Late Pleistocene Megafaunal Deposits on the Isthmus of Panama and Their Paleoenvironmental Implications

Total Page:16

File Type:pdf, Size:1020Kb

Late Pleistocene Megafaunal Deposits on the Isthmus of Panama and Their Paleoenvironmental Implications Caribbean Journal of Science, Vol. 41, No. 1, 1-13, 2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Late Pleistocene Megafaunal Deposits on the Isthmus of Panama and Their Paleoenvironmental Implications GEORGES A. PEARSON Department of Anthropology, University of Kansas, 622 Fraser Hall, 1415 Jayhawk Blvd., Lawrence, KS 66045-7556, USA [email protected] ABSTRACT.—Two megafaunal deposits were discovered next to the villages of La Trinidaíta and Llano Hato during an archaeological survey on the Azuero Peninsula of Panama. The fossil sites were found near other localities first reported in 1957 by Smithsonian paleontologist Lewis Gazin. Bones at La Trinidaíta and Llano Hato rested in tight horizontal clusters at the bottom of ancient creeks and ponds. The remains appear to have been buried rapidly by thick deposits of fine clay when environmental conditions were wetter and cooler than today. Animals identified at La Trinidaíta and Llano Hato include Cuvieronius tropicus, Eremo- therium sp., and some turtles. Radiocarbon-dated charcoal fragments associated with the bones gave con- temporaneous dates of 44,840 ± 700 and 47,040 ± 900 14C yr B.P. These dates indicate that carcasses accumu- lated during the Marine Isotope Stage 3 (MIS3) interstadial. Because other fossils were not found above or below these principal deposits, it is argued that the MIS3 environment was especially favorable for sup- porting large browsers and mixed-feeders and preserving their bones on the landscape. These environmental and taphonomical characteristics likely disappeared as the climate of the lowland Neotropics became drier in response to the following arid glacial advance. During this time, C4 plants dominated the landscape and may have forced gomphotheres and giant ground sloths to abandon the dry Pacific lowlands and follow the rising tree-lines. Such large-scale range re-organization may have caused animals to abandon some regions of lower Central America during the Last Glacial Maximum. KEYWORDS.—Panama, megafauna, MIS3, Cuvieronius, Eremotherium, Rancholabrean, Pleistocene. INTRODUCTION types of armadillos (Holmesina, Glyptothe- rium, Chlamydotherium), ground sloths During the late Pliocene and the Pleis- (Megalonyx, Eremotherium, Glossotherium), tocene, Central America acted as a connect- toxodonts (Mixotoxodon), porcupines, opos- ing corridor that allowed North and South sums, anteaters, and monkeys. Initially, the American animal species to intermingle. dispersal of animals across the Isthmus was This process, called the Great American facilitated by the presence of a continuous Faunal Interchange (Marshall et al. 1982; savanna corridor spanning both continents Stehli and Webb 1985; Marshall 1988; Webb (Webb 1978, 1991). By the end of the Pleis- 1991, 1997), began approximately 3 MYA tocene, however, a more humid environ- with the final emergence of the Panama- ment began to prevail in lower Central nian land bridge and closure of the last ma- America, which culminated in the modern rine corridor between the Pacific and At- Neotropics. With time, the increasingly hot lantic oceans (Coates 1997). Among the and wet expanse between Nicaragua and northern animals that crossed the Isthmus Panama became less of a conduit and more into South America were gomphotheriids of a filter, gradually preventing animal and (Cuvieronius), horses, llamas, deer, peccar- plants from traversing to and from the con- ies, tapirs, and rabbits (Webb 1991). Immi- tinents. Although the emergence of the grants from the south included several Isthmus of Panama was