Quasi-Ordered Rings : a Uniform Study of Orderings and Valuations

Total Page:16

File Type:pdf, Size:1020Kb

Quasi-Ordered Rings : a Uniform Study of Orderings and Valuations Quasi-Ordered Rings: a uniform Study of Orderings and Valuations Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften vorgelegt von Müller, Simon an der Mathematisch-naturwissenschaftliche Sektion Fachbereich Mathematik & Statistik Konstanz, 2020 Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-22s99ripn6un3 Tag der mündlichen Prüfung: 10.07.2020 1. Referentin: Prof. Dr. Salma Kuhlmann 2. Referent: Prof. Dr. Tobias Kaiser Abstract The subject of this thesis is a systematic investigation of quasi-ordered rings. A quasi-ordering ; sometimes also called preordering, is usually understood to be a binary, reflexive and transitive relation on a set. In his note Quasi-Ordered Fields ([19]), S. M. Fakhruddin introduced totally quasi-ordered fields by imposing axioms for the compatibility of with the field addition and multiplication. His main result states that any quasi-ordered field (K; ) is either already an ordered field or there exists a valuation v on K such that x y , v(y) ≤ v(x) holds for all x; y 2 K: Hence, quasi-ordered fields provide a uniform approach to the classes of ordered and valued fields. At first we generalise quasi-orderings and the result by Fakhruddin that we just mentioned to possibly non-commutative rings with unity. We then make use of it by stating and proving mathematical theorems simultaneously for ordered and valued rings. Key results are: (1) We develop a notion of compatibility between quasi-orderings and valua- tions. Given a quasi-ordered ring (R; ); this yields, among other things, a characterisation of all valuations v on R such that canonically induces a quasi-ordering on the residue class domain Rv: Moreover, it leads to a uniform definition of the rank of (R; ): (2) Given a valued ring (R; v); we characterise all v-compatible quasi-orderings on R in terms of the quasi-orderings on Rv by establishing a Baer-Krull theorem for quasi-ordered rings. From this, we also derive such a theorem for ordered rings, respectively valued rings. (3) We equip the set of all quasi-orderings on a ring R with a coarsening relation ≤; which is defined as follows: 1 ≤ 2 :, 8x; y 2 R: (0 1 x 1 y ) x 2 y) That way, we unify three different notions at once, namely coarsenings of valuations, inclusions of orderings, and compatibility of orderings and valuations. We prove that the set of all quasi-orderings on R with fixed support forms a rooted tree with respect to ≤; i.e. a partially ordered set with a unique maximal element such that for each such quasi-ordering all its coarsenings are linearly ordered. As an application of this tree structure theorem we deduce that the set of all quasi-orderings on R; partially ordered by a slight modification of the coarsening relation ≤; is a spectral set, i.e. order-isomorphic to the spectrum of some commutative ring. (4) We develop a notion of the quasi-real spectrum of a ring, in analogy to the real spectrum as known from real algebraic geometry. For that purpose, we generalise both the Harrison and the Tychonoff topology to the space of all quasi-orderings on a given ring. We establish the results that this space is a spectral space with respect to the Harrison topology and a Boolean space with respect to the Tychonoff topology. Furthermore, we introduce partially quasi-ordered rings and show that they provide a uniform approach to strict partial valuations and division closed partial orderings. Last but not least, we give a model-theoretic application of quasi-orderings. We subsume the results that the theories of algebraically closed valued fields and real closed fields adjoined with a convex valuation admit quantifier elimination. Deutsche Zusammenfassung (German Summary) Gegenstand dieser Thesis ist das Studium quasiangeordneter Ringe. Gemeinhin versteht man unter einer Quasianordnung ; auch Pr¨aordnung genannt, eine bin¨are, reflexive und transitive Relation auf einer Menge. In seinem Paper Quasi-Ordered Fields ([19]) f¨uhrtS. M. Fakhruddin total quasiangeordnete