The Production and Localization of Luteinizing Hormone in the Brain

Total Page:16

File Type:pdf, Size:1020Kb

The Production and Localization of Luteinizing Hormone in the Brain THE PRODUCTION AND LOCALIZATION OF LUTEINIZING HORMONE IN THE BRAIN A thesis submitted to the Kent State University Honors College in partial fulfillment of the requirements for University Honors by Ya’el Courtney May, 2019 Thesis written by Ya’el Courtney Approved by _____________________________________________________________________, Advisor ____________________________ _________, Chair, Department of Biological Sciences Accepted by ___________________________________________________, Dean, Honors College ii TABLE OF CONTENTS LIST OF FIGURES AND TABLES …..……………………….………………………..iv ABBREVIATIONS………..…….……………………………………………….………v ACKNOWLEDGMENTS……………………………………………...……………..vi-vii CHAPTER I. INTRODUCTION……………………………………………….………1 II. METHODS…………..………………………………………….….……16 III. RESULTS………………………………………………………………..26 IV. DISCUSSION………………………………………….…….…………..39 REFERENCES……………………………………………………………...…………...47 iii LIST OF FIGURES AND TABLES Figure 1. Normal and Dysfunctional HPG Axis Feedback Mechanism…………...………..4 Figure 2. Single Cell RNA Sequencing Data Processing Pipeline…………….…………..21 Figure 3. Single Cell RNA Sequencing Quality Assurance Metrics…………..….……22-23 Figure 4. LHβ Probe Validation in Rat Pituitary………………………..………….……...27 Figure 5. LHβ In Situ Hybridization in Cortex………….………….……….…….……….29 Figure 6. LHβ In Situ Hybridization in the Hippocampal Formation……………………..30 Figure 7. LHβ In Situ Hybridization in the Hypothalamus………………………………..31 Figure 8. LHβ In Situ Hybridization in the Amygdala………………………….…………33 Figure 9. Sex Differences in LHβ RNA Expression……………………………….………35 Figure 10. SHAM vs. OVX Differences in LHβ RNA Expression…………………..……37 Table 1. LHβ TPM in Cortex Cells..……………...……………………………….……….29 Table 2. LHβ TPM in Hippocampal Cells…………………………………………………30 Table 3. LHβ TPM in Hypothalamic Cells………………………...………………………31 Table 4. LHβ TPM in Amygdalar Cells…………………………...………………………33 Table 5. Wilcoxon Signed Ranks Test for M v. F LH………………………..……………35 Table 6. Wilcoxon Signed Ranks Test for SHAM v. OVX LH…………………………...37 Table 7. LHβ TPM in Non-Neuronal Cells…………………………………………..……38 iv ABBREVIATIONS Abbreviation Meaning HPG Hypothalamic-pituitary-gonadal GnRH Gonadotropin-releasing hormone LH Luteinizing hormone FSH Follicle-stimulating hormone hCG Human chorionic gonadotropin GnRHR Gonadotropin-releasing hormone receptor LHR, LHCGR Luteinizing hormone and human chorionic gonadotropin receptor AD Alzheimer’s disease HRT Hormone replacement therapy CGA Glycoprotein hormone alpha polypeptide LHB Luteinizing hormone, beta subunit OVX Ovariectomy HCR-FISH Hybridization chain reaction fluorescence in situ hybridization scRNAseq Single-cell RNA sequencing CTX Cortex HPF Hippocampal Formation HYP Hypothalamus AMYG Amygdala IT Intratelencephalic PT Pyramidal Tract GLU Glutamatergic GABA Gamma-aminobutyric acid PVN Paraventricular nucleus RSC Retrosplenial cortex CNS Central nervous system CSF Cerebrospinal fluid v ACKNOWLEDGMENTS With my deepest gratitude, I owe my thanks to everyone who has guided me through my undergraduate scientific career and enabled me to reach my goals. First, I am immensely thankful for my thesis advisor, Dr. Gemma Casadesus. She took me as an undergraduate in her lab when I possessed zero wet-lab skills and has fostered my growth as a scientist through her continuous encouragement, honesty, and unrelenting standards for robust science. I would particularly like to thank Dr. Casadesus for the trust she placed in me and the freedom she gave me to explore novel methods as we seek to understand Luteinizing Hormone in a deeper way. My time in her lab has refined my skills, both personal and scientific, in ways that will benefit me greatly throughout my pursuit of my Ph.D. I also thank the members of my thesis committee for their time and counsel: Dr. Timothy Meyers, Dr. Wilson Chung, and Dr. Joel Hughes. I would like to thank Megan Mey, a graduate student in the Casadesus lab, for her mentorship and constant sunny encouragement. She taught me wet-lab techniques from square one with unwavering patience and kindness and sacrifices her time on many occasions to help me. I thank Sabina Bhatta for sharing her knowledge and insightful questions throughout the process. I also thank the other members of the Casadesus lab, Rachel, John, and Spencer for welcoming me into the lab community and helping me with my countless inane questions. I also owe my thanks to mentors outside of the Casadesus lab who opened