OCL Documentation

Total Page:16

File Type:pdf, Size:1020Kb

OCL Documentation OCL Documentation OCL Documentation Christian Damus, Adolfo Sánchez-Barbudo Herrera, Axel Uhl, Edward Willink and contributors Copyright 2002 - 2018 Eclipse OCL 6.4.0 1 1. Overview and Getting Started ....................................................................................... 1 1.1. What is OCL? .................................................................................................... 1 1.2. How Does It Work? ............................................................................................ 1 1.2.1. Editing ................................................................................................... 1 1.2.2. Execution ................................................................................................ 1 1.2.3. Debugging .............................................................................................. 2 1.2.4. Testing ................................................................................................... 2 1.3. Eclipse OCL is Extensible .................................................................................... 2 1.4. Who Uses OCL and Eclipse OCL? ........................................................................ 2 1.5. Who is Behind Eclipse OCL? ............................................................................... 3 1.6. Getting Started ................................................................................................... 3 2. Users Guide ................................................................................................................ 5 2.1. The two Eclipse OCLs ......................................................................................... 5 2.1.1. The Classic Eclipse OCL metamodels .......................................................... 5 2.1.2. The Unified or Pivot Eclipse OCL metamodel ............................................... 5 2.1.3. The transition .......................................................................................... 6 2.1.4. Migration ................................................................................................ 7 2.1.5. APIs ...................................................................................................... 8 2.2. The Essential OCL Language ................................................................................ 9 2.2.1. Syntax .................................................................................................... 9 2.3. The OCLinEcore Language ................................................................................. 19 2.3.1. Syntax .................................................................................................. 19 2.3.2. Limitations ............................................................................................ 31 2.4. The Complete OCL Language ............................................................................. 31 2.4.1. Syntax .................................................................................................. 31 2.5. The OCL Standard Library Language ................................................................... 37 2.5.1. Syntax .................................................................................................. 37 2.6. Editors ............................................................................................................ 41 2.6.1. Syntax coloring ...................................................................................... 41 2.6.2. Validation ............................................................................................. 42 2.6.3. Hover Text ............................................................................................ 42 2.6.4. Content Assist ........................................................................................ 42 2.6.5. Code Templates ...................................................................................... 42 2.6.6. Open Declaration .................................................................................... 42 2.7. OCL Nature and Builder Auto-Validation .............................................................. 43 2.7.1. Configuring the OCL Nature and Builder .................................................... 43 2.7.2. Ecore and UML Auto-Validation ............................................................... 43 2.7.3. Building on pre-Photon / 2018 releases ....................................................... 44 2.8. Console ........................................................................................................... 44 2.8.1. Context Object Selection .......................................................................... 45 2.8.2. Editing .................................................................................................. 45 2.8.3. Editor Keys ........................................................................................... 45 2.8.4. Results .................................................................................................. 45 2.8.5. Tool Bar ............................................................................................... 45 2.9. Validity View (new in Luna) ............................................................................... 46 2.9.1. View Tool Bar ....................................................................................... 47 2.9.2. Model Elements Pane .............................................................................. 48 2.9.3. Metamodel Constraints Pane ..................................................................... 49 2.9.4. Constraint Locators ................................................................................. 50 2.10. Debugger (new in Luna) ................................................................................... 51 2.10.1. Launching ............................................................................................ 51 2.10.2. Stepping .............................................................................................. 53 2.10.3. Variables View ..................................................................................... 54 2.10.4. Breakpoints View .................................................................................. 54 2.10.5. Outline View ........................................................................................ 54 2.11. OCL Integration .............................................................................................. 54 2.11.1. OCL execution in Ecore / EMF Delegates .................................................. 54 2.11.2. Custom Validation Messages ................................................................... 54 Eclipse OCL 6.4.0 ii OCL Documentation 2.11.3. CompleteOCL Validation ....................................................................... 55 2.11.4. OCLinEcore for Xtext Validation ............................................................. 56 2.11.5. Complete OCL for Xtext Validation ......................................................... 56 2.12. OCL in UML (using Papyrus) ........................................................................... 56 2.12.1. UML Integration ................................................................................... 56 2.12.2. Class Diagram ...................................................................................... 57 2.12.3. State Machine Diagram .......................................................................... 61 2.13. OCL Constraint Examples for UML (using Papyrus) .............................................. 62 2.13.1. Model Constraints ................................................................................. 63 2.13.2. Profile Constraints ................................................................................. 66 2.14. User Interface ................................................................................................. 70 2.14.1. Project Property Pages ........................................................................... 70 2.14.2. Workspace Preference Pages ................................................................... 71 2.14.3. Overall Options .................................................................................... 71 2.14.4. Ecore and UML Options ........................................................................ 72 2.14.5. UML Options ....................................................................................... 73 2.14.6. Model Registry ..................................................................................... 73 2.14.7. Syntax Coloring .................................................................................... 73 2.14.8. Editor Templates ................................................................................... 73 2.14.9. OCLinEcore Options ............................................................................. 74 3. The OCL Standard Library ........................................................................................ 75 3.1. Precedences .................................................................................................... 75 3.2. Bag(T) ....................................................................................................... 75 3.3. Boolean ..................................................................................................... 76 3.4. Class .......................................................................................................