K¨orper ein, indem er Axiome f¨urdie Vertr¨aglichkeit von mit Addition und Multiplikation formuliert. Sein Hauptresultat besagt, dass jeder quasiangeordnete K¨orper (K; ) entweder schon ein angeordneter K¨orper ist, oder eine Bewertung v auf K existiert, so dass x y , v(y) ≤ v(x) f¨uralle x; y 2 K gilt. Somit bieten quasiangeordnete K¨orper einen einheitlichen Zugang zu angeordneten und bewerteten K¨orpern. In dieser Arbeit verallgemeinern wir Quasianordnungen und das eben beschriebene Resultat zun¨achst auf m¨oglicherweise nicht-kommutative Ringe mit Eins. Dies machen wir uns zu Nutze, um mathematische S¨atze simultan f¨urangeordnete und bewertete Ringe zu beweisen. Zentrale Ergebnisse dieser Arbeit sind: (1) Wir entwickeln einen Begriff von Kompatibilit¨atzwischen Quasianordnun- gen und Bewertungen. Ist (R; ) ein quasiangeordneter Ring, so f¨uhrtuns dies unter anderem zu einer Charakterisierung all derjenigen Bewertungen v auf R; f¨urdie kanonisch eine Quasianordnung auf dem Restklassenring Rv induziert. Ferner leiten wir hieraus eine einheitliche Definition f¨urden Rang eines quasiangeordneten Rings (R; ) ab. (2) F¨ureinen bewerteten Ring (R; v) charakterisieren wir die v-kompatiblen Quasianordnungen auf R durch die Quasianordnungen auf Rv mittels eines Baer-Krull Theorems. Hieraus leiten wir dann entsprechende Theoreme f¨ur angeordnete Ringe, beziehungsweise bewertete Ringe, ab. (3) Wir versehen den Raum aller Quasianordnungen auf einem Ring R mit einer Vergr¨oberungs-Relation ≤; welche wie folgt definiert ist: 1 ≤ 2 :, 8x; y 2 R: (0 1 x 1 y ) x 2 y) Auf diese Weise vereinheitlichen wir drei unterschiedliche Sachverhalte auf einmal, n¨amlich Vergr¨oberungen von Bewertungen, Inklusionen von Anord- nungen sowie Kompatibilit¨atzwischen Anordnungen und Bewertungen. Wir beweisen, dass die Menge aller Quasianordnungen auf R mit festem Support eine Baumstruktur bez¨uglich ≤ besitzt, d.h. eine partiell ange- ordnete Menge mit einem Maximum bildet, so dass zu jedem Element die Menge all seiner Vergr¨oberungen linear angeordnet ist. Als eine Anwendung dieses Baumstruktur-Theorems erhalten wir, dass die Menge aller Quasianordnungen auf R; versehen mit einer leichten Modi- fizierung der Vergr¨oberungs-Relation ≤; eine spektrale Menge bildet, d.h. ordnungsisomorph zum Spektrum eines kommutativen Rings ist. (4) Wir entwickeln den Begriff des quasi-reellen Spektrums eines Rings, in Analogie zu dem aus der reellen algebraischen Geometrie bekannten reellen Spektrum. Hierzu verallgemeinern wir die Harrison und die Tychonoff Topologie auf den Raum aller Quasianordnungen eines Rings. Wir be- weisen, dass dies bez¨uglich der Harrison Topologie ein spektraler Raum und bez¨uglich der Tychonoff Topologie ein boolscher Raum ist. Zudem f¨uhrenwir partielle Quasianordnungen auf Ringen ein und zeigen, dass diese strikte partielle Bewertungen und divisionsabgeschlossene partielle Anordnungen vereinheitlichen. Schließlich fassen wir mittels Quasianordnungen die Resultate zusammen, dass die Theorien der algebraisch abgeschlossenen bewerteten K¨orper und der reell abgeschlossenen K¨orper mit konvexer Bewertung Quantorenelimina- tion besitzen. Contents Introduction. 9 1. The Notion of Quasi-Ordered Rings . 15 1.1. Introduction of Quasi-Ordered Rings . 20 1.2. The Dichotomy of Quasi-Ordered Rings - Commutative Case . 23 1.3. The Dichotomy of Quasi-Ordered Rings - General Case . 26 1.4. Special Quasi-Orderings . 29 1.5. Manis Quasi-Orderings and the Inverse Property . 31 2. On the Interplay of Quasi-Orderings and Valuations . 35 2.1. Compatibility of Quasi-Orderings and Valuations . 36 2.2. The Rank of a Quasi-Ordered Ring. 44 3. Baer-Krull Theorems for Quasi-Ordered Fields and Rings. 47 3.1. A Baer-Krull Theorem for Quasi-Ordered Fields . 48 3.2. A Baer-Krull Theorem for Quasi-Ordered Rings . 54 3.3. A Baer-Krull Theorem for Ordered Rings. 59 3.4. A Baer-Krull Theorem for Valued Rings . 61 4. The Tree Structure of Quasi-Orderings . 63 4.1. A Coarsening Relation for Quasi-Orderings . 63 4.2. The Tree Structure Theorem for Quasi-Ordered Rings . 65 4.3. The Tree Structure of Special and Manis Quasi-Orderings . 