Annexe I : Description Des Services D’Observations Labellisés Liés À La Planétologie

Total Page:16

File Type:pdf, Size:1020Kb

Annexe I : Description Des Services D’Observations Labellisés Liés À La Planétologie Annexe I : description des services d’observations labellisés liés à la planétologie Consultation BDD Service des éphémérides Type AA-ANO1 Coordination Intitulé OSU Directeur de l'OSU Responsable du SNO Email du responsable du SNO IMCCE Jacques LASKAR Jacques LASKAR [email protected] Partenaires Intitulé OSU Directeur de l'OSU Resp. du SNO dans l'OSU Email du resp. du SNO dans l'OSU Obs. Paris Claude CATALA OCA Thierry LANZ Agnès FIENGA [email protected] Description L'IMCCE a la responsabilité, sous l'égide du Bureau des longitudes, de produire et de diffuser les calendriers et éphémérides au niveau national. Cette fonction est assurée l'institut par son Service des éphémérides. Aussi celui-ci a) produit les publications et éditions annuelles tout comme les éphémérides en ligne, b) diffuse les éphémérides de divers corps du système solaire - naturels et artificiels, et de phénomènes célestes, c) assure la maintenance et la mise jour des bases de données, d) procure une expertise juridique aux tribunaux, e) procure des éphémérides et données la demande pour les services similaires (USA, Japon), les agences, les chercheurs, les laboratoires et les observatoires. Consultation BDD Gaia Type AA-ANO1, AA-ANO4 Coordination Intitulé OSU Directeur de l'OSU Responsable du SNO Email du responsable du SNO OCA Thierry LANZ François MIGNARD [email protected] Partenaires Intitulé OSU Directeur de l'OSU Resp. du SNO dans l'OSU Email du resp. du SNO dans l'OSU Obs. Paris Claude CATALA Frédéric ARENOU [email protected] IMCCE Jacques LASKAR Daniel HESTROFFER [email protected] OASU Marie Lise DUBERNET-TUCKEY Caroline SOUBIRAN [email protected] THETA Philippe ROUSSELOT Annie ROBIN [email protected] IAP Francis BERNARDEAU Brigitte ROCCA VOLMERANGE [email protected] ObAS Pierre-Alain DUC Jean-Louis HALBWACHS [email protected] Description Participation aux activités du Consortium DPAC (Data Processing and Analysis Consortium) pour la mission Gaia. Ceci comprend (i) la conception, la réalisation, la qualification et l'exécution des chaînes de traitement des données brutes du satellite devant aboutir la publication des produits Gaia, (ii) la validation des résultats et la production de l'ensemble de la documentation pour les utilisateurs chaque nouvelle remise de données (iii) la collecte d'informations complémentaires, nécessaires l'accomplissement de la mission, partir d'observations au sol. Consultation BDD CHARA Type AA-ANO2 Coordination Intitulé OSU Directeur de l'OSU Responsable du SNO Email du responsable du SNO OCA Thierry LANZ Denis MOURARD [email protected] Partenaires Intitulé OSU Directeur de l'OSU Resp. du SNO dans l'OSU Email du resp. du SNO dans l'OSU OSUG Michel DIETRICH Karine PERRAUT [email protected] OSUL Isabelle DANIEL Isabelle TALLON-BOSC [email protected] Obs. Paris Claude CATALA Vincent COUDE DU FORESTO [email protected] Description Ce service a pour objectif le soutien aux groupes français exploitant l'interféromètre du Center for High Angular Resolution Astronomy (CHARA, USA). Ce réseau interférométrique optique situé l'observatoire du Mount Wilson (Californie) comprend 6 télescopes de 1 mètre sur des bases allant de 30 330 mètres, et est équipé de 2 instruments français: JOUFLU pour la recombinaison très haute précision dans l'infrarouge proche (bande K), et VEGA pour l'imagerie interférométrique dans le visible haute résolution spectrale et très haute résolution spatiale. D'autres instruments sont également en service: MIRC (pour l'imagerie interférométrique en bandes H et K, Université de Michigan), CLASSIC-CLIMB (pour une sensibilité maximale en bandes H et K, Chara Center), et PAVO un instrument 3T dans le visible pour la haute sensibilité (Université de Sydney). L’accès CHARA et donc l’hémisphère Nord ainsi qu’au domaine du visible est un atout très intéressant et complémentaire du VLTI. Le soutien du service passe explicitement par les actions suivantes : 1) Soutien la préparation des observations et formation 2) Prise en charge des observations en mode service (dans le cadre de l’optimisation des nuits d’observation) et formation 3) Prise en charge/Soutien la réduction des données. Formation. 