for me the door into a world of science. I thank my first undergraduate mentor, Dr. Joel Hughes, vi and his cardiovascular psychophysiology lab for taking a chance on a freshman and enabling me to get my first summer research experience at Washington University in St. Louis. I thank the BP-ENDURE program, Dr. Diana Jose-Edwards, and Dr. Erik Herzog for mentoring me through two summers of research and teaching me the basics of scientific communication. I thank Dr. Todd Braver, Dr. Joset Etzel, and Debbie Yee and the Cognitive Psychopathology Lab at WashU for teaching me how to learn challenging and frustrating new skills, and when to ask for help. I thank Dr. Sara Newman and Dr. Josh Pollock and the Electrophysiological Neuroscience Lab at Kent State for letting me lead the development of my own experiment and for facilitating and understanding the evolution of my scientific interests. I thank the Broad Institute Summer Program, especially Dr. Bruce Birren and Francie Latour, for unabashedly helping me dive into my weaknesses as a person and as a scientist and seek a growth mindset. I thank Dr. Beth Stevens and Dr. Matthew Johnson at Harvard for their mentorship over the summer of 2018, and for their advocacy in my graduate school applications. Each of these mentors has been an indispensable piece in the puzzle of experiences that allowed me to achieve my dream of admission to a top-tier neurobiology Ph.D. program. I thank BP-ENDURE, SACNAS, ABRCMS, and Kent State University for their monetary support of conference travel. It is through these avenues that I have been able to accrue experience presenting my research at an international level, and I have not taken these opportunities for granted. vii My trajectory into, through, and out of Kent State has been unconventional and uniquely challenging. Strong enough words do not exist to convey my gratitude for those named and unnamed who have supported me in every imaginable way. I am thankful for my grandma, Linda Powlison, and her unconditional open arms and open ears. I am thankful for my boss at Bellacino’s of Stow, Dave Segen, who has been supportive and flexible when I take time off for summer research, for conferences, and for graduate school interviews. I am thankful for the customers I serve and bartend for, who ask me about my science and let me re-kindle my excitement for my pursuits with every explanation. I am consistently in awe that science is a real career, and that I can get paid to think about questions that are boundlessly intriguing and exciting. I am thankful for roommates who, throughout the years, have made my home environment a safe, relaxing, and accepting space. Lastly, I thank all the scientists who have surrounded me in each research experience I’ve had. I thank those who have taken time to answer my questions, to encourage me, to inspire me. I have seen the value in a diverse body of scientists and learned that collaboration will foster better science than competition ever will. These are lessons I will hold in my heart for the rest of my life and implement at every turn in my career. viii 1 Chapter 1: Introduction The Importance of Studying Age-Related Cognitive Decline Over the last 200 years, the world has achieved impressive progress in health that has led to dramatic increases in life expectancy. Since 1900 the global average life expectancy has more than doubled and is now approaching 70 years, and in some countries is as high as 85-90 years. Although this increasing life expectancy generally reflects positive human development, it brings new challenges. These challenges stem from the fact that growing older is still inherently associated with biological and cognitive degeneration, although the progression of cognitive decline, physical frailty, and psychological impairment varies between individuals. Degenerative aging processes underlie a host of diseases including cancer, ischemic heart disease, type 2 diabetes, Alzheimer's disease, and others (Atwood & Bowen, 2011; Prasad, Sung, & Aggarwal, 2012). Mental health deterioration due to chronic neurodegenerative diseases represents the largest cause of disability in the world. There are well documented, common patterns of negative effects of aging in the brain. These especially relate to learning and memory that are regulated by brain regions that comprise the memory portion of the limbic system (Rolls, 2015). These areas include the cingulate, entorhinal, and parahippocampal cortices as well as the hippocampal formation. Generally, visuospatial capabilities, psychomotor speed, and general intelligence decrease with age 2 (Kolanowski et al., 2017; Li et al., 2011; Lindeboom & Weinstein, 2004; Martin, Wittert, & Burns, 2007; Salthouse, 1996; Shock, 1984). Spatial memory is also impaired with age, especially the ability to form a cognitive map. This ability is highly dependent on the hippocampus, indicating that hippocampal function decreases with age (Bryan et al., 2010; Jeffery, 2018; Packard & McGaugh, 1996; Ziegler & Thornton, 2010b). Human aging is a complex process with multiple driving factors. Many