71 4.4. Applications of the Tree Structure Theorem . 72 4.4.1. On Spectral Sets of Quasi-Orderings. 72 4.4.2. Dependency of Quasi-Orderings . 74 4.4.3. Digression on the Topology Induced by a Quasi-Ordering . 75 5. The Quasi-Real Spectrum of a Ring . 77 5.1. The Quasi-Real Spectrum as a Set . 79 5.2. The Quasi-Real Spectrum as a Topological Space . 80 6. Partial Quasi-Orderings on Rings. 87 6.1. Partial Valuations and Partial Orderings . 87 6.2. Partially Quasi-Ordered Rings. 89 6.3. The Dichotomy of Partially Quasi-Ordered Rings . 92 6.4. Extending Partial Quasi-Orderings . 94 7. Quasi-Real Closed Fields and Quantifier Elimination . 97 Acknowledgements . 100 References . 101 List of Symbols . 104 9 Introduction Goals. The purpose of the present thesis is to provide a systematic and uniform study of the classes of ordered and valued rings. At this point we cannot put enough emphasis on the word uniformity, since we will treat orderings and valuations on rings with multiplicative identity simultaneously throughout the entire thesis - not only when formulating our results, but also when proving them. This is achieved by the notion of quasi-orderings, which provides an axiomatic subsumption of orderings and valuations. Quasi-ordered fields were introduced in 1987 by Fakhruddin in his note [19]. Let K be a field and a binary, reflexive, transitive and total relation on K: Write x ∼ y if x y x; and otherwise x y: Then (K; ) is called a quasi-ordered field if the following axioms are satisfied for all x; y; z 2 K : (Q1) If x ∼ 0; then x = 0: (Q2) If x y and 0 z; then xz yz: (Q3) If x y and z y; then x + z y + z: Fakhruddin's main theorem states that any quasi-ordered field (K; ) is either an ordered field or else there is a valuation v on K such that x y , v(y) ≤ v(x) for all x; y 2 K ([19, Theorem 2.1]).
Recommended publications
  • Mathematics 144 Set Theory Fall 2012 Version
    MATHEMATICS 144 SET THEORY FALL 2012 VERSION Table of Contents I. General considerations.……………………………………………………………………………………………………….1 1. Overview of the course…………………………………………………………………………………………………1 2. Historical background and motivation………………………………………………………….………………4 3. Selected problems………………………………………………………………………………………………………13 I I. Basic concepts. ………………………………………………………………………………………………………………….15 1. Topics from logic…………………………………………………………………………………………………………16 2. Notation and first steps………………………………………………………………………………………………26 3. Simple examples…………………………………………………………………………………………………………30 I I I. Constructions in set theory.………………………………………………………………………………..……….34 1. Boolean algebra operations.……………………………………………………………………………………….34 2. Ordered pairs and Cartesian products……………………………………………………………………… ….40 3. Larger constructions………………………………………………………………………………………………..….42 4. A convenient assumption………………………………………………………………………………………… ….45 I V. Relations and functions ……………………………………………………………………………………………….49 1.Binary relations………………………………………………………………………………………………………… ….49 2. Partial and linear orderings……………………………..………………………………………………… ………… 56 3. Functions…………………………………………………………………………………………………………… ….…….. 61 4. Composite and inverse function.…………………………………………………………………………… …….. 70 5. Constructions involving functions ………………………………………………………………………… ……… 77 6. Order types……………………………………………………………………………………………………… …………… 80 i V. Number systems and set theory …………………………………………………………………………………. 84 1. The Natural Numbers and Integers…………………………………………………………………………….83 2. Finite induction
    [Show full text]
  • A Note on Embedding a Partially Ordered Ring in a Division Algebra William H