4) Maintenance technique, évolutions Sur ce dernier point, l'équipe VEGA Nice a développé un prototype appelé FRIEND destiné comprendre le fonctionnement en interférométrie visible avec une correction partielle par optique adaptative sur chacun des télescopes de 1m. Ce prototype prépare le développement de l'instrument SPICA (recombinaison visible 6T fibrée). Consultation BDD E-ELT / HARMONI Type AA-ANO2 Coordination Intitulé OSU Directeur de l'OSU Responsable du SNO Email du responsable du SNO OSUL Isabelle DANIEL Roland BACON [email protected] Partenaires Intitulé OSU Directeur de l'OSU Resp. du SNO dans l'OSU Email du resp. du SNO dans l'OSU PYTHEAS Bruno HAMELIN Benoit NEICHEL [email protected] Description Le spectrographe HARMONI est un des deux instruments de première lumière financés pour l’ELT européen. Il s’agit d’un spectrographe intégral de champ (IFU) qui observera dans la gamme visible et proche infra-rouge (de 0.5 2.4 microns). HARMONI fournira une résolution spectrale de R=3000 R=20000, et une résolution angulaire de 60 4 mas. Pour exploiter pleinement la limite de diffraction de l’E-ELT, HARMONI sera équipé de deux systèmes d’Optique Adaptative (OA). Le premier est un système d’OA classique (SCAO) et le deuxième sera un système d’OA grand champ, assisté par étoiles lasers (LTAO). HARMONI s’inscrit dans la lignée d’instruments qui équipent le VLT, tels que SPHERE ou MUSE. La première lumière est prévue pour 2024. Les cas scientifiques principaux d’HARMONI couvrent un large spectre, depuis l’étude et la caractérisation des exo-planètes, l’étude des populations stellaire dans les galaxies proches, et jusqu’aux galaxies grand décalage vers le rouge. HARMONI regroupe un consortium de 6 laboratoires, dont 2 laboratoires français : le LAM et le CRAL. Le CRAL réalise les modules de découpage du champ et les optiques relai, le pipeline de réduction des données, et (avec l’IPAG), le contrôle de l’instrument. Un modèle numérique de l’instrument (INM) est en développement au CRAL pour simuler des données brutes HARMONI et tester les différentes étapes de réduction en lien avec les développements du pipeline. Le LAM est en charge du développement des Optiques Adaptatives. Avec le LAM, l’IPAG est en charge du développement d’un bras d’imagerie haut-contraste permettant la caractérisation d’exoplanètes. Les tâches de services proposées au CRAL sont les suivantes : T1- Préparation de cas scientifiques clé pour tester le pipeline: Il s'agit d'extraire, partir de simulations astrophysiques ou d'observations existantes, des cas types d'observations simuler avec l'INM dans les principaux modes d'HARMONI (champs stellaires, galaxies, champs profonds), ainsi que des cibles spécifiques (cibles mouvantes, champs astrométriques). Ces données simulées serviront de test pour la réduction des données avec le pipeline. Ces résultats de réduction seront par ailleurs contrôlés dans une étape de validation par rapport aux données en entrée de l'INM, avec une quantification des erreurs et une étude de l'impact sur la science. T2- Proposition et validation d’algorithmes avancés pour les particularités d’HARMONI: Il s'agit de contribuer la réflexion sur les choix d'algorithmes, puis leur validation, concernant les calibrations basées sur des observations du ciel: l'astrométrie, la correction des telluriques, et la soustraction optimale du ciel. En particulier, nous projetons d'utiliser le mode multi-lectures pour les détecteurs: il faudra exploiter cette possibilité de manière optimale pour les algorithmes ci-dessus. T3- Participation au choix des tests de validation du pipeline qui seront effectuer en laboratoire et/ou sur le ciel au cours des phases de tests globaux puis de commissioning de l'instrument. Les tâches de services proposées au LAM sont : - Spécifications scientifiques de haut niveau et estimation de performances de l’instrument et des systèmes d’optique adaptative associés (SCAO et LTAO) sur la base des cas scientifiques prioritaires (formation et évolution des galaxies, formation stellaire, système solaire, exo-planètes, etc.) Ce travail inclut des activités de modélisation et/ou de simulation. Participation aux études systèmes, participation aux équipes scientifiques et techniques. - Spécification et préparation des logiciels d’acquisition et de réduction des données. Ce travail peut inclure des activités de démonstration et/ou de prototypage en laboratoire ou avec des démonstrateurs. Ces tâches devront évoluer au cours du cycle de développement de l’instrument