Recommended publications
  • Constitutive Activation of G Protein-Coupled Receptors and Diseases: Insights Into Mechanisms of Activation and Therapeutics
    Pharmacology & Therapeutics 120 (2008) 129–148 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Associate editor: S. Enna Constitutive activation of G protein-coupled receptors and diseases: Insights into mechanisms of activation and therapeutics Ya-Xiong Tao ⁎ Department of Anatomy, Physiology and Pharmacology, 212 Greene Hall, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA article info abstract The existence of constitutive activity for G protein-coupled receptors (GPCRs) was first described in 1980s. In Keywords: 1991, the first naturally occurring constitutively active mutations in GPCRs that cause diseases were reported G protein-coupled receptor Disease in rhodopsin. Since then, numerous constitutively active mutations that cause human diseases were reported Constitutively active mutation in several additional receptors. More recently, loss of constitutive activity was postulated to also cause Inverse agonist diseases. Animal models expressing some of these mutants confirmed the roles of these mutations in the Mechanism of activation pathogenesis of the diseases. Detailed functional studies of these naturally occurring mutations, combined Transgenic model with homology modeling using rhodopsin crystal structure as the template, lead to important insights into the mechanism of activation in the absence of crystal structure of GPCRs in active state. Search for inverse Abbreviations: agonists on these receptors will be critical for correcting the diseases cause by activating mutations in GPCRs. ADRP, autosomal dominant retinitis pigmentosa Theoretically, these inverse agonists are better therapeutics than neutral antagonists in treating genetic AgRP, Agouti-related protein AR, adrenergic receptor diseases caused by constitutively activating mutations in GPCRs. CAM, constitutively active mutant © 2008 Elsevier Inc.
    [Show full text]
  • Neurotransmitter and Neuropeptide Regulation of Mast Cell Function
    Xu et al. Journal of Neuroinflammation (2020) 17:356 https://doi.org/10.1186/s12974-020-02029-3 REVIEW Open Access Neurotransmitter and neuropeptide regulation of mast cell function: a systematic review Huaping Xu1, Xiaoyun Shi2, Xin Li3, Jiexin Zou4, Chunyan Zhou5, Wenfeng Liu5, Huming Shao5, Hongbing Chen5 and Linbo Shi4* Abstract The existence of the neural control of mast cell functions has long been proposed. Mast cells (MCs) are localized in association with the peripheral nervous system (PNS) and the brain, where they are closely aligned, anatomically and functionally, with neurons and neuronal processes throughout the body. They express receptors for and are regulated by various neurotransmitters, neuropeptides, and other neuromodulators. Consequently, modulation provided by these neurotransmitters and neuromodulators allows neural control of MC functions and involvement in the pathogenesis of mast cell–related disease states. Recently, the roles of individual neurotransmitters and neuropeptides in regulating mast cell actions have been investigated extensively. This review offers a systematic review of recent advances in our understanding of the contributions of neurotransmitters and neuropeptides to mast cell activation and the pathological implications of this regulation on mast cell–related disease states, though the full extent to which such control influences health and disease is still unclear, and a complete understanding of the mechanisms underlying the control is lacking. Future validation of animal and in vitro models also is needed, which incorporates the integration of microenvironment-specific influences and the complex, multifaceted cross-talk between mast cells and various neural signals. Moreover, new biological agents directed against neurotransmitter receptors on mast cells that can be used for therapeutic intervention need to be more specific, which will reduce their ability to support inflammatory responses and enhance their potential roles in protecting against mast cell–related pathogenesis.
