortium) Web Map Service (WMS) specification. Also described is the installation and configuration of open source software that implements the WMS specification. The paper is concluded with some preliminary insights into when one of the three approaches to WMS client implementation is more suited to another. Keywords and phrases: WMS, JSP, JSTL, XMLC, map layer, web map server 1.0 INTRODUCTION Of the many technologies, such as Common Gateway Interface (CGI), Active Server Pages (ASP), JavaServer Pages (JSP), that are used to develop web applications, three are of particular interest to the research presented here. These three technologies or approaches to developing clients that utilise web services are JavaServer Pages (JSP), JSP with the use of tags from the JSP Standard Tag Library (JSTL), and the eXtensible Markup Language Compiler (XMLC). JSP is a more convenient way to write Java servlets, and allows the insertion of Java code directly into static HTML (Hypertext Markup Language) pages. -
Bibliography of Erik Wilde
dretbiblio dretbiblio Erik Wilde's Bibliography References [1] AFIPS Fall Joint Computer Conference, San Francisco, California, December 1968. [2] Seventeenth IEEE Conference on Computer Communication Networks, Washington, D.C., 1978. [3] ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, Los Angeles, Cal- ifornia, March 1982. ACM Press. [4] First Conference on Computer-Supported Cooperative Work, 1986. [5] 1987 ACM Conference on Hypertext, Chapel Hill, North Carolina, November 1987. ACM Press. [6] 18th IEEE International Symposium on Fault-Tolerant Computing, Tokyo, Japan, 1988. IEEE Computer Society Press. [7] Conference on Computer-Supported Cooperative Work, Portland, Oregon, 1988. ACM Press. [8] Conference on Office Information Systems, Palo Alto, California, March 1988. [9] 1989 ACM Conference on Hypertext, Pittsburgh, Pennsylvania, November 1989. ACM Press. [10] UNIX | The Legend Evolves. Summer 1990 UKUUG Conference, Buntingford, UK, 1990. UKUUG. [11] Fourth ACM Symposium on User Interface Software and Technology, Hilton Head, South Carolina, November 1991. [12] GLOBECOM'91 Conference, Phoenix, Arizona, 1991. IEEE Computer Society Press. [13] IEEE INFOCOM '91 Conference on Computer Communications, Bal Harbour, Florida, 1991. IEEE Computer Society Press. [14] IEEE International Conference on Communications, Denver, Colorado, June 1991. [15] International Workshop on CSCW, Berlin, Germany, April 1991. [16] Third ACM Conference on Hypertext, San Antonio, Texas, December 1991. ACM Press. [17] 11th Symposium on Reliable Distributed Systems, Houston, Texas, 1992. IEEE Computer Society Press. [18] 3rd Joint European Networking Conference, Innsbruck, Austria, May 1992. [19] Fourth ACM Conference on Hypertext, Milano, Italy, November 1992. ACM Press. [20] GLOBECOM'92 Conference, Orlando, Florida, December 1992. IEEE Computer Society Press. http://github.com/dret/biblio (August 29, 2018) 1 dretbiblio [21] IEEE INFOCOM '92 Conference on Computer Communications, Florence, Italy, 1992. -
Spectrum Spatial Getting Started Guide
Spectrum™ Technology Platform Version 12.0 SP1 Spectrum Spatial Getting Started Guide Table of Contents 1 - What Is Location Intelligence? 6 - Services Mapping Service 32 2 - What is Spectrum Spatial? Feature Service 33 Geometry Service 40 Map Tiling Service 43 Spectrum Spatial Concepts 6 Web Feature Service (WFS) 43 Web Map Service (WMS) 44 3 - Modules and Stages Web Map Tile Service (WMTS) 44 Named Resource Service 45 Location Intelligence Module 9 Enterprise Routing Services 45 Enterprise Routing Module 16 Enterprise Geocoding Module 16 GeoConfidence Module 17 4 - Named Resources Named Maps 20 Named Tables 20 Named Layers 20 Named Tiles 21 Named Styles 21 Named Connections 21 Named WMTS Layers 21 Named Label Sources 22 5 - Tools Spatial Manager 24 Management Console 24 Enterprise Designer 24 MapInfo Pro 28 Map Uploader 30 MapInfo Workspace (MWS) Import 30 1 - What Is Location Intelligence? Location intelligence is: • An awareness of relationships between location information and business analysis and operations • The ability to use the understanding of geographic relationships to predict how it impacts a business or organization • The capability to react to how location influences an organization by changing business processes in order to minimize risk and maximize opportunities Location Intelligence enables a business to measure, compare and analyze its data from business operations, in conjunction with external data such as transportation networks, regulatory jurisdictions, market characteristics or its own customers. In this section 2 - What is Spectrum Spatial? Spectrum Spatial is an enterprise location intelligence platform designed to provide organizations with a suite of broadly applicable location capabilities, including spatial analysis, mapping, routing, geocoding, and geoprocessing. -
Opengis Web Feature Services for Editing Cadastral Data
OpenGIS Web Feature Services for editing cadastral data Analysis and practical experiences Master of Science thesis T.J. Brentjens Section GIS Technology Geodetic Engineering Faculty of Civil Engineering and Geosciences Delft University of Technology OpenGIS Web Feature Services for editing cadastral data Analysis and practical experiences Master of Science thesis Thijs Brentjens Professor: prof. dr. ir. P.J.M. van Oosterom (Delft University of Technology) Supervisors: drs. M.E. de Vries (Delft University of Technology) drs. C.W. Quak (Delft University of Technology) drs. C. Vijlbrief (Kadaster) Delft, April 2004 Section GIS Technology Geodetic Engineering Faculty of Civil Engineering and Geosciences Delft University of Technology The Netherlands Het Kadaster Apeldoorn The Netherlands i ii Preface Preface This thesis is the result of the efforts I have put in my graduation research project between March 2003 and April 2004. I have performed this research part-time at the section GIS Technology of TU Delft in cooperation with the Kadaster (the Dutch Cadastre), in order to get the Master of Science degree in Geodetic Engineering. Typing the last words for this thesis, I have been realizing more than ever that this thesis marks the end of my time as a student at the TU Delft. However, I also realize that I have been working to this point with joy. Many people are “responsible” for this, but I’d like to mention the people who have contributed most. First of all, there are of course people who were directly involved in the research project. Peter van Oosterom had many critical notes and - maybe even more important - the ideas born out of his enthusiasm improved the entire research. -
