molecules Review The Chemical Synthesis of the Crinine and Haemanthamine Alkaloids: Biologically Active and Enantiomerically-Related Systems that Serve as Vehicles for Showcasing New Methodologies for Molecular Assembly † Nan Hu, Lorenzo V. White, Ping Lan and Martin G. Banwell * Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai 519070, China;
[email protected] (N.H.);
[email protected] (L.V.W.);
[email protected] (P.L.) * Correspondence:
[email protected] † Dedicated to the memory of our friend and colleague Professor Lew Mander FAA, FRS (1939–2020). Abstract: The title alkaloids, often referred to collectively as crinines, are a prominent group of structurally distinct natural products with additional members being reported on a regular basis. As such, and because of their often notable biological properties, they have attracted attention as synthetic targets since the mid-1950s. Such efforts continue unabated and more recent studies on these alkaloids have focused on using them as vehicles for showcasing the utility of new synthetic methods. This review provides a comprehensive survey of the nearly seventy-year history of these Citation: Hu, N.; White, L.V.; Lan, P.; synthetic endeavors. Banwell, M.G. The Chemical Synthesis of the Crinine and Keywords: alkaloid; crinine; haemanthamine Haemanthamine Alkaloids: Biologically Active and Enantiomerically-Related Systems that Serve as Vehicles for Showcasing 1. Introduction New Methodologies for Molecular The alkaloids isolated from the widely distributed herbaceous and bulbous flowering Assembly . Molecules 2021, 26, 765. plants of the amaryllis (Amaryllidaceae) family number more than five hundred and about https://doi.org/10.3390/molecules 10% of these embody the 2,3,4,4a-tetrahydro-1H,6H-5,10b-ethanophenanthridine ring sys- 26030765 tem (Figure1)[ 1].