responsible for the terrestrial swapping of animals, very few fossils have been recovered on the land ms. received August 16, 2004; accepted December bridge itself. The first discoveries were re- 21, 2004 ported by Gazin in 1957 who excavated two 1 2 GEORGES A. PEARSON megafaunal localities on the Azuero Penin- Florida Museum of Natural History in sula. The first site, La Coca, near the town Gainesville where the author conducted of Ocú, contained the remains of Eremothe- preliminary identification. Fossils were rium and Mixotoxodon (originally described eventually returned to the Smithsonian as Toxodon, Gazin 1957:346). At the second Tropical Research Institute in Panama locality, El Hatillo, Gazin (1957:347) identi- where they are presently stored. fied the bones of Eremotherium, Equus, Cu- vieronius, Glyptodon, Pseudemys (Trachemys), RESULTS and Glossotherium among others. Here I re- port the discovery of two additional fossil de- La Trinidaíta posits found near Gazin’s original sites. Setting.—La Trinidaíta (98 m a.s.l.) is lo- cated approximately 9 km west of the town METHODS of Pesé (UTM: 17NNU533942873738, NAD 27) (Figure 1). The site was discovered in a In 2001, I conducted an archaeological small topographic depression that drains survey whose main objective was to locate into a small creek and becomes boggy dur- late Pleistocene-early Holocene human oc- ing the rainy season (Figure 2). The bowl is cupations on the Azuero Peninsula (Pear- delineated by a gentle northern slope and son 2002; Pearson and Cooke 2002). Be- eroding sidewalls to the south. Although cause Paleoindian sites sometimes contain the land was in a fallow state at the time of the remains of megamammals (Grayson our study, it had previously served to grow and Meltzer 2002), ancient bone deposits tubers. Prior planting and harvesting ac- were also sought to determine if a human tivities had exposed bones along the shal- presence might be associated with some of low edges of the depression. them. During the reconnaissance, bones of Excavations at La Trinidaíta were ori- extinct megafauna were discovered next to ented perpendicular to the draining axis of the small villages of Llano Hato and La the basin in order to sample a cross-section Trinidaíta. of the sloping deposits.A2m2 test pit (TP1) Both the Llano Hato and La Trinidaíta was placed near the bottom of the bowl localities were excavated following ar- aligned with a narrow trench (TR1) and a chaeological protocols. Using a theodolite, second test pit (TP2, 1 m2) along its slope. horizontal grids of 1 m2 excavation units In addition, several test pits were dug at a were established over the extent of the distance from the main excavation area to work area. These grids were oriented along determine the extent of the fossil-bearing magnetic north or an arbitrary site north. deposit. All bones recovered during the Excavations proceeded by shovels and study were found in TP1, TP2, TR1, and trowels to remove sterile overburden fol- unit N80E122. lowed by wooden shish kebab sticks to ex- Stratigraphy and dating.—Bones at La pose the bone beds. Because fossils were Trinidaíta were first observed on the sur- embedded in a moist and sticky clay ma- face of the northern incline. These fossils trix, sieves were not used in the field. Most were protruding from a 10 cm-thick plow- bones were in a very poor state of preser- zone observed in the stratigraphic profile of vation and had to be treated in the field the trench. Specimens recovered in situ in with a solution of diluted white glue and in TR1 were resting on an ancient creek bed the laboratory with an acetone-based con- composed of rounded cobbles and sand ly- solidant (Acryloid B-72). The absence of hu- ing immediately above the bedrock (Figure man-made artifacts coupled with a suite of 3). Fossils were encased