Recommended publications
  • Assertions, Pre/Post- Conditions and Invariants
    9/14/12 Assertions, pre/post- conditions and invariants Section 2.1 in Walls and Mirrors Section 4.5 Rosen Programming as a contract n Specifying what each method does q Specify it in a comment before method's header n Precondition q What is assumed to be true before the method is executed q Caller obligation n Postcondition q Specifies what will happen if the preconditions are met q Method obligation 1 9/14/12 Class Invariants n A class invariant is a condition that all objects of that class must satisfy while it can be observed by clients n What about Points in Cloud? q boundaries? q center? What is an assertion? n An assertion is a statement that says something about the state of your program n Should be true if there are no mistakes in the program //n == 1 while (n < limit) { n = 2 * n; } // what could you state here? 2 9/14/12 What is an assertion? n An assertion is a statement that says something about the state of your program n Should be true if there are no mistakes in the program //n == 1 while (n < limit) { n = 2 * n; } //n >= limit //more? What is an assertion? n An assertion is a statement that says something about the state of your program n Should be true if there are no mistakes in the program //n == 1 while (n < limit) { n = 2 * n; } //n >= limit //n is the smallest power of 2 >= limit 3 9/14/12 assert Using assert: assert n == 1; while (n < limit) { n = 2 * n; } assert n >= limit; When to use Assertions n We can use assertions to guarantee the behavior.
    [Show full text]
  • Sound Invariant Checking Using Type Modifiers and Object Capabilities
    Sound Invariant Checking Using Type Modifiers and Object Capabilities. Isaac Oscar Gariano Victoria University of Wellington [email protected] Marco Servetto Victoria University of Wellington [email protected] Alex Potanin Victoria University of Wellington [email protected] Abstract In this paper we use pre existing language support for type modifiers and object capabilities to enable a system for sound runtime verification of invariants. Our system guarantees that class invariants hold for all objects involved in execution. Invariants are specified simply as methods whose execution is statically guaranteed to be deterministic and not access any externally mutable state. We automatically call such invariant methods only when objects are created or the state they refer to may have been mutated. Our design restricts the range of expressible invariants but improves upon the usability and performance of our system compared to prior work. In addition, we soundly support mutation, dynamic dispatch, exceptions, and non determinism, while requiring only a modest amount of annotation. We present a case study showing that our system requires a lower annotation burden compared to Spec#, and performs orders of magnitude less runtime invariant checks compared to the widely used ‘visible state semantics’ protocols of D, Eiffel. We also formalise our approach and prove that such pre existing type modifier and object capability support is sufficient to ensure its soundness. 2012 ACM Subject Classification Theory of computation → Invariants, Theory of computation → Program verification, Software and its engineering → Object oriented languages Keywords and phrases type modifiers, object capabilities, runtime verification, class invariants Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23 1 Introduction Object oriented programming languages provide great flexibility through subtyping and arXiv:1902.10231v1 [cs.PL] 26 Feb 2019 dynamic dispatch: they allow code to be adapted and specialised to behave differently in different contexts.
    [Show full text]
  • Model Based Systems Engineering Approach to Autonomous Driving
    DEGREE PROJECT IN ELECTRICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Model Based Systems Engineering Approach to Autonomous Driving Application of SysML for trajectory planning of autonomous vehicle SARANGI VEERMANI LEKAMANI KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Author Sarangi Veeramani Lekamani [email protected] School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Place for Project Sodertalje, Sweden AVL MTC AB Examiner Ingo Sander School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Supervisor George Ungureanu School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Industrial Supervisor Hakan Sahin AVL MTC AB Abstract Model Based Systems Engineering (MBSE) approach aims at implementing various processes of Systems Engineering (SE) through diagrams that provide different perspectives of the same underlying system. This approach provides a basis that helps develop a complex system in a systematic manner. Thus, this thesis aims at deriving a system model through this approach for the purpose of autonomous driving, specifically focusing on developing the subsystem responsible for generating a feasible trajectory for a miniature vehicle, called AutoCar, to enable it to move towards a goal. The report provides a background on MBSE and System Modeling Language (SysML) which is used for modelling the system. With this background, an MBSE framework for AutoCar is derived and the overall system design is explained. This report further explains the concepts involved in autonomous trajectory planning followed by an introduction to Robot Operating System (ROS) and its application for trajectory planning of the system. The report concludes with a detailed analysis on the benefits of using this approach for developing a system.