vers des tâches de spécifications et d’étude de performance des sous-systèmes, puis de modélisation fine de ceux-ci, et enfin de caractérisation et de validation au cours des phases d’intégration et de tests puis de commissioning sur le ciel. Les tâches de services proposées l’IPAG, sont : - Les spécifications scientifiques de haut niveau et l’estimation des performances du bras haut-contraste sur la base des cas scientifiques prioritaires (caractérisation d’exoplanètes, étude des disques de formation, etc.). Ce travail inclut des activités de modélisation et/ou de simulation ainsi qu’une participation aux études systèmes. - La préparation des outils de réduction des données : outils classiques d’imagerie différentielle & outils innovants exploitant la haute résolution spectrale de HARMONI pour détecter des signatures spectrales de diverses molécules. Ces tâches devront évoluer au cours du cycle de développement de l’instrument vers des tâches de spécifications et d’étude de performance du bras haut-contraste, puis de modélisation fine de celui-ci, et enfin de caractérisation et de validation au cours des phases d’intégration et de tests puis de commissioning sur le ciel. Consultation BDD E-ELT / MICADO Type AA-ANO2 Coordination Intitulé OSU Directeur de l'OSU Responsable du SNO Email du responsable du SNO Obs.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • New Major and Trace Element Data from Acapulcoite-Lodranite Clan
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1307.pdf New Major and Trace Element Data from Acapulcoite-Lodranite Clan Meteorites: Evidence for Melt-Rock Reaction Events and Early Collisional Fragmentation of the Parent Body Michael P. Lucas1, Nick Dygert1, Nathaniel R. Miller2, and Harry Y. McSween1, 1Department of Earth & Planetary Sciences, University of Tennessee, Knoxville, [email protected], 2Department of Geological Sciences, Univer- sity of Texas at Austin. Introduction: New major and trace element data illumi- patterns exhibit negative Eu anomalies. REE patterns are nate the magmatic and thermal evolution of the acapul- generally consistent among the three groups, however coite-lodranite parent body (ALPB). We observe major comparison of calculated equilibrium melts for acapulco- and trace element disequilibrium in the acapulcoite and ite and transitional cpx and opx demonstrates disequilib- transitional groups that provide evidence for melt infil- rium partitioning in those samples, especially for light- tration and melt-rock reaction processes. In lodranites, REEs in cpx. In contrast, lodranites are in apparent trace which represent sources of the infiltrating melts, we ob- element equilibrium (Fig 1b). They are depleted in serve rapid cooling from high temperatures (hereafter REE+Y relative to acapulcoite-transitional samples in temps), consistent with collisional fragmentation of the cpx (Fig. 1a), and display consistent REE abundances parent body during differentiation. except NWA 5488, which
    [Show full text]
  • The HARPS Search for Southern Extra-Solar Planets XXXV. The
    Astronomy & Astrophysics manuscript no. santos_print c ESO 2021 July 9, 2021 The HARPS search for southern extra-solar planets.? XXXV. The interesting case of HD41248: stellar activity, no planets? N.C. Santos1; 2, A. Mortier1, J. P. Faria1; 2, X. Dumusque3; 4, V. Zh. Adibekyan1, E. Delgado-Mena1, P. Figueira1, L. Benamati1; 2, I. Boisse8, D. Cunha1; 2, J. Gomes da Silva1; 2, G. Lo Curto5, C. Lovis3, J. H. C. Martins1; 2, M. Mayor3, C. Melo5, M. Oshagh1; 2, F. Pepe3, D. Queloz3; 9, A. Santerne1, D. Ségransan3, A. Sozzetti7, S. G. Sousa1; 2; 6, and S. Udry3 1 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 3 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, CH-1290 Sauverny, Switzerland 4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA 5 European Southern Observatory, Casilla 19001, Santiago, Chile 6 Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain 7 INAF - Osservatorio Astrofisico di Torino, Via Osservatorio 20, I-10025 Pino Torinese, Italy 8 Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France 9 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK Received XXX; accepted XXX ABSTRACT Context. The search for planets orbiting metal-poor stars is of uttermost importance for our understanding of the planet formation models. However, no dedicated searches have been conducted so far for very low mass planets orbiting such objects.