and overlaid by early radiocarbon dates later confirmed fine clay which thickened progressively to- that the deposits represented non-cultural wards the bottom of the basin (from 25 cm paleontological accumulations. Following in TR1 to over a meter in TP1). Although the excavations, bone elements with visible our excavations did not reach the rocky identifying features were shipped to the substrate in TP1, megafaunal remains were LATE PLEISTOCEN MEGAFAUNAL DEPOSITS 3 FIG. 1. Map of Panama and Azuero Peninsula (above) and inset map (below) showing towns (solid squares) and fossil localities (open circles) described in text. found at 85 cm below surface within the consisted of Eremotherium vertebrae. De- fine clay deposit (Figure 4). A charcoal pending on the taxonomic scheme one sample collected approximately 15 cm be- wishes to adopt, late Pleistocene ground low an isolated Eremotherium vertebra in sloth species from Panama belong to either TP1 gave a date of 44,840 ± 700 14C yr B.P. E. laurillardi (Cartelle and De Iuliis 1995) or (Beta-158916, Table 1). This date is consid- to E. rusconi (Guérin and Faure 2000). Cu- ered an average age because the charcoal vieronius tropicus was represented by a sample was recovered under some of the tooth fragment (Figure 6), a complete tibia, fossils in clay that buried the main bone some vertebrae, and a proximal rib. Finally, bed. Several remains were also collected a small section of carapace was ascribed to from TP2 but excavations in this test unit an unidentified terrestrial turtle. Regretta- were incomplete due to in-filling of water bly, it was not possible to classify many during heavy rains. The bone-rich clay was fragmentary specimens (n < 80) and the not observed in units N100E128 and MNI count for this collection must tenta- N115E88-89. tively remain at one individual for each Fossil remains.—At least three genera species. were identified at La Trinidaíta (Table 2, Bones did not show obvious signs of sur- Figure 5). The majority of bone elements face weathering such as root etching, insect 4 GEORGES A. PEARSON FIG. 2. Topographic map of the La Trinidaíta fossil locality, Panama. Test pits and trenches are indicated by solid squares and rectangles respectively. burrows, rodent gnawing, or desiccation Pesé (UTM: 17NNU533587881887, NAD 27). cracks and exfoliation. This evidence sug- The site was discovered in a cow pasture gests that the animals died at the watering on the edge of a small, seasonal stream hole and carcasses were deposited in the (Quebrada El Jobo).A2m2 test pit (TP1) aqueous environment of the creek.
Recommended publications
  • Research, Society and Development, V. 9, N. 7, E316973951, 2020 (CC by 4.0) | ISSN 2525-3409 | DOI
    Research, Society and Development, v. 9, n. 7, e316973951, 2020 (CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v9i7.3951 Mendes, MS, Zanesco, T, Melki, LB, Rangel, CC, Ferreira, BM, Lima, CV, Oliveira, MA & Candeiro, CRA. (2020). Eremotherium (Xenarthra, Mammalia) das coleções da Universidade Federal de Goiás, Brasil. Research, Society and Development, 9(7): 1-18, e316973951. Eremotherium (Xenarthra, Mammalia) das coleções da Universidade Federal de Goiás, Brasil Eremotherium (Xenarthra, Mammalia) from the collections of the Universidade Federal de Goiás, Brazil Eremotherium (Xenarthra, Mammalia) de las colecciones de la Universidade Federal de Goiás, Brasil Recebido: 25/04/2020 | Revisado: 01/05/2020 | Aceito: 07/05/2020 | Publicado: 14/05/2020 Millena Silva Mendes ORCID: http://orcid.org/0000-0003-3894-7331 Universidade Federal de Goiás, Brasil E-mail: [email protected] Tábata Zanesco ORCID: http://orcid.org/0000-0002-6850-629 Universidade Federal do Rio de Janeiro, Brasil E-mail: [email protected] Luiza Bomfim Melki ORCID: http://orcid.org/0000-0003-0862-8946 Universidade Federal do Rio de Janeiro, Brasil E-mail: [email protected] Caio César Rangel ORCID: http://orcid.org/0000-0001-8707-9441 Universidade Federal de Uberlândia, Brasil E-mail: [email protected] Bruno Martins Ferreira ORCID: http://orcid.org/0000-0001-9498-9179 Universidade Federal de Goiás, Brasil E-mail: [email protected] Cláudia Valéria Lima ORCID: http://orcid.org/0000-0001-9991-2541 1 Research, Society and Development,