    [Show full text]
  • G Protein-Coupled Receptors: What a Difference a ‘Partner’ Makes
    Int. J. Mol. Sci. 2014, 15, 1112-1142; doi:10.3390/ijms15011112 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review G Protein-Coupled Receptors: What a Difference a ‘Partner’ Makes Benoît T. Roux 1 and Graeme S. Cottrell 2,* 1 Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK; E-Mail: [email protected] 2 Reading School of Pharmacy, University of Reading, Reading RG6 6UB, UK * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-118-378-7027; Fax: +44-118-378-4703. Received: 4 December 2013; in revised form: 20 December 2013 / Accepted: 8 January 2014 / Published: 16 January 2014 Abstract: G protein-coupled receptors (GPCRs) are important cell signaling mediators, involved in essential physiological processes. GPCRs respond to a wide variety of ligands from light to large macromolecules, including hormones and small peptides. Unfortunately, mutations and dysregulation of GPCRs that induce a loss of function or alter expression can lead to disorders that are sometimes lethal. Therefore, the expression, trafficking, signaling and desensitization of GPCRs must be tightly regulated by different cellular systems to prevent disease. Although there is substantial knowledge regarding the mechanisms that regulate the desensitization and down-regulation of GPCRs, less is known about the mechanisms that regulate the trafficking and cell-surface expression of newly synthesized GPCRs. More recently, there is accumulating evidence that suggests certain GPCRs are able to interact with specific proteins that can completely change their fate and function. These interactions add on another level of regulation and flexibility between different tissue/cell-types.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • CGRP Signaling Via CALCRL Increases Chemotherapy Resistance and Stem Cell Properties in Acute Myeloid Leukemia
    International Journal of Molecular Sciences Article CGRP Signaling via CALCRL Increases Chemotherapy Resistance and Stem Cell Properties in Acute Myeloid Leukemia 1,2 1,2, 1,2, 1,2 Tobias Gluexam , Alexander M. Grandits y, Angela Schlerka y, Chi Huu Nguyen , Julia Etzler 1,2 , Thomas Finkes 1,2, Michael Fuchs 3, Christoph Scheid 3, Gerwin Heller 1,2 , Hubert Hackl 4 , Nathalie Harrer 5, Heinz Sill 6 , Elisabeth Koller 7 , Dagmar Stoiber 8,9, Wolfgang Sommergruber 10 and Rotraud Wieser 1,2,* 1 Division of Oncology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; [email protected] (T.G.); [email protected] (A.M.G.); [email protected] (A.S.); [email protected] (C.H.N.); [email protected] (J.E.); thomas.fi[email protected] (T.F.); [email protected] (G.H.) 2 Comprehensive Cancer Center, Spitalgasse 23, 1090 Vienna, Austria 3 Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; [email protected] (M.F.); [email protected] (C.S.) 4 Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria; [email protected] 5 Department for Cancer Research, Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria; [email protected] 6 Division of Hematology, Medical University of Graz, Auenbruggerplatz
    [Show full text]
  • Calcitonin Gene-Related Peptide and Other Peptides