    [Show full text]
  • Hf–W Thermochronometry: II. Accretion and Thermal History of the Acapulcoite–Lodranite Parent Body
    Earth and Planetary Science Letters 284 (2009) 168–178 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Hf–W thermochronometry: II. Accretion and thermal history of the acapulcoite–lodranite parent body Mathieu Touboul a,⁎, Thorsten Kleine a, Bernard Bourdon a, James A. Van Orman b, Colin Maden a, Jutta Zipfel c a Institute of Isotope Geochemistry and Mineral Resources, ETH Zurich, Clausiusstrasse 25, 8092 Zurich, Switzerland b Department of Geological Sciences, Case Western Reserve University, Cleveland, OH, USA c Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt am Main, Germany article info abstract Article history: Acapulcoites and lodranites are highly metamorphosed to partially molten meteorites with mineral and bulk Received 11 November 2008 compositions similar to those of ordinary chondrites. These properties place the acapulcoites and lodranites Received in revised form 8 April 2009 between the unmelted chondrites and the differentiated meteorites and as such acapulcoites–lodranites are Accepted 9 April 2009 of special interest for understanding the initial stages of asteroid differentiation as well as the role of 26Al Available online 3 June 2009 heating in the thermal history of asteroids. To constrain the accretion timescale and thermal history of the Editor: R.W. Carlson acapulcoite–lodranite parent body, and to compare these results to the thermal histories of other meteorite parent bodies, the Hf–W system was applied to several acapulcoites and lodranites. Acapulcoites Dhofar 125 Keywords: – Δ chronology and NWA 2775 and lodranite NWA 2627 have indistinguishable Hf W ages of tCAI =5.2±0.9 Ma and Δ isochron tCAI =5.7±1.0 Ma, corresponding to absolute ages of 4563.1±0.8 Ma and 4562.6±0.9 Ma.
    [Show full text]
  • Mineralogy and Petrology of the Angrite Northwest Africa 1296 Albert Jambon, Jean-Alix Barrat, Omar Boudouma, Michel Fonteilles, D
    Mineralogy and petrology of the angrite Northwest Africa 1296 Albert Jambon, Jean-Alix Barrat, Omar Boudouma, Michel Fonteilles, D. Badia, C. Göpel, Marcel Bohn To cite this version: Albert Jambon, Jean-Alix Barrat, Omar Boudouma, Michel Fonteilles, D. Badia, et al.. Mineralogy and petrology of the angrite Northwest Africa 1296. Meteoritics and Planetary Science, Wiley, 2005, 40 (3), pp.361-375. hal-00113853 HAL Id: hal-00113853 https://hal.archives-ouvertes.fr/hal-00113853 Submitted on 2 May 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Meteoritics & Planetary Science 40, Nr 3, 361–375 (2005) Abstract available online at http://meteoritics.org Mineralogy and petrology of the angrite Northwest Africa 1296 A. JAMBON,1 J. A. BARRAT,2 O. BOUDOUMA,3 M. FONTEILLES,4 D. BADIA,1 C. GÖPEL,5 and M. BOHN6 1Laboratoire Magie, Université Pierre et Marie Curie, CNRS UMR 7047, case 110, 4 place Jussieu, 75252 Paris cedex 05, France 2UBO-IUEM, CNRS UMR 6538, Place Nicolas Copernic, F29280 Plouzané, France 3Service du MEB, UFR des Sciences de la Terre, Université Pierre et Marie Curie, case 110, 4 place Jussieu, 75252 Paris cedex 05, France 4Pétrologie, Modélisation des Matériaux et Processus, Université Pierre et Marie Curie, case 110, 4 place Jussieu, 75252 Paris cedex 05, France 5Laboratoire de Géochimie et Cosmochimie, Institut de Physique du Globe, CNRS UMR 7579, 4 place Jussieu, 75252 Paris cedex 05, France 6Ifremer-Centre de Brest, CNRS-UMR 6538, BP70, 29280 Plouzané Cedex, France *Corresponding author.