    [Show full text]
  • LCFPD Track Identification and Walking Gaits
    Track Identification Cat Rabbit ➢ 4 toes on each foot ➢ 4 toes on each foot ➢ round tracks ➢ oval tracks ➢ no claw marks ➢ front of skid has claw marks ➢ hind paws narrower ➢ almost impossible to see pads Dog, Fox, Coyote Raccoon ( Dog family) ➢ 5 toes on each foot ➢ 4 toes on each foot ➢ toes close together ➢ tracks maple leaf shaped or egg shaped ➢ toes long and finger shaped ➢ claw marks appear ➢ claw marks appear ➢ front feet larger Weasel, Skunk, Mink Opossum (Weasel Family) ➢ 5 toes on each foot ➢ 5 toes on each foot ➢ toes spread widely ➢ toes close together ➢ toes long and finger shaped ➢ toes short and round ➢ no claw mark on hind thumbs ➢ some partially webbed Mice, Squirrels, etc. (Rodent Family) Deer ➢ 4 toes on front feet, 5 toes on hind ➢ 2 toes on each foot feet ➢ tracks are paired when bounding ➢ front feet show dew claws ➢ hind feet step in fore feet ➢ size of track is important in separating species tracks ➢ may leave tail mark Walking Gaits Pace Diagonal Walk (Raccoon) (Dog Family, Cat, Deer, Opossum) Move both left feet together, Left front, right hind, right then both right feet front, left hind Bound Gallop (Weasel Family) (Rodent Family, Rabbit) Move both front feet together, Move both feet together, then then both hind feet move both hind feet Place hind feet behind front feet Place hind feet ahead of front feet .
    [Show full text]
  • GLOSSARY of MEDICAL and ANATOMICAL TERMS
    GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat.
    [Show full text]
  • La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
    La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles.
    [Show full text]
  • Occurrence of Asian Small-Clawed Otter Aonyx Cinereus (Illiger, 1815) in Eastern India
    SCIENTIFIC CORRESPONDENCE 5. McLennan, S. M. and Taylor, S. R., J. Geol., 1991, 99, 1–21. 6. Sensarma, S. Hoernes, S. and Muk- hopadhyay, D., Proc. Indian Acad. Sci. (Earth Planet. Sci.), 2004, 113(4), 619– 648. 7. McKelvey, V. E., Everhart, D. L. and Gar- rels, R. M., Econ. Geol., 1955, 15th anni- versary volume, p. 491. ACKNOWLEDGEMENTS. We thank the Director, Atomic Minerals Directorate for Exploration and Research (AMD) for encour- agement and granting permission to publish this paper. We thank our colleagues from the Physics, Chemistry, XRF and Petrology labo- ratories, AMD, Nagpur for providing labora- tory support. Received 2 February 2014; revised accepted 16 June 2014 Figure 5. a, Sericite masked with limonite/iron oxide and very fine size quartz in radioactive 1, shale. b, Alpha track matching with limonite and iron oxide on radioactive shale. c, Adsorbed U. P. SHARMA * 1 uranium on radioactive phyllite corresponding with alpha track. d, Alpha track on radioactive S. SHUKLA 1 phyllite. P. K. SINHA 1 R. K. PUROHIT 1 basement and overlying sediments. These within rocks of Chilpi Group and under- A. MAJUMDAR 2 faults probably acted as conduits for lying basement rocks of Nandgaon A. K. RAI transfer of uranium-bearing solution Group. from basement rocks. Kanhari and 1 adjoining areas can be looked for struc- Atomic Minerals Directorate for turally controlled and fracture-bound 1. Basu, A. K., Geol. Surv. India, Spec. Publ., Exploration and Research, unconformity type of uranium minerali- 2001, 55, 181–204. AMD Complex, Civil Lines, 2. Thorat, P. K., Natrajan, A., Guha, K.