    [Show full text]
  • Information Technology and Software Development
    Course Title: Information Technology and Software Development NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: CIT 703 COURSE TITLE: Information Technology and Software Development National Open University of Nigeria, Victoria Island, Lagos Page 1 Course Title: Information Technology and Software Development Course Code Course Title Information Technology and Software Development Course Developer/Writer Eze, Festus Chux Department of Computer Science Ebonyi State University Abakaliki Course Editor Programme Leader Course Coordinator National Open University of Nigeria, Victoria Island, Lagos Page 2 Course Title: Information Technology and Software Development Introduction Information Technology and Software Development is a three credit load course for all the students offering Post Graduate Diploma (PGD) in Computer Science, Information Technology and other allied courses. Software Development is a major branch in computing and information Technology. A software development professional oversees the processes of software development, the management of software development project, the maintenance of the installed software in an organisation. For sometime the field has been dominated with what is the definitive process of software development. Furthermore there has been the running battle between professionals and managers on who should control a software development project. There is an attempt to classify it as any other project that an organisation handles hence anybody could manage it. Whereas others see it as a highly professional issue that requires high precision in design, management and implementation. However, software development is all involving. It involves the user (client) whose interest is paramount. The developing organisation and her professionals ( team)are of great importance. Therefore a successful exercise can only take place when all these variegated interests are harmonised.
    [Show full text]
  • APECS: Polychrony Based End-To-End Embedded System Design and Code Synthesis
    APECS: Polychrony based End-to-End Embedded System Design and Code Synthesis Matthew E. Anderson Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Engineering Sandeep K. Shukla, Chair Lamine Mili Alireza Haghighat Chao Wang Yi Deng April 3, 2015 Blacksburg, Virginia Keywords: AADL, CPS, Model-based code synthesis, correct-by-construction code synthesis, Polychrony, code generators, OSATE, Ocarina Copyright 2015, Matthew E. Anderson APECS: Polychrony based End-to-End Embedded System Design and Code Synthesis Matthew E. Anderson (ABSTRACT) The development of high integrity embedded systems remains an arduous and error-prone task, despite the efforts by researchers in inventing tools and techniques for design automa- tion. Much of the problem arises from the fact that the semantics of the modeling languages for the various tools, are often distinct, and the semantics gaps are often filled manually through the engineer's understanding of one model or an abstraction. This provides an op- portunity for bugs to creep in, other than standardising software engineering errors germane to such complex system engineering. Since embedded systems applications such as avionics, automotive, or industrial automation are safety critical, it is very important to invent tools, and methodologies for safe and reliable system design. Much of the tools, and techniques deal with either the design of embedded platforms (hardware, networking, firmware etc), and software stack separately. The problem of the semantic gap between these two, as well as between models of computation used to capture semantics must be solved in order to design safer embedded systems.
    [Show full text]
  • The Contract Pattern Permission Granted to Copy for Plop ’97 Conference
    Copyright 1997, Michel de Champlain The Contract Pattern Permission granted to copy for PLoP ’97 Conference. All other rights reserved. Michel de Champlain Department of Computer Science University of Canterbury, Christchurch, New Zealand [email protected] http://www.cosc.canterbury.ac.nz/~michel 12 August 1997 Abstract This paper describes the Contract pattern, an idiom that lets you apply assertions to guarantee pre-conditions and post-conditions of methods and invariants on the state of objects. This pattern can be used to develop reliable classes by making the Design by Contract methodology—introduced by Meyer in the specific context of the Eiffel language—available in Java and possibly other object-oriented languages. Intent Provide an implementation of the Design by contract methodology [Meyer88] for developing reliable classes and create robust objects in Java. This programming pattern lets you apply assertions to guarantee the pre-conditions and post-conditions of methods and invariants on the state of objects. Also Known As Design by contract Motivation Sometimes it’s necessary to restrict a class interface because you don’t want to provide all the possible input combinations for all collaborators. One way to achieve this goal is to make minimal and consistent methods that impose pre-conditions on input parameters. Moreover, you might want to ensure the class behavior by imposing post-conditions before methods return. You might also need to make sure that the class is always in a stable state. Such an approach can result in reliable classes to create robust objects. Consider for example a bounded counter that has both a lower and upper bound.
