Arithmetic of Cyclotomic Fields

Total Page:16

File Type:pdf, Size:1020Kb

Arithmetic of Cyclotomic Fields Arithmetic of cyclotomic fields Tudor Ciurca September 26, 2018 ∗ Contents 1 Dedekind domains and their ideals 4 1.1 Rings of integers are Dedekind domains . 4 1.2 Unique prime factorization (UPF) of ideals in Dedekind domains . 6 1.3 Ideal factorization . 9 1.4 Decomposition of primes in field extensions. 14 1.5 Orders of number fields in general . 18 1.6 More on prime decomposition . 26 1.7 More on discriminants . 31 1.8 The different ideal . 35 2 Examples of prime decomposition in number fields 41 2.1 Prime decomposition in quadratic fields . 41 2.2 Prime decomposition in pure cubic fields . 43 2.3 Prime decomposition in cyclotomic fields . 47 2.4 Cubic fields in general . 50 2.5 Quadratic reciprocity via prime decomposition . 54 3 Ring of adeles of a number field 56 3.1 Definitions of adeles and ideles . 56 3.2 Compactness of the reduced idele class group . 64 3.3 Applications to finiteness of ideal class group and Dirichlet's unit theorem . 68 ∗Department of Mathematics, Imperial College London, London, SW7 6AZ, United Kingdom E-mail address: [email protected] 1 4 L-series and zeta functions 71 4.1 Definitions and first properties . 71 4.2 Dirichlet's theorem on arithmetic progressions . 74 4.3 The analytic class number formula . 78 4.4 Applications and examples of the analytic class number formula . 85 4.5 Dirichlet characters and associated number fields . 88 5 Arithmetic of cyclotomic fields and Fermat's last theorem 91 5.1 Arithmetic of cyclotomic fields . 91 5.2 Case 1 of Fermat's last theorem . 95 5.3 Case 2 of Fermat's last theorem . 96 5.4 Cases p = 3 and p =4................................... 98 5.5 The relative class number formula for prime cyclotomic fields . 99 6 More arithmetic of cyclotomic fields 108 6.1 Construction of p-adic L-functions . 108 6.2 Gauss sums and the Stickelberger relation . 120 6.3 Herbrand's theorem . 127 6.4 Kummer's criterion for the regularity of primes . 129 7 Acknowledgements 133 2 Abstract For 300 years since its conception, Fermat's last theorem went unsolved. At first, only special cases were demonstrated. Fermat himself proved the exponent 4 case. Euler proved the exponent 3 case. Dirichlet proved the exponent 5 case. Lam´e'sproof for the exponent 7 case was quite complicated. Most of these early proofs went by descent. It was Lam´ewho first noticed that cyclotomic fields are the right environment to work with in regards to Fermat's last theorem. He showed that Fermat's last theorem for exponent p would follow from unique prime factorization in the ring Z[ζp], but he incorrectly assumed that unique prime factorization holds in all such rings. Here is where Kummer comes into the picture. He arguably had the most impact on Fermat's last theorem before Wiles. Kummer introduced the concept of ideal numbers, a precursor to ideals, in order to fix unique prime factorization when it fails. He proved that ideal numbers have unique prime factorization, and fixed Lame's proof, even though it was limited to prime exponents satisfying a certain condition. These primes were called regular. Statistically, around 61% of primes are regular, although the infinitude of regular primes is still an unsolved problem. This document is the result of a UROP project undertaken in the summer of 2018 at Imperial College London. The preliminaries assumed in this document include definitions from an undergraduate course in commutative algebra and results from Galois theory. In later chapters we make use of class field theory and Kummer theory, and refer the reader to some sources where this theory is developed. Section 1 provides a comprehensive introduction to some topics in algebraic number theory at the level of an advanced undergraduate course. Section 2 uses the theory developed in Section 1 to study specific examples and families of number fields. Section 3 gives a crash course on the theory of adeles, assuming some knowledge of local fields. This will be used to prove Dirichlet's unit theorem and the finiteness of the ideal class group. Section 4 introduces Dirichlet L-series and proves Dirichlet's theorem on primes in arith- metic progression. We also introduce Dedekind zeta functions and derive the analytic class number formula. We then study the relationship between Dirichlet characters of abelian Ga- lois groups and their associated intermediate number fields. Section 5 is where we actually begin studying the arithmetic of cyclotomic