    [Show full text]
  • Redalyc.VERTEBRATE PALEONTOLOGY in CENTRAL
    Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Sistema de Información Científica Lucas, Spencer G. VERTEBRATE PALEONTOLOGY IN CENTRAL AMERICA: 30 YEARS OF PROGRESS Revista Geológica de América Central, , 2014, pp. 139-155 Universidad de Costa Rica San José, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=45433963013 Revista Geológica de América Central, ISSN (Printed Version): 0256-7024 [email protected] Universidad de Costa Rica Costa Rica How to cite Complete issue More information about this article Journal's homepage www.redalyc.org Non-Profit Academic Project, developed under the Open Acces Initiative Revista Geológica de América Central, Número Especial 2014: 30 Aniversario: 139-155, 2014 DOI: 10.15517/rgac.v0i0.16576 ISSN: 0256-7024 VERTEBRATE PALEONTOLOGY IN CENTRAL AMERICA: 30 YEARS OF PROGRESS PALEONTOLOGÍA DE VERTEBRADOS EN AMÉRICA CENTRAL: 30 AÑOS DE PROGRESO Spencer G. Lucas New Mexico Museum of Natural History and Science, 1801 Mountain Road N. W., Albuquerque, New Mexico 87104 USA [email protected] (Recibido: 7/08/2014; aceptado: 10/10/2014) ABSTRACT: Vertebrate paleontology began in Central America in 1858 with the first published records, but the last 30 years have seen remarkable advances. These advances range from new localities, to new taxa to new analyses of diverse data. Central American vertebrate fossils represent all of the major taxonomic groups of vertebrates—fishes, amphibians, reptiles (especially turtles), birds and mammals (mostly xenarthrans, carnivores and ungulates)—but co- verage is very uneven, with many groups (especially small vertebrates) poorly represented. The vertebrate fossils of Central America have long played an important role in understanding the great American biotic interchange.
    [Show full text]
  • GAIT PATTERNS Pacer Diagonal Walker Bounder Galloper RABBITS
    GAIT PATTERNS RODENTS Shows - 4 toes front, 5 toes rear, claws General Shape Normal Pace Gait: Galloper Pacer Diagonal Walker Indirect Register Gallopers: Squirrels, Ground Squirrels, Mice Rats, Bounder Chipmunks, Ground Hog, Marmot. Cross Pattern Tree dwellers show both pairs of feet parallel. Ground dwellers show dominant foot landing first. Squirrel Pacers: Porcupine, Muskrat, Beaver, Mountain Beaver Galloper Porcupine, Muskrat, Beaver - in deep mud show 5 toes in front (a hidden thumb). Mountain Beaver - always shoes 5 toes in front. RABBITS & HARES Shows - 4 toes front, 4 toes rear CAT FAMILY Shows - 4 toes front, 4 toes rear, claws (rarely) General Shape Normal Pace Gait: Galloper General Shape Normal Pace Gait: Diagonal Walker Rear Indirect Register Direct Register Elbow on the rear foot may or may not show. Front feet 1/2 larger than rear No claws (95% of time) - sometimes out during a hunt. Rabbit - rear feet 2 times larger than front feet Round Zero straddle Hare - rear feet 4-5 times larger than front. Zero pitch Front Rear The small heel pad helps to distinguish between a showshoe hare with no elbow showing and a Feral Cat - 4 toes equal size with elbow dog galloping Rabbit Mountain Lion - 4 toes equal size Cat Bobcat - inner toes larger, cleft in heel pad Lynx - outer toes larger DOG FAMILY Shows - 4 toes front, 4 toes rear, claws WEASEL FAMILY Shows - 5 toes front, 5 toes rear, claws General Shape Normal Pace Gait: Diagonal Walker General Shape Normal Pace Gait: Bounder Indirect Register Indirect Register Front feet 1/3 larger than rear.