    P1: KWW/KKL P2: KWW/HCN QC: KWW/FLX T1: KWW GRBT050-16 Olesen- 2057G GRBT050-Olesen-v6.cls July 9, 2005 4:30 ••Chapter 16 ◗ Calcitonin Gene-Related Peptide and Other Peptides Susan Brain and Lars Edvinsson Vasoactive peptides can be either stored or synthesized de THE CGRP FAMILY OF PEPTIDES novo before release from a range of tissues in the brain or from the walls of intracranial vasculature. In this chapter, The expression of mRNA from the calcitonin gene is tissue we concentrate on neuropeptides that are released from specific in that CGRP mRNA is predominantly expressed perivascular nerves. These include calcitonin gene-related in nerves and calcitonin mRNA in the thyroid (5). The 37 peptide (CGRP), substance P, neurokinin A, nociceptin, amino acid peptide CGRP belongs to a family that include somatostatin, and opioids (Table 16-1). The endothelium the more recently discovered peptides adrenomedullin produces the potent vasoconstrictors endothelin and an- that is primarily produced by non-neuronal tissues, espe- giotensin, and dilators such as nitric oxide, prostacyclin, cially vascular tissues and amylin that is mainly produced and endothelium-derived hyperpolarizing factors. In ad- in the pancreas. They share some structural homology (ap- dition there are circulating agents; among these the most proximately 25–40%) and also some, but not total, similar- potent is 5-hydroxytryptamine. The neuronal messengers ities in biological activities (see Brain and Grant [11] for stored in the intracranial vessels have been reviewed recent review). CGRP is abundant in the body and has a (32) and it was revealed that sympathetic nerves store wide distribution throughout the central and peripheral noradrenaline, neuropeptide Y, and ATP, the parasympa- nervous systems.
    [Show full text]
  • Calcitonin Gene-Related Peptide Regulates Expression of Neurokinin1 Receptors by Rat Spinal Neurons
    1816 • The Journal of Neuroscience, March 1, 2003 • 23(5):1816–1824 Calcitonin Gene-Related Peptide Regulates Expression of Neurokinin1 Receptors by Rat Spinal Neurons Virginia S. Seybold,1 Kenneth E. McCarson,2 Paul G. Mermelstein,1 Rachel D. Groth,1 and Lia G. Abrahams1 1Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, and 2Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160 Although neurokinin 1 (NK1) receptors contribute to hyperalgesia, and their expression is increased in the spinal cord during peripheral inflammation, little is known regarding the signaling molecules and the second messenger pathways that they activate in regulating the expression of the NK1 receptor gene. Because the promoter region of the NK1 receptor contains a cAMP response element (CRE), we tested the hypothesis that calcitonin gene-related peptide (CGRP) regulates the expression of NK1 receptors via a pathway involving activation of the transcription factor cAMP response element binding protein (CREB). Experiments were conducted on primary cultures of neonatal rat spinal neurons. Treatment of cultures with CGRP for 8–24 hr increased 125I-substance P binding on spinal neurons; the increase in binding was preceded by an elevation in NK1 receptor mRNA. The CGRP-induced change in 125I-substance P binding was concentration-dependent and was inhibited by the antagonist CGRP8–37. CGRP increased phosphorylated CREB immunoreactivity and CRE-dependent transcription in neurons, indicating the involvement of the transcription factor CREB. Evidence that CGRP increased cAMP levels in spinal neurons and that the protein kinase A inhibitor H89 attenuated CGRP-induced CRE-dependent transcription suggests that the intracellular pathway stimulated by CGRP leads to activation of protein kinase A.