Cityjson: a Compact and Easy-To-Use Encoding of the Citygml Data Model
CityJSON: A compact and easy-to-use encoding of the CityGML data model Hugo Ledoux Ken Arroyo Ohori Kavisha Kumar Balazs´ Dukai Anna Labetski Stelios Vitalis This is the author’s version of the work. It is posted here only for personal use, not for redistribution and not for commercial use. The definitive version will be published in the journal Open Geospatial Data, Software and Standards soon. H. Ledoux, K. Arroyo Ohori, K. Kumar, B. Dukai, A. Labetski, and S. Vitalis (2018). CityJ- SON: A compact and easy-to-use encoding of the CityGML data model. Open Geospatial Data, Software and Standards, In Press. DOI: http://dx.doi.org/10.1186/s40965-019-0064-0 Full details of the project: https://cityjson.org The international standard CityGML is both a data model and an exchange for- mat to store digital 3D models of cities. While the data model is used by several cities, companies, and governments, in this paper we argue that its XML-based ex- change format has several drawbacks. These drawbacks mean that it is difficult for developers to implement parsers for CityGML, and that practitioners have, as a con- sequence, to convert their data to other formats if they want to exchange them with others. We present CityJSON, a new JSON-based exchange format for the CityGML data model (version 2.0.0). CityJSON was designed with programmers in mind, so that software and APIs supporting it can be quickly built. It was also designed to be compact (a compression factor of around six with real-world datasets), and to be friendly for web and mobile development. -
Understanding and Working with the OGC Geopackage Keith Ryden Lance Shipman Introduction
Understanding and Working with the OGC Geopackage Keith Ryden Lance Shipman Introduction - Introduction to Simple Features - What is the GeoPackage? - Esri Support - Looking ahead… Geographic Things 3 Why add spatial data to a database? • The premise: - People want to manage spatial data in association with their standard business data. - Spatial data is simply another “property” of a business object. • The approach: - Utilize the existing SQL data access model. - Define a simple geometry object. - Define well known representations for passing structured data between systems. - Define a simple metadata schema so applications can find the spatial data. - Integrate support for spatial data types with commercial RDBMS software. Simple Feature Model 10 area1 yellow Feature Table 11 area2 green 12 area3 Blue Feature 13 area4 red Geometry Feature Attribute • Feature Tables contain rows (features) sharing common properties (Feature Attributes). • Geometry is a Feature Attribute. Database Simple Feature access Query Connection model based on SQL Cursor Value Geometry Type 1 Type 2 Spatial Geometry (e.g. string) (e.g. number) Reference Data Access Point Line Area Simple Feature Geometry Geometry SpatialRefSys Point Curve Surface GeomCollection LineString Polygon MultiSurface MultiPoint MultiCurve Non-Instantiable Instantiable MultiPolygon MultiLineString Some of the Major Standards Involved • ISO 19125, Geographic Information - Simple feature access - Part 1: common architecture - Part 2: SQL Option • ISO 13249-3, Information technology — Database -
A Pilot for Testing the OGC Web Services Integration of Water-Related Information and Models
RiBaSE: A Pilot for Testing the OGC Web Services Integration of Water-related Information and Models Lluís Pesquer Mayos, Simon Jirka, Grumets Research Group CREAF 52°North Initiative for Geospatial Open Source Software Edicifi C, Universitat Autònoma de Barcelona GmbH 08193 Bellaterra, Spain 48155 Münster, Germany [email protected] [email protected] Christoph Stasch, Joan Masó Pau, Grumets Research Group CREAF 52°North Initiative for Geospatial Open Source Software Edicifi C, Universitat Autònoma de Barcelona GmbH Bellaterra, Spain 48155 Münster, Germany [email protected] [email protected] David Arctur, Center for Research in Water Resources, University of Texas at Austin 10100 Burnet Rd Bldg 119, Austin, TX USA [email protected] Abstract—The design of an interoperability experiment to The OGC is an international industry consortium of demonstrate how current ICT-based tools and water data can companies, government agencies and universities participating work in combination with geospatial web services is presented. in a consensus process to develop publicly available interface This solution is being tested in three transboundary river basins: standards. Some successful examples of OGC standards for Scheldt, Maritsa and Severn. The purpose of this experiment is to general spatial purposes are, for example, the Web Map assess the effectiveness of OGC standards for describing status Service (WMS) for providing interoperable pictorial maps and dynamics of surface water in river basins, to demonstrate over the web and the Keyhole Markup Language (KML) as a their applicability and finally to increase awareness of emerging data format for virtual globes. On the other hand, hydrological standards as WaterML 2.0. -