    [Show full text]
  • Common Mammal Tracks
    Guide to Common Mammal Tracks Animal Tracks When examining animal tracks, it is important to answer the following questions: How many toes does each animal have on each foot? Can you see claw marks in the print or not? Which foot is larger- front or rear? What are the general pad shapes? What is the total length of each print? What is the total width? Track patterns By examining the patterns of animal tracks, you can sometimes figure out what group of animals made it. Diagonal walkers: (cats, dogs and hoofed animals) Move opposite limbs together, right foreleg with left back leg. Bounders: (most weasels except skunks, badgers and wolverines) Hop in steady series of jumps, forelegs first and back legs pulling right behind them. Gallopers: (most rodents and rabbits) these animals hunch down and bring hind legs in front of back legs. Pacers: (wide bodied animals such as raccoons, opossums, bears, beavers, porcupines, porcupines, wolverines, badgers and skunks). They shuffle along, but move from pacing to bounding as they go faster. Note: The best tracks are found in mud or soft soil or sand. Snow, on the other hand, can melt and make the tracks appear larger than they are naturally. Most of the time, the tracks you find will be overlapping and incomplete, but don't be discouraged! Track Key Group A: 2 toes per foot with occasional dew claws……………………….….…..….Page 2 Group B: 4 toes per foot……….………………………………..………………………….……….Page 2 Group C: 4 toes in the front and 5 in the rear…………..….……………………………..Page 3 Group D: 5 toes per foot………….…………………………..…………………………………….Page 3 All track silhouettes courtesy of Ohio Department of Natural Resources, Division of Wildlife Larry Hogan, Governor; Jeannie Haddaway-Riccio, Secretary dnr.maryland.gov/wildlife/Page 1 of 4 March 2019 *Tracks not to scale Group A: 2 toes per foot with occasional dew claws* White-tailed Deer Group B: 4 toes per foot* 1.
    [Show full text]
  • Mammalia, Xenarthra, Phyllophaga)
    Palaeontologia Electronica palaeo-electronica.org Dimorphism in Quaternary Scelidotheriinae (Mammalia, Xenarthra, Phyllophaga) Ángel R. Miño-Boilini and Alfredo E. Zurita ABSTRACT The contributions concerning possible cases of sexual dimorphisms in fossil and living sloths are scarce. Until now, studies in fossil ground sloth sexual dimorphism have been limited to the subfamilies Megatheriinae (Eremotherium) and Mylodontinae (Paramylodon) from the Pliocene and Pleistocene of South America and North Amer- ica. Scelidotheriinae constitutes an endemic lineage of ground sloths from South American, with a biochron age ranging the lapse “Friasian”-Lujanian SALMAs (middle Miocene-early Holocene). An integral phylogenetic and taxonomic revision of the Qua- ternary Scelidotheriinae shows that it is possible to recognize three genera and six species: Scelidotherium Owen (Scelidotherium leptocephalum and S. bravardi), Val- gipes Gervais (Valgipes bucklandi), and Catonyx Ameghino (Catonyx cuvieri, C. tari- jensis, and C. chiliensis). One of the most noticeable aspects in some specimens analyzed (n= 47) was the presence of two morphtypes in each species at the level of the dorsal crests of the skull (parasagittal crests and sagittal crest) and at the level of the distal-most region of the mandible (only in C. tarijensis). In all but two species (S. leptocephalum and S. bravardi) the two types involve the absence and presence of a sagittal crest. We suggest that specimens with sagittal crest are males, and specimens lacking sagittal crest are females. This represents the third reported ground sloth clade with evidence of sexual dimorphism of the skull and mandible. Ángel R. Miño-Boilini. Centro de Ecología Aplicada del Litoral (CECOAL-CONICET) y Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste.
    [Show full text]
  • Practical Understanding of Claw Lesions Sarel Van Amstel, Bvsc, College of Veterinary Medicine University of Tennessee, Knoxville, TN
    Practical Understanding of Claw Lesions Sarel Van Amstel, BVSc, College of Veterinary Medicine University of Tennessee, Knoxville, TN Introduction Successful control and and swelling resulting in more pain and management of lameness in commercial inflammation. Progression from partial to swine operations should include the full thickness horn lesions develops over following: Early detection of lameness time but is also dependant on other problems on an individual and herd factors such as flooring and housing. basis. This can be achieved by: 1) Close Hard floors increase concussion on observation of individual animals for individual claws and dissipation of signs of lameness and/or lesions (See tension forces through the claw created flow chart); 2) Lesion identification and by weight bearing becomes less record keeping; 3) Knowledge of the efficient. This may not only lead to causes and corrective actions progression of existing lesions but can necessary for each of the different lead to mechanical trauma of the soft lesions. tissues within the claw which will result in further pain and inflammation. This Visible lesions of the foot without applies particularly to the outer claw of swelling or lameness do not penetrate the back leg which carries more weight through the full thickness of the horn compared to the inner claw. Overgrowth (wall, sole, heel or white line) and as a of the outer claw may further predispose result cause no pain and require no the claw to mechanical trauma. In immediate action. However, it is unpigmented claws inflammatory important that lesions are identified and changes can be seen as red the prevalence recorded.