fields. We apply our results to prove Fermat's last theorem for regular primes, following Kummer. We then build upon results in Section 4 and derive the relative class number formula for prime cyclotomic fields. In Section 6, our main aim is to prove Kummer's criterion for the regularity of a prime. We give both an analytic and algebraic derivation for the preliminary criterion of whether p divides the relative class number. The analytic method uses p-adic L-functions whilst the algebraic method uses the Stickelberger relation to prove Herbrand's theorem. Along the way we study Gauss sums which will hep us prove Stickelberger's relation. Finally we use Kummer theory to relate the relative class number to the class number of a prime cyclotomic field. 3 1 Dedekind domains and their ideals Number theory began as the study of the integers. They act as a scaffolding for the field of rational numbers. During the 19th century mathematicians realized that number fields, that is, field extensions of Q of finite degree, have similar properties to Q and are the right context to study solutions of polynomial equations with integer coefficients in one variable. The "number theory" of a number field can be developed in a similar way to that of Q. There is an analogue to the integers for every number field, called its ring of integers, which acts as the scaffolding of the number field and contains many of its number-theoretic properties. In this section we will study number fields and their rings of integers. The important properties satisfied by these rings of integers are summarized in the abstract object known as a Dedekind domain, which is defined below. In this document every ring is commutative and has a multiplicative identity. The material in this section is based on a variety of sources. The main source is a course in algebraic number theory that the author has undertaken at the summer school PROMYS Europe 2017. This is also supplemented by [Cox13] and several expository papers by Keith Conrad and William Stein. At the beginning of every subsection, the specific sources used will be mentioned. If not, then the material of the subsection originates from the algebraic number theory course that the author took. Definition 1.0.1. A Dedekind domain is an integral domain R which is also • Noetherian • of Krull dimension 1 • integrally closed in Frac(R), the fraction field of R 1.1 Rings of integers are Dedekind domains Why are we interested in Dedekind domains? It is because the ring of integers OK of a number field K is a Dedekind domain. Recall that the ring of integers is the integral closure of Z in K, and these are objects of central importance in algebraic number theory. The first two conditions above can be thought of as some sort of restriction on the size of the ring. Note that one does not imply the other; there are examples of Krull dimension 1 rings which are not Noetherian. The next lemma proves that the rank of the ring of integers as a Z-module equals the vector space dimension of the number field over Q. This will be the crucial step in proving that rings of integers satisfy the first two conditions. Lemma 1.1.1. Let K be a number field. Then OK is a free Z − module of rank [K : Q]. Proof. Let K = Q(a1 : : : an) so that fa1 : : : ang is a Q-basis for K. We will show that the ai can Pm j be chosen to be elements of OK . Assume ai is not such an element and let fi = j=0 bi;jx be its 4 m−1 minimal polynomial with bi;j integers and bi;m non-zero. Then we can multiply fi by bi;m to get m m−1 X m−j−1 j bi;m fi = bi;jbi;m (bi;mai) = 0 j=0 m−1 −1 As a result the polynomial bi;m fi(bi;mx) is monic and has a root bi;mai which is an element of OK . Hence we can replace ai with bi;mai since bi;m is a non-zero integer. Now Z[a1 : : : an] ⊂ OK is a free Z-module of rank n, because the a1 : : : an being linearly inde- pendent over Q implies that they are linearly independent over Z. To show that OK is also a free Z-module of rank n, we will consider the embedding n : OK ! Z : g 7! (T r(g · a1) : : : T r(g · an)) where T r(·) is the absolute trace in K. This is clearly a Z-module homomorphism. If each T r(g ·ai) is zero then T r(g · h) = 0 for any h 2 K since the trace is Q-linear and fa1 : : : ang is Q-basis for K. N(g) In particular that means T r(N(g)) = 0 by selecting h = g , where N(·) is the absolute norm in K. This implies that g = 0 because N(g) is an integer and the trace of integers satisfies T r(N(g)) = n · N(g) This shows that is injective, and so it is indeed an embedding.