    [Show full text]
  • Characterization of Two Patched Receptors for the Vertebrate Hedgehog Protein Family
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 13630–13634, November 1998 Cell Biology Characterization of two patched receptors for the vertebrate hedgehog protein family DAVID CARPENTER*, DONNA M. STONE†,JENNIFER BRUSH‡,ANNE RYAN§,MARK ARMANINI†,GRETCHEN FRANTZ§, ARNON ROSENTHAL†, AND FREDERIC J. DE SAUVAGE*¶ Departments of *Molecular Oncology, ‡Molecular Biology, §Pathology, and †Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080 Communicated by David V. Goeddel, Tularik, Inc., South San Francisco, CA, September 24, 1998 (received for review June 12, 1998) ABSTRACT The multitransmembrane protein Patched mammalian hedgehogs or whether ligand-specific components (PTCH) is the receptor for Sonic Hedgehog (Shh), a secreted exist. Interestingly, a second murine PTCH gene, PTCH2, was molecule implicated in the formation of embryonic structures isolated recently (25) but its function as a hedgehog receptor and in tumorigenesis. Current models suggest that binding of has not been established. To characterize PTCH2 and com- Shh to PTCH prevents the normal inhibition of the seven- pare it with PTCH with respect to the biological function of the transmembrane-protein Smoothened (SMO) by PTCH. Ac- various hedgehog family members, we isolated the human cording to this model, the inhibition of SMO signaling is PTCH2 gene. Binding analysis shows that both PTCH and relieved after mutational inactivation of PTCH in the basal PTCH2 bind to all three hedgehog ligands with similar affinity. cell nevus syndrome. Recently, PTCH2, a molecule with Furthermore PTCH2 interacts with SMO, suggesting that it sequence homology to PTCH, has been identified. To charac- can form a functional multicomponent hedgehog receptor terize both PTCH molecules with respect to the various complex similar to PTCH-SMO.
    [Show full text]
  • G Protein-Coupled Receptors at the Crossroad Between Physiologic and Pathologic Angiogenesis: Old Paradigms and Emerging Concepts
    International Journal of Molecular Sciences Review G Protein-Coupled Receptors at the Crossroad between Physiologic and Pathologic Angiogenesis: Old Paradigms and Emerging Concepts Ernestina M. De Francesco 1,2, Federica Sotgia 3, Robert B. Clarke 2, Michael P. Lisanti 3 and Marcello Maggiolini 1,* ID 1 Department of Pharmacy, Health and Nutrition Sciences, University of Calabria via Savinio, 87036 Rende, Italy; [email protected] 2 Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK; [email protected] 3 Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester M5 4WT, UK; [email protected] (F.S.); [email protected] (M.P.L.) * Correspondence: [email protected]; Tel.: +39-0984-493076 Received: 30 October 2017; Accepted: 11 December 2017; Published: 14 December 2017 Abstract: G protein-coupled receptors (GPCRs) have been implicated in transmitting signals across the extra- and intra-cellular compartments, thus allowing environmental stimuli to elicit critical biological responses. As GPCRs can be activated by an extensive range of factors including hormones, neurotransmitters, phospholipids and other stimuli, their involvement in a plethora of physiological functions is not surprising. Aberrant GPCR signaling has been regarded as a major contributor to diverse pathologic conditions, such as inflammatory, cardiovascular and neoplastic diseases. In this regard, solid tumors have been demonstrated to activate an angiogenic program that relies on GPCR action to support cancer growth and metastatic dissemination. Therefore, the manipulation of aberrant GPCR signaling could represent a promising target in anticancer therapy.
    [Show full text]
  • Signal Transmission Pathways Inside G Protein-Coupled Receptors
    molecules ReviewReview Signaling withinwithin AllostericAllosteric Machines:Machines: SignalSignal TransmissionTransmission PathwaysPathways InsideInside GG Protein-Coupled Protein-CoupledReceptors Receptors 11,, 1,21,2 11 Damian BartuziBartuzi 1,*,* AgnieszkaID , Agnieszka A. Kaczor A. Kaczor and1,2 andDariusz Dariusz Matosiuk Matosiuk 1 11 1 DepartmentDepartment of of Synthesis Synthesis and and Chemical Chemical Technology Technology ofof PharmaceuticalPharmaceutical Substances Substanceswith with Computer Computer Modelling ModellingLab, Medical Lab, University Medical University of Lublin, of 4A Lublin, Chod´zkiStr., 4A Chodźki Lublin Str., PL20093, Lublin Poland; PL20093, Poland;; [email protected]@umlub.pl (A.(A. (A.A.K.);A.K.); [email protected] [email protected] (D.M.)