    [Show full text]
  • The Brazilian Megamastofauna of the Pleistocene/Holocene Transition and Its Relationship with the Early Human Settlement of the Continent
    Earth-Science Reviews 118 (2013) 1–10 Contents lists available at SciVerse ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev The Brazilian megamastofauna of the Pleistocene/Holocene transition and its relationship with the early human settlement of the continent Alex Hubbe a,b,⁎, Mark Hubbe c,d, Walter A. Neves a a Laboratório de Estudos Evolutivos Humanos, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, SP. 05508-090, Brazil b Instituto do Carste, Rua Barcelona 240/302, Belo Horizonte, MG. 30360-260, Brazil c Department of Anthropology, The Ohio State University, 174W 18th Avenue, Columbus, OH. 43210, United States d Instituto de Investigaciones Arqueológicas y Museo, Universidad Católica del Norte, Calle Gustavo LePaige 380, San Pedro de Atacama, 141-0000, Chile article info abstract Article history: One of the most intriguing questions regarding the Brazilian Late Quaternary extinct megafauna and Homo Received 4 October 2012 sapiens is to what extent they coexisted and how humans could have contributed to the former's extinction. Accepted 18 January 2013 The aim of this article is to review the chronological and archaeological evidences of their coexistence in Available online 25 January 2013 Brazil and to evaluate the degree of direct interaction between them. Critical assessment of the Brazilian megafauna chronological data shows that several of the late Pleistoscene/early Holocene dates available so Keywords: far cannot be considered reliable, but the few that do suggest that at least two species (Catonyx cuvieri, Quaternary Mammals ground sloth; Smilodon populator, saber-toothed cat) survived until the beginning of the Holocene in Southeast Extinction Brazil.
    [Show full text]
  • The World at the Time of Messel Morphology and Evolution of The
    The World at the Time of Messel Morphology and evolution of the distal phalanges in primates WIGHART V. KOENIGSWALD1, JÖRG HABERSETZER2, PHILIP D. GINGERICH3 1Steinmann Institut (Paläontologie) der Universität Bonn, Germany, [email protected]; 2Senckenberg Forschungsinstitut und Naturmuseum Frankfurt am Main, Germany, [email protected]; 3Museum of Paleontology, University of Michigan, Ann Arbor, USA, [email protected]. Flat nails and scutiform distal phalanges charac- (DP), and also of their positions and combinations on terize the hands and feet of primates. However, these various digits of the hands and feet. Here we denote display a variety of forms and combinations: distal phalanges of the manus as Mı, Mıı, Mııı, Mıv, Lemuroidea and Lorisoidea have a distinct pedal and Mv; and distal phalanges of the pes as Pı Pıı, Pııı, grooming claw; Daubentonia has additional claws; Pıv, and Pv. Tarsius has two pedal grooming claws; Callithrichidae Scandentia, represented by Tupaia (Fig. 7), are have claws on fingers and most toes. The adapoid characterized by laterally compressed claws with primates Darwinius and Europolemur from Messel large tubercles for the insertion of the flexor tendon have been interpreted both to have and to lack a in all rays (Mı–Mv and Pı–Pv). The claws of Tupaia, in grooming claw (Koenigswald, 1979; Franzen, 1994; contrast to those of Callithrix (Fig. 11), have no lateral Franzen et al., 2009). furrows (Le Gros Clark, 1936; Godinot, 1992). A single two-state character, “presence or ab- sence of claws or grooming claws,” was used to rep- Lemuroidea and Lorisoidea, represented by Indri, resent claws in the cladistic analyses of Seiffert et al.
    [Show full text]