Recommended publications
  • QUARTIC CM FIELDS 1. Background the Study of Complex Multiplication
    QUARTIC CM FIELDS WENHAN WANG Abstract. In the article, we describe the basic properties, general and specific properties of CM degree 4 fields, as well as illustrating their connection to the study of genus 2 curves with CM. 1. Background The study of complex multiplication is closely related to the study of curves over finite fields and their Jacobian. Basically speaking, for the case of non-supersingular elliptic curves over finite fields, the endomorphism ring is ring-isomorphic to an order in an imaginary quadratic extension K of Q. The structure of imaginary extensions of Q has beenp thoroughly studied, and the ringsq of integers are simply generated by f1; Dg if D ≡ 1 mod 4, f D g ≡ or by 1; 4 if D 0 mod 4, where D is the discriminant of the field K. The theory of complex multiplication can be carried from elliptic curves to the (Jacobians) of genus 2 (hyperelliptic) curves. More explicitly, the Jacobian of any non-supersingular genus 2 (and hence, hyperelliptic) curve defined over a finite field has CM by an order in a degree 4, or quartic extension over Q, where the extension field K has to be totally imaginary. Description of the endomorphism ring of the Jacobian of a genus 2 curve over a finite field largely depends on the field K for which the curve has CM by. Many articles in the area of the study of genus two curves lead to the study of many properties of the field K. Hence the main goal of this article is, based on the knowledge of the author in the study of the genus 2 curves over finite fields, to give a survey of various, general or specific, properties of degree 4 CM fields.
    [Show full text]
  • Dirichlet Series Associated to Cubic Fields with Given Quadratic Resolvent 3
    DIRICHLET SERIES ASSOCIATED TO CUBIC FIELDS WITH GIVEN QUADRATIC RESOLVENT HENRI COHEN AND FRANK THORNE s Abstract. Let k be a quadratic field. We give an explicit formula for the Dirichlet series P Disc(K) − , K | | where the sum is over isomorphism classes of all cubic fields whose quadratic resolvent field is iso- morphic to k. Our work is a sequel to [11] (see also [15]), where such formulas are proved in a more general setting, in terms of sums over characters of certain groups related to ray class groups. In the present paper we carry the analysis further and prove explicit formulas for these Dirichlet series over Q, and in a companion paper we do the same for quartic fields having a given cubic resolvent. As an application, we compute tables of the number of S3-sextic fields E with Disc(E) < X, | | for X ranging up to 1023. An accompanying PARI/GP implementation is available from the second author’s website. 1. Introduction A classical problem in algebraic number theory is that of enumerating number fields by discrim- inant. Let Nd±(X) denote the number of isomorphism classes of number fields K with deg(K)= d and 0 < Disc(K) < X. The quantity Nd±(X) has seen a great deal of study; see (for example) [10, 7, 23]± for surveys of classical and more recent work. It is widely believed that Nd±(X)= Cd±X +o(X) for all d 2. For d = 2 this is classical, and the case d = 3 was proved in 1971 work of Davenport and Heilbronn≥ [13].
    [Show full text]
  • The Fundamental System of Units for Cubic Number Fields
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations May 2020 The Fundamental System of Units for Cubic Number Fields Janik Huth University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Other Mathematics Commons Recommended Citation Huth, Janik, "The Fundamental System of Units for Cubic Number Fields" (2020). Theses and Dissertations. 2385. https://dc.uwm.edu/etd/2385 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. THE FUNDAMENTAL SYSTEM OF UNITS FOR CUBIC NUMBER FIELDS by Janik Huth A Thesis Submitted in Partial Fulllment of the Requirements for the Degree of Master of Science in Mathematics at The University of Wisconsin-Milwaukee May 2020 ABSTRACT THE FUNDAMENTAL SYSTEM OF UNITS FOR CUBIC NUMBER FIELDS by Janik Huth The University of Wisconsin-Milwaukee, 2020 Under the Supervision of Professor Allen D. Bell Let K be a number eld of degree n. An element α 2 K is called integral, if the minimal polynomial of α has integer coecients. The set of all integral elements of K is denoted by OK . We will prove several properties of this set, e.g. that OK is a ring and that it has an integral basis. By using a fundamental theorem from algebraic number theory, Dirichlet's Unit Theorem, we can study the unit group × , dened as the set of all invertible elements OK of OK .