    proceedings of the american mathematical society Volume 37, Number 1, January 1973 A NOTE ON EMBEDDING A PARTIALLY ORDERED RING IN A DIVISION ALGEBRA WILLIAM H. REYNOLDS Abstract. If H is a maximal cone of a ring A such that the subring generated by H is a commutative integral domain that satisfies a certain centrality condition in A, then there exist a maxi- mal cone H' in a division ring A' and an order preserving mono- morphism of A into A', where the subring of A' generated by H' is a subfield over which A' is algebraic. Hypotheses are strengthened so that the main theorems of the author's earlier paper hold for maximal cones. The terminology of the author's earlier paper [3] will be used. For a subsemiring H of a ring A, we write H—H for {x—y:x,y e H); this is the subring of A generated by H. We say that H is a u-hemiring of A if H is maximal in the class of all subsemirings of A that do not contain a given element u in the center of A. We call H left central if for every a e A and he H there exists h' e H with ah=h'a. Recall that H is a cone if Hn(—H)={0], and a maximal cone if H is not properly contained in another cone. First note that in [3, Theorem 1] the commutativity of the hemiring, established at the beginning of the proof, was only exploited near the end of the proof and was not used to simplify the earlier details.
    [Show full text]
  • Embedding Two Ordered Rings in One Ordered Ring. Part I1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 2, 341-364 (1966) Embedding Two Ordered Rings in One Ordered Ring. Part I1 J. R. ISBELL Department of Mathematics, Case Institute of Technology, Cleveland, Ohio Communicated by R. H. Bruck Received July 8, 1965 INTRODUCTION Two (totally) ordered rings will be called compatible if there exists an ordered ring in which both of them can be embedded. This paper concerns characterizations of the ordered rings compatible with a given ordered division ring K. Compatibility with K is equivalent to compatibility with the center of K; the proof of this depends heavily on Neumann’s theorem [S] that every ordered division ring is compatible with the real numbers. Moreover, only the subfield K, of real algebraic numbers in the center of K matters. For each Ks , the compatible ordered rings are characterized by a set of elementary conditions which can be expressed as polynomial identities in terms of ring and lattice operations. A finite set of identities, or even iden- tities in a finite number of variables, do not suffice, even in the commutative case. Explicit rules will be given for writing out identities which are necessary and sufficient for a commutative ordered ring E to be compatible with a given K (i.e., with K,). Probably the methods of this paper suffice for deriving corresponding rules for noncommutative E, but only the case K,, = Q is done here. If E is compatible with K,, , then E is embeddable in an ordered algebra over Ks and (obviously) E is compatible with the rational field Q.
    [Show full text]
  • Pacific Journal of Mathematics Vol. 281 (2016)
    Pacific Journal of Mathematics Volume 281 No. 2 April 2016 PACIFIC JOURNAL OF MATHEMATICS msp.org/pjm Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989) EDITORS Don Blasius (Managing Editor) Department of Mathematics University of California Los Angeles, CA 90095-1555 [email protected] Paul Balmer Vyjayanthi Chari Daryl Cooper Department of Mathematics Department of Mathematics Department of Mathematics University of California University of California University of California Los Angeles, CA 90095-1555 Riverside, CA 92521-0135 Santa Barbara, CA 93106-3080 [email protected] [email protected] [email protected] Robert Finn Kefeng Liu Jiang-Hua Lu Department of Mathematics Department of Mathematics Department of Mathematics Stanford University University of California The University of Hong Kong Stanford, CA 94305-2125 Los Angeles, CA 90095-1555 Pokfulam Rd., Hong Kong fi[email protected] [email protected] [email protected] Sorin Popa Jie Qing Paul Yang Department of Mathematics Department of Mathematics Department of Mathematics University of California University of California Princeton University Los Angeles, CA 90095-1555 Santa Cruz, CA 95064 Princeton NJ 08544-1000 [email protected] [email protected] [email protected] PRODUCTION Silvio Levy, Scientific Editor, [email protected] SUPPORTING INSTITUTIONS ACADEMIA SINICA, TAIPEI STANFORD UNIVERSITY UNIV. OF CALIF., SANTA CRUZ CALIFORNIA INST. OF TECHNOLOGY UNIV. OF BRITISH COLUMBIA UNIV. OF MONTANA INST. DE MATEMÁTICA PURA E APLICADA UNIV. OF CALIFORNIA, BERKELEY UNIV. OF OREGON KEIO UNIVERSITY UNIV. OF CALIFORNIA, DAVIS UNIV. OF SOUTHERN CALIFORNIA MATH. SCIENCES RESEARCH INSTITUTE UNIV. OF CALIFORNIA, LOS ANGELES UNIV.