    [Show full text]
  • Examples of UML Diagrams
    UML Diagrams Examples Examples by Technology or Application Domain Online shopping UML diagrams Ticket vending machine UML diagrams Bank ATM UML diagrams Hospital management UML diagrams Digital imaging and communications in medicine (DICOM) UML diagrams Java technology UML diagrams Application development for Android UML diagrams Software licensing and protection using SafeNet Sentinel HASP security solution Examples by Types of Diagrams Activity diagram examples Class diagram examples Communication diagram examples Component diagram examples Composite structure diagram examples Deployment diagram examples Information flow diagram example Interaction overview diagram examples Object diagram example Package diagram examples Profile diagram examples http://www.uml-diagrams.org/index-examples.html 1/15/17, 1034 AM Page 1 of 33 Sequence diagram examples State machine diagram examples Timing diagram examples Use case diagram examples Use Case Diagrams Business Use Case Diagrams Airport check-in and security screening business model Restaurant business model System Use Case Diagrams Ticket vending machine http://www.uml-diagrams.org/index-examples.html 1/15/17, 1034 AM Page 2 of 33 Bank ATM UML use case diagrams examples Point of Sales (POS) terminal e-Library online public access catalog (OPAC) http://www.uml-diagrams.org/index-examples.html 1/15/17, 1034 AM Page 3 of 33 Online shopping use case diagrams Credit card processing system Website administration http://www.uml-diagrams.org/index-examples.html 1/15/17, 1034 AM Page 4 of 33 Hospital
    [Show full text]
  • Safely Creating Correct Subclasses Without Superclass Code Clyde Dwain Ruby Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2006 Modular subclass verification: safely creating correct subclasses without superclass code Clyde Dwain Ruby Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Computer Sciences Commons Recommended Citation Ruby, Clyde Dwain, "Modular subclass verification: safely creating correct subclasses without superclass code " (2006). Retrospective Theses and Dissertations. 1877. https://lib.dr.iastate.edu/rtd/1877 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Modular subclass verification: Safely creating correct subclasses without superclass code by Clyde Dwain Ruby A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Computer Science Program of Study Committee Gary T. Leavens, Major Professor Samik Basu Clifford Bergman Shashi K. Gadia Jonathan D. H. Smith Iowa State University Ames, Iowa 2006 Copyright © Clyde Dwain Ruby, 2006. All rights reserved. UMI Number: 3243833 Copyright 2006 by Ruby, Clyde Dwain All rights reserved. UMI Microform 3243833 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 ii TABLE OF CONTENTS ACKNOWLEDGEMENTS .
    [Show full text]
  • 3. Design by Contract
    3. Design by Contract Oscar Nierstrasz Design by Contract Bertrand Meyer, Touch of Class — Learning to Program Well with Objects and Contracts, Springer, 2009. 2 Bertrand Meyer is a French computer scientist who was a Professor at ETH Zürich (successor of Niklaus Wirth) from 2001-2015. He is best known as the inventor of “Design by Contract”, and as the designer of the Eiffel programming language, which provides built-in for DbC. DbC was first described in a technical report by Meyer in 1986: https://en.wikipedia.org/wiki/Design_by_contract Who’s to blame? The components fit but the system does not work. Who’s to blame? The component developer or the system integrator? 3 DbC makes clear the “contract” between a supplier (an object or “component”) and its client. When something goes wrong, the contract states whose fault it is. This simplifies both design and debugging. Why DbC? > Design by Contract —documents assumptions (what do objects expect?) —simplifies code (no special actions for failure) —aids debugging (identifies who’s to blame) 4 As we shall see, DbC improves your OO design in several ways. First, contracts make explicit the assumptions under which an object (supplier) will work correctly. Second, they simplify your code, since no special action is required when things go wrong — the exception handling framework provides the necessary tools. Third, contracts help in debugging since errors are caught earlier, when contracts are violated, not when your program crashes because of an invalid state, and it is clear where to lay the blame for the violation (i.e., in the object or its client).