    [Show full text]
  • The Kronecker-Weber Theorem
    The Kronecker-Weber Theorem Lucas Culler Introduction The Kronecker-Weber theorem is one of the earliest known results in class field theory. It says: Theorem. (Kronecker-Weber-Hilbert) Every abelian extension of the rational numbers Q is con- tained in a cyclotomic extension. Recall that an abelian extension is a finite field extension K/Q such that the galois group Gal(K/Q) th is abelian, and a cyclotomic extension is an extension of the form Q(ζ), where ζ is an n root of unity. This paper consists of two proofs of the Kronecker-Weber theorem. The first is rather involved, but elementary, and uses the theory of higher ramification groups. The second is a simple application of the main results of class field theory, which classifies abelian extension of an arbitrary number field. An Elementary Proof Now we will present an elementary proof of the Kronecker-Weber theoerem, in the spirit of Hilbert’s original proof. The particular strategy used here is given as a series of exercises in Marcus [1]. Minkowski’s Theorem We first prove a classical result due to Minkowski. Theorem. (Minkowski) Any finite extension of Q has nonzero discriminant. In particular, such an extension is ramified at some prime p ∈ Z. Proof. Let K/Q be a finite extension of degree n, and let A = OK be its ring of integers. Consider the embedding: r s A −→ R ⊕ C x 7→ (σ1(x), ..., σr(x), τ1(x), ..., τs(x)) where the σi are the real embeddings of K and the τi are the complex embeddings, with one embedding chosen from each conjugate pair, so that n = r + 2s.
    [Show full text]
  • Construction of Regular Polygons a Constructible Regular Polygon Is One That Can Be Constructed with Compass and (Unmarked) Straightedge
    DynamicsOfPolygons.org Construction of regular polygons A constructible regular polygon is one that can be constructed with compass and (unmarked) straightedge. For example the construction on the right below consists of two circles of equal radii. The center of the second circle at B is chosen to lie anywhere on the first circle, so the triangle ABC is equilateral – and hence equiangular. Compass and straightedge constructions date back to Euclid of Alexandria who was born in about 300 B.C. The Greeks developed methods for constructing the regular triangle, square and pentagon, but these were the only „prime‟ regular polygons that they could construct. They also knew how to double the sides of a given polygon or combine two polygons together – as long as the sides were relatively prime, so a regular pentagon could be drawn together with a regular triangle to get a regular 15-gon. Therefore the polygons they could construct were of the form N = 2m3k5j where m is a nonnegative integer and j and k are either 0 or 1. The constructible regular polygons were 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, ... but the only odd polygons in this list are 3,5 and 15. The triangle, pentagon and 15-gon are the only regular polygons with odd sides which the Greeks could construct. If n = p1p2 …pk where the pi are odd primes then n is constructible iff each pi is constructible, so a regular 21-gon can be constructed iff both the triangle and regular 7-gon can be constructed.
    [Show full text]
  • Open Problems: CM-Types Acting on Class Groups
    Open problems: CM-types acting on class groups Gabor Wiese∗ October 29, 2003 These are (modified) notes and slides of a talk given in the Leiden number theory seminar, whose general topic are Shimura varieties. The aim of the talk is to formulate a purely number theoretic question (of Brauer-Siegel type), whose (partial) answer might lead to progress on the so-called André-Oort conjecture on special subvarieties of Shimura varieties (thus the link to the seminar). The question ought to be considered as a special case of problem 14 in [EMO], which was proposed by Bas Edixhoven and which we recall now. Let g be a positive integer and let Ag be the moduli space of principally polarized abelian varieties of dimension g. Do there exist C; δ > 0 such that for every CM-point x of Ag (i.e. the corresponding abelian variety has CM) one has G :x C discr(R ) δ; j Q j ≥ j x j where Rx is the centre of the endomorphism ring of the abelian variety correspond- ing to x??? What we will call the Siegel question in the sequel, is obtained by restricting to simple abelian varieties. In the talk I will prove everything that seems to be known on the question up to this moment, namely the case of dimension 2. This was worked out by Bas Edixhoven in [E]. The arguments used are quite “ad hoc” and I will try to point out, where obstacles to gener- alisations seem to lie. The boxes correspond more or less to the slides I used.