    [Show full text]
  • Exploring the Bombardment History of the Moon
    EXPLORING THE BOMBARDMENT HISTORY OF THE MOON Community White Paper to the Planetary Decadal Survey, 2011-2020 September 15, 2009 Primary Author: William F. Bottke Center for Lunar Origin and Evolution (CLOE) NASA Lunar Science Institute at the Southwest Research Institute 1050 Walnut St., Suite 300 Boulder, CO 80302 Tel: (303) 546-6066 [email protected] Co-Authors/Endorsers: Carlton Allen (NASA JSC) Mahesh Anand (Open U., UK) Nadine Barlow (NAU) Donald Bogard (NASA JSC) Gwen Barnes (U. Idaho) Clark Chapman (SwRI) Barbara A. Cohen (NASA MSFC) Ian A. Crawford (Birkbeck College London, UK) Andrew Daga (U. North Dakota) Luke Dones (SwRI) Dean Eppler (NASA JSC) Vera Assis Fernandes (Berkeley Geochronlogy Center and U. Manchester) Bernard H. Foing (SMART-1, ESA RSSD; Dir., Int. Lunar Expl. Work. Group) Lisa R. Gaddis (US Geological Survey) 1 Jim N. Head (Raytheon) Fredrick P. Horz (LZ Technology/ESCG) Brad Jolliff (Washington U., St Louis) Christian Koeberl (U. Vienna, Austria) Michelle Kirchoff (SwRI) David Kring (LPI) Harold F. (Hal) Levison (SwRI) Simone Marchi (U. Padova, Italy) Charles Meyer (NASA JSC) David A. Minton (U. Arizona) Stephen J. Mojzsis (U. Colorado) Clive Neal (U. Notre Dame) Laurence E. Nyquist (NASA JSC) David Nesvorny (SWRI) Anne Peslier (NASA JSC) Noah Petro (GSFC) Carle Pieters (Brown U.) Jeff Plescia (Johns Hopkins U.) Mark Robinson (Arizona State U.) Greg Schmidt (NASA Lunar Science Institute, NASA Ames) Sen. Harrison H. Schmitt (Apollo 17 Astronaut; U. Wisconsin-Madison) John Spray (U. New Brunswick, Canada) Sarah Stewart-Mukhopadhyay (Harvard U.) Timothy Swindle (U. Arizona) Lawrence Taylor (U. Tennessee-Knoxville) Ross Taylor (Australian National U., Australia) Mark Wieczorek (Institut de Physique du Globe de Paris, France) Nicolle Zellner (Albion College) Maria Zuber (MIT) 2 The Moon is unique.
    [Show full text]
  • Arxiv:Astro-Ph/0605277V1 10 May 2006 Nttt Ftcnlg O NASA for Technology of Institute .H Chen H
    Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks1 C. H. Chen2,3, B. A. Sargent4, C. Bohac4, K. H. Kim4, E. Leibensperger5, M. Jura6, J. Najita2, W. J. Forrest4, D. M. Watson4, G. C. Sloan7, L. D. Keller5 ABSTRACT We have obtained Spitzer Space Telescope IRS 5.5 - 35 µm spectra of 59 main sequence stars that possess IRAS 60 µm excess. The spectra of five objects possess spectral features that are well-modeled using micron-sized grains and silicates with crystalline mass fractions 0% - 80%, consistent with T-Tauri and Herbig AeBe stars. With the exception of η Crv, these objects are young with ages 50 Myr. Our fits require the presence of a cool black body continuum, ≤ Tgr = 80 - 200 K, in addition to hot, amorphous and crystalline silicates, Tgr = 290 - 600 K, suggesting that multiple parent body belts are present in some debris disks, analogous to the asteroid and Kuiper belts in our solar system. The spectra for the majority of objects are featureless, suggesting that the emitting grains probably have radii a > 10 µm. We have modeled the excess continua using a continuous disk with a uniform surface density distribution, expected if Poynting-Robertson and stellar wind drag are the dominant grain removal processes, and using a single temperature black body, expected if the dust is located in a narrow ring around the star. The IRS spectra of many objects are better modeled with a single temperature black body, suggesting that the disks possess inner holes. The distribution of grain temperatures, based on our black body fits, peaks at Tgr = 110 - 120 K.