    [Show full text]
  • Convex Extensions of Partially Ordered Rings
    Convex Extensions of Partially Ordered Rings Niels Schwartz*) A series of lectures given at the conference "Géométrie algébrique et analytique réelle" Kenitra, Morocco, September 13 – 20, 2004 This series of lectures is about algebraic aspects of real algebraic geometry. Partially ordered rings (porings) occur very naturally in real algebraic geometry, as well as in other branches of mathematics. There is a rich classical theory of porings (the beginnings dating back to the 1930s and 1940s). To a large extent it was inspired by the study of rings of continuous functions in analysis and topology. I will mention rings of continuous functions from time to time, but will not attempt an in-depth discussion. With the rise of real algebraic geometry in the last 25 years there also arose a need for algebraic methods that are specifically adapted to real algebraic geometry, as opposed to general algebraic geometry. For a long time commutative algebra has been the answer to a similar need in general algebraic geometry. For real algebraic geometry, an important part of the answer is the theory of porings. However, the classical theory of porings frequently does not address the questions from real algebraic geometry. Therefore it is necessary to develop a more comprehensive theory of porings that includes rings of continuous functions, but also deals with phenomena occurring in real geometry. This is a major task that is not nearly finished at the present time. First I give the definition of porings: Definition 1 A partially ordered ring (poring) is a ring A (all rings are commutative with 1) together with a subset P ! A that satisfies the following conditions • P + P ! P ; • P ! P " P ; • A2 ! P ; • P ! "P = {0} .
    [Show full text]
  • Finitely Presented and Coherent Ordered Modules and Rings Friedrich Wehrung
    Finitely presented and coherent ordered modules and rings Friedrich Wehrung To cite this version: Friedrich Wehrung. Finitely presented and coherent ordered modules and rings. Communications in Algebra, Taylor & Francis, 1999, 27 (12), pp.5893–5919. 10.1080/00927879908826797. hal-00004049 HAL Id: hal-00004049 https://hal.archives-ouvertes.fr/hal-00004049 Submitted on 24 Jan 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. FINITELY PRESENTED AND COHERENT ORDERED MODULES AND RINGS F. WEHRUNG Abstract. We extend the usual definition of coherence, for mod- ules over rings, to partially ordered right modules over a large class of partially ordered rings, called po-rings. In this situation, coherence is equivalent to saying that solution sets of finite systems of inequalities are finitely generated semimodules. Coherence for ordered rings and modules, which we call po-coherence, has the following features: (i) Every subring of Q, and every totally ordered division ring, is po-coherent. (ii) For a partially ordered right module A over a po-coherent po- ring R, A is po-coherent if and only if A is a finitely presented R-module and A+ is a finitely generated R+-semimodule.
    [Show full text]
  • Title Ordered Rings and Order-Preservation( Fulltext ) Author(S)
    Title Ordered rings and order-preservation( fulltext ) Author(s) KITAMURA,Yoshimi; TANAKA,Yoshio Citation 東京学芸大学紀要. 自然科学系, 64: 5-13 Issue Date 2012-09-28 URL http://hdl.handle.net/2309/131815 Publisher 東京学芸大学学術情報委員会 Rights Bulletin of Tokyo Gakugei University, Division of Natural Sciences, 64: 5 - 13,2012 Ordered rings and order-preservation Yoshimi KITAMURA* and Yoshio TANAKA* Department of Mathematics (Received for publication; May 25, 2012) KITAMURA, Y. and TANAKA, Y.: Ordered rings and order-preservation. Bull. Tokyo Gakugei Univ. Div. Nat. Sci., 64: 5-13 (2012) ISSN 1880-4330 Abstract We consider ordered rings or ordered fields, and give several related matters and examples. We give characterizations for residue class rings of ordered rings to be ordered rings (or ordered integral domains). Further, we give a characterization for an ordered ring R to satisfy the condition that all homomorphisms of R to any ordered ring are order-preserving. Key words and phrases: ordered ring, ordered field, residue class ring, order-preserving Department of Mathematics, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei-shi, Tokyo 184-8501, Japan Introduction The symbol R; Q; Z; or N is the field of real numbers; the field of rational numbers; the ring of integers; or the set of positive integers, respectively. The symbol R or R’ is a (non-zero) commutative ring, unless otherwise stated. We recall that R is called an ordered ring (or totally ordered ring) if it has a total order such that this ordering relation is order- preserving with respect to addition and multiplication. In particular, when R is a field, such an R is called an ordered field.