(D.M.) (D.M.) 22 2 SchoolSchool of of Pharmacy, Pharmacy, University University of of Eastern Eastern Finland, Finland, Yliopistonranta Yliopistonranta 1, 1, P.O. P.O. Box Box 1627, 1627, Kuopio FI--70211, FinlandKuopio FI-70211, Finland ** Correspondence:Correspondence: [email protected] [email protected];;; Tel.: Tel.: +48 +48-81-448-7270--81--448--7270 AcademicAcademic Editor:Editor: YungYung HouHou WongWong Received: 13 April 2017 2017;;; Accepted: 10 July 2017 2017;;; Published: date 15 July 2017 Abstract:Abstract: InIn recentrecent years,years, ourour understandingunderstanding of functionfunction of GG protein-coupledprotein--coupled receptors receptors (GPCRs) (GPCRs) has changedchanged from aa picturepicture
    [Show full text]
  • The Role of Gpcrs in Bone Diseases and Dysfunctions
    Bone Research www.nature.com/boneres REVIEW ARTICLE OPEN The role of GPCRs in bone diseases and dysfunctions Jian Luo 1, Peng Sun1,2, Stefan Siwko3, Mingyao Liu1,3 and Jianru Xiao4 The superfamily of G protein-coupled receptors (GPCRs) contains immense structural and functional diversity and mediates a myriad of biological processes upon activation by various extracellular signals. Critical roles of GPCRs have been established in bone development, remodeling, and disease. Multiple human GPCR mutations impair bone development or metabolism, resulting in osteopathologies. Here we summarize the disease phenotypes and dysfunctions caused by GPCR gene mutations in humans as well as by deletion in animals. To date, 92 receptors (5 glutamate family, 67 rhodopsin family, 5 adhesion, 4 frizzled/taste2 family, 5 secretin family, and 6 other 7TM receptors) have been associated with bone diseases and dysfunctions (36 in humans and 72 in animals). By analyzing data from these 92 GPCRs, we found that mutation or deletion of different individual GPCRs could induce similar bone diseases or dysfunctions, and the same individual GPCR mutation or deletion could induce different bone diseases or dysfunctions in different populations or animal models. Data from human diseases or dysfunctions identified 19 genes whose mutation was associated with human BMD: 9 genes each for human height and osteoporosis; 4 genes each for human osteoarthritis (OA) and fracture risk; and 2 genes each for adolescent idiopathic scoliosis (AIS), periodontitis, osteosarcoma growth, and tooth development. Reports from gene knockout animals found 40 GPCRs whose deficiency reduced bone mass, while deficiency of 22 GPCRs increased bone mass and BMD; deficiency of 8 GPCRs reduced body length, while 5 mice had reduced femur size upon GPCR deletion.
    [Show full text]
  • NIH Public Access Author Manuscript Arterioscler Thromb Vasc Biol
    NIH Public Access Author Manuscript Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2010 May 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Arterioscler Thromb Vasc Biol. 2009 May ; 29(5): 650±656. doi:10.1161/ATVBAHA.109.185066. G-protein coupled receptors as potential drug targets for lymphangiogenesis and lymphatic vascular diseases William P Dunworth1,2 and Kathleen M Caron1,2 1Department of Cell and Molecular Physiology, 111 Mason Farm Road, 247 Medical Biomolecular Research Bldg., Room 6340B, CB # 7545 The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA 2Department of Genetics, 111 Mason Farm Road, 247 Medical Biomolecular Research Bldg., Room 6340B, CB # 7545 The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Abstract G-protein coupled receptors (GPCRs) are widely expressed cell surface receptors that have been successfully exploited for the treatment of a variety of human diseases. Recent studies in genetically engineered mouse models have led to the identification of several GPCRs important for lymphatic vascular development and function. The adrenomedullin receptor, which consists of an oligomer between calcitonin receptor-like receptor and receptor activity modifying protein 2, is required for normal lymphatic vascular development and regulates lymphatic capillary permeability in mice. Numerous studies also suggest that lysophospholipid receptors are involved in the development of lymphatic vessels and lymphatic endothelial cell permeability. Given our current lack of pharmacological targets for the treatment of lymphatic vascular diseases like lymphedema, the continued identification and study of GPCRs in lymphatic endothelial cells may eventually lead to major breakthroughs and new pharmacological strategies for the treatment of lymphedema.
    [Show full text]