    [Show full text]
  • Curriculum Vitae - 24 March 2020
    Dr. Eric E. Mamajek Curriculum Vitae - 24 March 2020 Jet Propulsion Laboratory Phone: (818) 354-2153 4800 Oak Grove Drive FAX: (818) 393-4950 MS 321-162 [email protected] Pasadena, CA 91109-8099 https://science.jpl.nasa.gov/people/Mamajek/ Positions 2020- Discipline Program Manager - Exoplanets, Astro. & Physics Directorate, JPL/Caltech 2016- Deputy Program Chief Scientist, NASA Exoplanet Exploration Program, JPL/Caltech 2017- Professor of Physics & Astronomy (Research), University of Rochester 2016-2017 Visiting Professor, Physics & Astronomy, University of Rochester 2016 Professor, Physics & Astronomy, University of Rochester 2013-2016 Associate Professor, Physics & Astronomy, University of Rochester 2011-2012 Associate Astronomer, NOAO, Cerro Tololo Inter-American Observatory 2008-2013 Assistant Professor, Physics & Astronomy, University of Rochester (on leave 2011-2012) 2004-2008 Clay Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics 2000-2004 Graduate Research Assistant, University of Arizona, Astronomy 1999-2000 Graduate Teaching Assistant, University of Arizona, Astronomy 1998-1999 J. William Fulbright Fellow, Australia, ADFA/UNSW School of Physics Languages English (native), Spanish (advanced) Education 2004 Ph.D. The University of Arizona, Astronomy 2001 M.S. The University of Arizona, Astronomy 2000 M.Sc. The University of New South Wales, ADFA, Physics 1998 B.S. The Pennsylvania State University, Astronomy & Astrophysics, Physics 1993 H.S. Bethel Park High School Research Interests Formation and Evolution
    [Show full text]
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Thursday, August 11, 2016 EARLY SOLAR SYSTEM CHRONOLOGY I 8:30 A.M
    79th Annual Meeting of the Meteoritical Society (2016) sess701.pdf Thursday, August 11, 2016 EARLY SOLAR SYSTEM CHRONOLOGY I 8:30 a.m. Room B Chairs: Gregory Brennecka Audrey Bouvier 8:30 a.m. Kruijer T. S. * Kleine T. Tungsten Isotope Dichotomy Among Iron Meteorite Parent Bodies: Implications for the Timescales of Accretion and Core Formation [#6449] We report new combined Pt and W isotope data for IC, IIC, IIF, IIIE, and IIIF iron meteorites, with the ultimate aim of better understanding the variable pre-exposure 182W/184W signatures observed among different iron meteorite groups. 8:45 a.m. Tissot F. L. H. * Dauphas N. Grove T. L. Heterogeneity in the 238U/235U Ratios of Angrites [#6104] We report the 238U/235U ratios of six angrites. We find that the angrite-parent body was heterogeneous with regards to U isotopes. We correct the Pb-Pb ages of angrites and test their concordance with ages derived from short-lived chronometers. 9:00 a.m. Brennecka G. A. * Amelin Y. Kleine T. Combined 238U/235U and Pb Isotopics of Planetary Core Material: The Absolute Age of the IVA Iron Muonionalusta [#6296] We report a measured 238U/235U for the IVA iron Muonionalusta. This measured value requires an age correction of ~7 Myr to the previously published Pb-Pb age. This has major implications for our understanding of planetary core formation and cooling. 9:15 a.m. Cartwright J. A. * Amelin Y. Koefoed P. Wadhwa M. U-Pb Age of the Ungrouped Achondrite NWA 8486 [#6231] We report the U-Pb age for ungrouped achondrite NWA 8486 (paired with NWA 7325).
    [Show full text]
  • Planning a Mission to the Lunar South Pole
    Lunar Reconnaissance Orbiter: (Diviner) Audience Planning a Mission to Grades 9-10 the Lunar South Pole Time Recommended 1-2 hours AAAS STANDARDS Learning Objectives: • 12A/H1: Exhibit traits such as curiosity, honesty, open- • Learn about recent discoveries in lunar science. ness, and skepticism when making investigations, and value those traits in others. • Deduce information from various sources of scientific data. • 12E/H4: Insist that the key assumptions and reasoning in • Use critical thinking to compare and evaluate different datasets. any argument—whether one’s own or that of others—be • Participate in team-based decision-making. made explicit; analyze the arguments for flawed assump- • Use logical arguments and supporting information to justify decisions. tions, flawed reasoning, or both; and be critical of the claims if any flaws in the argument are found. • 4A/H3: Increasingly sophisticated technology is used Preparation: to learn about the universe. Visual, radio, and X-ray See teacher procedure for any details. telescopes collect information from across the entire spectrum of electromagnetic waves; computers handle Background Information: data and complicated computations to interpret them; space probes send back data and materials from The Moon’s surface thermal environment is among the most extreme of any remote parts of the solar system; and accelerators give planetary body in the solar system. With no atmosphere to store heat or filter subatomic particles energies that simulate conditions in the Sun’s radiation, midday temperatures on the Moon’s surface can reach the stars and in the early history of the universe before 127°C (hotter than boiling water) whereas at night they can fall as low as stars formed.
    [Show full text]