    [Show full text]
  • Background on Local Fields and Kummer Theory
    MATH 776 BACKGROUND ON LOCAL FIELDS AND KUMMER THEORY ANDREW SNOWDEN Our goal at the moment is to prove the Kronecker{Weber theorem. Before getting to this, we review some of the basic theory of local fields and Kummer theory, both of which will be used constantly throughout this course. 1. Structure of local fields Let K=Qp be a finite extension. We denote the ring of integers by OK . It is a DVR. There is a unique maximal ideal m, which is principal; any generator is called a uniformizer. We often write π for a uniformizer. The quotient OK =m is a finite field, called the residue field; it is often denoted k and its cardinality is often denoted q. Fix a uniformizer π. Every non-zero element x of K can be written uniquely in the form n uπ where u is a unit of OK and n 2 Z; we call n the valuation of x, and often denote it S −n v(x). We thus have K = n≥0 π OK . This shows that K is a direct union of the fractional −n ideals π OK , each of which is a free OK -module of rank one. The additive group OK is d isomorphic to Zp, where d = [K : Qp]. n × ∼ × The decomposition x = uπ shows that K = Z × U, where U = OK is the unit group. This decomposition is non-canonical, as it depends on the choice of π. The exact sequence 0 ! U ! K× !v Z ! 0 is canonical. Choosing a uniformizer is equivalent to choosing a splitting of this exact sequence.
    [Show full text]
  • 20 the Kronecker-Weber Theorem
    18.785 Number theory I Fall 2016 Lecture #20 11/17/2016 20 The Kronecker-Weber theorem In the previous lecture we established a relationship between finite groups of Dirichlet characters and subfields of cyclotomic fields. Specifically, we showed that there is a one-to- one-correspondence between finite groups H of primitive Dirichlet characters of conductor dividing m and subfields K of Q(ζm)=Q under which H can be viewed as the character group of the finite abelian group Gal(K=Q) and the Dedekind zeta function of K factors as Y ζK (x) = L(s; χ): χ2H Now suppose we are given an arbitrary finite abelian extension K=Q. Does the character group of Gal(K=Q) correspond to a group of Dirichlet characters, and can we then factor the Dedekind zeta function ζK (S) as a product of Dirichlet L-functions? The answer is yes! This is a consequence of the Kronecker-Weber theorem, which states that every finite abelian extension of Q lies in a cyclotomic field. This theorem was first stated in 1853 by Kronecker [2] and provided a partial proof for extensions of odd degree. Weber [6] published a proof 1886 that was believed to address the remaining cases; in fact Weber's proof contains some gaps (as noted in [4]), but in any case an alternative proof was given a few years later by Hilbert [1]. The proof we present here is adapted from [5, Ch. 14] 20.1 Local and global Kronecker-Weber theorems We now state the (global) Kronecker-Weber theorem.
    [Show full text]
  • Algebraic Number Theory II
    Algebraic number theory II Uwe Jannsen Contents 1 Infinite Galois theory2 2 Projective and inductive limits9 3 Cohomology of groups and pro-finite groups 15 4 Basics about modules and homological Algebra 21 5 Applications to group cohomology 31 6 Hilbert 90 and Kummer theory 41 7 Properties of group cohomology 48 8 Tate cohomology for finite groups 53 9 Cohomology of cyclic groups 56 10 The cup product 63 11 The corestriction 70 12 Local class field theory I 75 13 Three Theorems of Tate 80 14 Abstract class field theory 83 15 Local class field theory II 91 16 Local class field theory III 94 17 Global class field theory I 97 0 18 Global class field theory II 101 19 Global class field theory III 107 20 Global class field theory IV 112 1 Infinite Galois theory An algebraic field extension L/K is called Galois, if it is normal and separable. For this, L/K does not need to have finite degree. For example, for a finite field Fp with p elements (p a prime number), the algebraic closure Fp is Galois over Fp, and has infinite degree. We define in this general situation Definition 1.1 Let L/K be a Galois extension. Then the Galois group of L over K is defined as Gal(L/K) := AutK (L) = {σ : L → L | σ field automorphisms, σ(x) = x for all x ∈ K}. But the main theorem of Galois theory (correspondence between all subgroups of Gal(L/K) and all intermediate fields of L/K) only holds for finite extensions! To obtain the correct answer, one needs a topology on Gal(L/K): Definition 1.2 Let L/K be a Galois extension.