    [Show full text]
  • Real Closed Rings and Real Closed* Rings
    Real Closed Rings and Real Closed * Rings Jose Capco capco@fim.uni-passau.de Universit¨at Passau, Innstr. 33, 94032 Passau, Germany Abstract Here we try to distinguish and compare different notions of real closedness mainly one developed by N. Schwartz in his Habilitationschrift and the other developed by A. Sankaran and K. Varadarajan in [15] which we shall call real closed *. We stick to the definition of real closed rings as defined and characterized in [18] and we try to determine and characterize real closed rings that are real closed *. The main result is that real closed rings have unique real closure * and that real closure of real closed * rings arent necessarily real closed *. Mathematics Subject Classification (2000): Primary 13J25; Secondary 13B22, 13A35 Keywords: real closed rings, real closed ∗ rings, tight/essential extension, algebraic exten- sion, total integral closure, Baer Hull, f-ring. Unless otherwise stated all the rings in this paper are commutative unitary partially ordered rings (porings). The reader is assumed to know results in [8] Kapitel III. Notation. Given a ring A we use Sper A to mean the topological space (Harrison Topology) of all the prime cones of A such that they contain the partial ordering of A. If the partial ordering is not specifically mentioned then we will mostly assume it to be n 2 2 A := a : a ,...,an A { i 1 ∈ } X Xi=1 For a ,...,an,a A we use the following notations: 1 ∈ supp : Sper A Spec A supp (α)= α α α Sper A A −→ A − ∩ ∈ arXiv:0707.2189v2 [math.RA] 12 Sep 2007 and VA(a) := p Spec A : a p { ∈ ∈ } ZA(a) := α Sper A : a supp (α) { ∈ ∈ A } P¯A(a ,...,an) := α Sper A : a ,...,an α 1 { ∈ 1 ∈ } If it is clear with which ring we are working with, we drop the subscript A above and we just write supp, V (a),..
    [Show full text]
  • Lattice-Ordered Rings and Function Rings
    Pacific Journal of Mathematics LATTICE-ORDERED RINGS AND FUNCTION RINGS MELVIN HENRIKSEN AND JOHN ROLFE ISBELL Vol. 12, No. 2 February 1962 LATTICE-ORDERED RINGS AND FUNCTION RINGS MELVIN HENRIKSEN AND J. R. ISBELL Introduction: This paper treats the structure of those lattice-ordered rings which are subdirect sums of totally ordered rings—the f-rings of Birkhoff and Pierce [4]. Broadly, it splits into two parts, concerned respectively with identical equations and with ideal structure; but there is an important overlap at the beginning. D. G. Johnson has shown [9] that not every /-ring is unitable, i.e. embeddable in an/-ring which has a multiplicative unit; and he has given a characterization of unitable /-rings. We find that they form an equationally definable class. Consequently in each /-ring there is a definite Z-ideal which is the obstruction to embedding in an /-ring with unit. From Johnson's results it follows that such an ideal must be nil; we find it is nilpotent of index 2, and generated by left and right annihilators. Tarski has shown [13] that all real-closed fields are arithmetically equivalent. It follows easily that every ordered field satisfies all ring- lattice identities valid in the reals (or even in the rationals); and from a theorem of Birkhoff [2], every ordered field is therefore a homomorphic image of a latticeordered ring of real-valued functions. Adding results of Pierce [12] and Johnson [9], one gets the same conclusion for commutative /-rings which have no nonzero nilpotents. We extend the result to all zero /-rings, and all archimedean /-rings.