    [Show full text]
  • FORTH-ICS / TR 381 July 2006 'An Informal Proof on the Contradictory
    FORTH-ICS / TR 381 July 2006 ‘An Informal Proof on the Contradictory Role of Finalizers in a Garbage Collection Context’ Anthony Savidis ABSTRACT Garbage collection in OOP languages provides facilities to hook code that is executed upon object finalization. Semantically, the point in time that finalizer code is executed is not determined by the application logic, but by the garbage collection system. This fact renders a potential mismatch, since application-specific code, i.e. the finalizer implementation, normally affecting program state and control flow, is called automatically at a point in time that is indifferent to the application semantics. Although an analogous situation is observed in event-based systems, since event processors are called-back asynchronously by the underlying system, there is a fundamental difference: while event generation is essentially nondeterministic, originated from external event sources, object destruction is a semantic action that is always decided by applications. In summary, the mismatch is that although applications decide if and when destruction occurs, the garbage collector is responsible to commit the relevant code. We prove that this mismatch is due to the contradictory presence of finalizers in a garbage collection context. Page 1 Introduction Preface This technical report has been also motivated by requests from colleagues to report the informal proof for the contradictory role of finalizers in garbage collection, simply relying on informal common software engineering principles. Additionally, the reporting has been also motivated by arguments that came to my attention via personal communication that either the claim cannot be proved (I assume that “cannot prove” arguments are subject to formal proofs, so such arguments are more weak than the claim they attack), or that the claim is trivial requiring essentially no proof (intuitively true, but does not explain why Java, C#, Python, just to name a few languages, still adopt finalizers).
    [Show full text]
  • A Machine-Checked Proof for a Translation of Event-B Machines to JML
    A Machine-Checked Proof for a Translation of Event-B Machines to JML N´estorCata~no1,Camilo Rueda2, and Tim Wahls3 1 EAFIT Unviersity [email protected] 2 Camilo Rueda Pontificia Universidad Javeriana [email protected] 3 Tim Wahls Dickinson College [email protected] Abstract. We present a machine-checked soundness proof of a trans- lation of Event-B to the Java Modeling Language (JML). The transla- tion is based on an operator EB2Jml that maps Event-B events to JML method specifications, and deterministic and non-deterministic assign- ments to JML method post-conditions. This translation has previously been implemented as the EventB2Jml tool. We adopted a taking our own medicine approach in the formalisation of our proof so that Event-B as well as JML are formalised in Event-B and the proof is discharged with the Rodin platform. Hence, for any Event-B substitution (whether an event or an assignment) and for the JML method specification obtained by applying EventB2Jml to the substitution, we prove that the semantics of the JML method specification is simulated by the semantics of the sub- stitution. Therefore, the JML specification obtained as translation from the Event-B substitution is a refinement of the substitution. Our proof includes invariants and the standard Event-B initialising event, but it does not include full machines or Event-B contexts. We assume that the semantics of JML and Event-B operate both on the same initial and final states, and we justify our assumption. Keywords: Event-B, JML, EventB2Jml, Formal Proof, Translation, Rodin 1 Introduction arXiv:1309.2339v1 [cs.SE] 9 Sep 2013 In an earlier work [14], we have proposed a design methodology that combines the use of design-by-contract techniques with JML [36,29,33] and correctness-by- construction techniques with Event-B [1].
    [Show full text]
  • Verification of Object Oriented Programs Using Class Invariants
    Verification of Object Oriented Programs Using Class Invariants Kees Huizing and Ruurd Kuiper and SOOP?? Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands, [email protected], [email protected] Abstract A proof system is presented for the verification and derivation of object oriented pro- grams with as main features strong typing, dynamic binding, and inheritance. The proof system is inspired on Meyer’s system of class invariants [12] and remedies its unsound- ness, which is already recognized by Meyer. Dynamic binding is treated in a flexible way: when throughout the class hierarchy overriding methods respect the pre- and post- conditions of the overridden methods, very simple proof rules for method calls suffice; more powerful proof rules are supplied for cases where one cannot or does not want to follow this restriction. The proof system is complete relative to proofs for properties of pointers and the data domain. 1 Introduction Although formal verification is not very common in the discipline of object oriented programming, the importance of formal specification is generally ac- knowledged ([12]). With the increased interest in component based develop- ment, it becomes even more important that components are specified in an un- ambiguous manner, since users or buyers of components often have no other knowledge about a component than its specification and at the same time rely heavily on its correct functioning in their framework. The specification of a class, sometimes called contract, usually contains at least pre- and postcondi- tions for the public mehtods and a class invariant. A class invariant expresses which states of the objects of the class are consis- tent, or “legal”.
    [Show full text]