    [Show full text]
  • P-INTEGRAL BASES of a CUBIC FIELD 1. Introduction Let K = Q(Θ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 7, July 1998, Pages 1949{1953 S 0002-9939(98)04422-0 p-INTEGRAL BASES OF A CUBIC FIELD S¸ABAN ALACA (Communicated by William W. Adams) Abstract. A p-integral basis of a cubic field K is determined for each rational prime p, and then an integral basis of K and its discriminant d(K)areobtained from its p-integral bases. 1. Introduction Let K = Q(θ) be an algebraic number field of degree n, and let OK denote the ring of integral elements of K.IfOK=α1Z+α2Z+ +αnZ,then α1,α2,...,αn is said to be an integral basis of K. For each prime··· ideal P and each{ nonzero ideal} A of K, νP (A) denotes the exponent of P in the prime ideal decomposition of A. Let P be a prime ideal of K,letpbe a rational prime, and let α K.If ∈ νP(α) 0, then α is called a P -integral element of K.Ifαis P -integral for each prime≥ ideal P of K such that P pO ,thenαis called a p-integral element | K of K.Let!1;!2;:::;!n be a basis of K over Q,whereeach!i (1 i n)isap-integral{ element} of K.Ifeveryp-integral element α of K is given≤ as≤ α = a ! + a ! + +a ! ,wherethea are p-integral elements of Q,then 1 1 2 2 ··· n n i !1;!2;:::;!n is called a p-integral basis of K. { In Theorem} 2.1 a p-integral basis of a cubic field K is determined for every rational prime p, and in Theorem 2.2 an integral basis of K is obtained from its p-integral bases.
    [Show full text]
  • Finite Fields: Further Properties
    Chapter 4 Finite fields: further properties 8 Roots of unity in finite fields In this section, we will generalize the concept of roots of unity (well-known for complex numbers) to the finite field setting, by considering the splitting field of the polynomial xn − 1. This has links with irreducible polynomials, and provides an effective way of obtaining primitive elements and hence representing finite fields. Definition 8.1 Let n ∈ N. The splitting field of xn − 1 over a field K is called the nth cyclotomic field over K and denoted by K(n). The roots of xn − 1 in K(n) are called the nth roots of unity over K and the set of all these roots is denoted by E(n). The following result, concerning the properties of E(n), holds for an arbitrary (not just a finite!) field K. Theorem 8.2 Let n ∈ N and K a field of characteristic p (where p may take the value 0 in this theorem). Then (i) If p ∤ n, then E(n) is a cyclic group of order n with respect to multiplication in K(n). (ii) If p | n, write n = mpe with positive integers m and e and p ∤ m. Then K(n) = K(m), E(n) = E(m) and the roots of xn − 1 are the m elements of E(m), each occurring with multiplicity pe. Proof. (i) The n = 1 case is trivial. For n ≥ 2, observe that xn − 1 and its derivative nxn−1 have no common roots; thus xn −1 cannot have multiple roots and hence E(n) has n elements.
    [Show full text]
  • Algebraic Number Theory Course Notes (Fall 2006) Math 8803, Georgia Tech
    Algebraic Number Theory Course Notes (Fall 2006) Math 8803, Georgia Tech Matthew Baker E-mail address: [email protected] School of Mathematics, Georgia Institute of Technol- ogy, Atlanta, GA 30332-0140, USA Contents Preface v Chapter 1. Unique Factorization (and lack thereof) in number rings 1 1. UFD’s, Euclidean Domains, Gaussian Integers, and Fermat’s Last Theorem 1 2. Rings of integers, Dedekind domains, and unique factorization of ideals 7 3. The ideal class group 20 4. Exercises for Chapter 1 30 Chapter 2. Examples and Computational Methods 33 1. Computing the ring of integers in a number field 33 2. Kummer’s theorem on factoring ideals 38 3. The splitting of primes 41 4. Cyclotomic Fields 46 5. Exercises for Chapter 2 54 Chapter 3. Geometry of numbers and applications 57 1. Minkowski’s geometry of numbers 57 2. Dirichlet’s Unit Theorem 69 3. Exercises for Chapter 3 83 Chapter 4. Relative extensions 87 1. Localization 87 2. Galois theory and prime decomposition 96 3. Exercises for Chapter 4 113 Chapter 5. Introduction to completions 115 1. The field Qp 115 2. Absolute values 119 3. Hensel’s Lemma 126 4. Introductory p-adic analysis 128 5. Applications to Diophantine equations 132 Appendix A. Some background results from abstract algebra 139 iii iv CONTENTS 1. Euclidean Domains are UFD’s 139 2. The theorem of the primitive element and embeddings into algebraic closures 141 3. Free modules over a PID 143 Preface These are the lecture notes from a graduate-level Algebraic Number Theory course taught at the Georgia Institute of Technology in Fall 2006.
    [Show full text]