    [Show full text]
  • A Structure Theory for a Class of Lattice-Ordered Rings
    A STRUCTURE THEORY FOR A CLASS OF LATTICE-ORDERED RINGS BY D. G. JOHNSON University Park, Pennsylvania, U.S.A. (1) The foundations of a systematic general theory of lattice-ordered rings were laid by Birkhoff and Pierce in [3]. They introduced, as an object for further study, the class of/- rings. This special class of lattice-ordered rings displays a rich structure: it can be charac- terized as the class of all subdirect unions of ordered rings. Birkhoff and Pierce obtained many properties of/-rings, basing their structure theory on the /-radical of an/-ring. In [20], Pierce obtained an important decomposition theorem for/-rings with zero /-radical. This paper continues the study of the structure of/-rings. In Chapter I, we present the necessary background material and obtain a characteriza- tion of the/-radical of an/-ring that yields a new proof of the decomposition theorem of Pierce. In Chapter II, we present a structure theory for/-rings based on an/-ring analogue of the Jacobson radical for abstract rings. In Section 1, the J-radical of an/-ring A is defined to be the intersection of the maximal modular right/-ideals of A. In Section 2, the J-radical is characterized in terms of the notion of/-quasi-regularity, and this characterization is used to obtain certain properties of the J-radical. In Section 3, we consider a representation theory for/-rings. We show that every/-ring that has a faithful, irreducible,/-representation is a totally ordered ring with identity that contains no non-zero proper one-sided/-ideals.
    [Show full text]
  • The Modern Analysis of the Infinite: Introductory Notes
    The Modern Analysis of the Infinite: Introductory Notes John N. Martin Department of Philosophy University of Cincinnati [email protected] Contents: Part I. Background Ideas..................................................................................1 1. Introduction...............................................................................................1 2. Metaphysics, Universals and Sets............................................................2 3. Axiom Systems.........................................................................................4 4. The Axioms and Definitions of Naive Set Theory......................................6 5. Relations and Functions ...........................................................................9 6. Axiomatic Set Theory..............................................................................12 7. Abstract Structures .................................................................................14 8. Sameness of Structure ...........................................................................17 9. Sameness of Kind...................................................................................18 10. Identity of Structure...............................................................................19 11. Computation as an Abstraction from of Numbers .................................20 12. Extensive Measurement .......................................................................21 Part II. Numbers and the Properties of the Infinite..........................................23
    [Show full text]
  • Counting Problems for Number Rings
    Counting problems for number rings Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. P. F. van der Heijden, volgens besluit van het College voor Promoties te verdedigen op dinsdag 22 december 2009 klokke 11.15 uur door Johannes Franciscus Brakenhoff geboren te Heemskerk in 1980 Samenstelling van de promotiecommissie: promotor: prof. dr. H. W. Lenstra overige leden: prof. dr. P. Stevenhagen prof. dr. M. Bhargava (Princeton University) prof. dr. J. Top (Rijksuniversiteit Groningen) prof. dr. S. J. Edixhoven dr. B. de Smit Counting problems for number rings THOMAS STIELTJES INSTITUTE FOR MATHEMATICS Jos Brakenhoff, Leiden, 2009 Op het omslag staat een representatie van de deelringen van index 9 in de maximale orde van Q[X]/(X3 X + 3). − Contents 1 Number rings and counting problems 7 2 Conventions and notations 16 3 Equality of polynomial and field discriminants 19 3.1 Introduction................................ 19 3.2 Probability ................................ 20 3.3 Lenstra’s heuristic argument . 21 3.4 Squarefreeness of polynomial discriminants . 24 3.5 Experimental evidence . 24 3.6 Appendix – square-free discriminants . 25 4 Cocyclic subrings 34 4.1 Cocyclic subrings and ideals . 34 4.2 Cocyclic rings for p-adic orders . 36 5 Subrings of maximal orders 37 5.1 Articulationoftheproof......................... 38 5.2 Vector spaces . 46 5.3 Localization................................ 47 5.3.1 Weak approximation . 48 5.3.2 Localringsofintegers ...................... 48 5.3.3 Multiplicativity . 49 5.4 Counting submodules . 51 5.5 Rounding rings . 55 6 Artinian principal ideal rings 60 6.1 Basicringtheory ............................. 62 6.1.1 Products ............................
    [Show full text]