Dazastanleyboletbauerariascer

Total Page:16

File Type:pdf, Size:1020Kb

Dazastanleyboletbauerariascer RESEARCH PALEONTOLOGY bifurcate parietals bounding cranial fenestra- tions anteriorly and medially (Fig. 3, D and Enigmatic amphibians in mid-Cretaceous amber E); triangular frontal with long broad-based internasal process, frontal anteroposterior were chameleon-like ballistic feeders length equal to maximum anteroposterior length ofparietal(Fig.3,FtoH),prefrontalfacetsex- Juan D. Daza1*, Edward L. Stanley2, Arnau Bolet3,4, Aaron M. Bauer5, J. Salvador Arias6, tending posterior to midlength of frontal, weakly Andrej Cˇernanskýˇ 7, Joseph J. Bevitt8, Philipp Wagner9, Susan E. Evans10 developed midventral crest, and ventrolateral crests that meet in ventral midline; medium- Albanerpetontids are tiny, enigmatic fossil amphibians with a distinctive suite of characteristics, length parietal postorbital processes sculptured including scales and specialized jaw and neck joints. Here we describe a new genus and species of in their proximal half; separate prefrontal and albanerpetontid, represented by fully articulated and three-dimensional specimens preserved in lacrimal bones; nasal excluded from narial mar- amber. These specimens preserve skeletal and soft tissues, including an elongated median hyoid gin; trifurcate unpaired vomer; dentition show- element, the tip of which remains embedded in a distal tongue pad. This arrangement is very similar to ing size heterodonty anteriorly, resulting in the long, rapidly projecting tongue of chameleons. Our results thus suggest that albanerpetontids sinuous occlusal surface; and small body size were sit-and-wait ballistic tongue feeders, extending the record of this specialized feeding mode by (supplementary text section S2.1, “Differential around 100 million years. diagnosis”). Description he extinct amphibian clade Albanerpe- about the morphological and ecological char- The holotype (GRS-Ref-060829) is the first tontidae is currently represented by acter of these enigmatic amphibians. fully articulated three-dimensional skull of Downloaded from five genera spanning a period of more an albanerpetontid (Fig. 1, A and G to N, and T than 165 million years, from the Middle Systematics supplementary text S2.2). It is 12.18 mm in Jurassic (1) to the Early Pleistocene (2), Amphibia Linnaeus 1758. Albanerpetontidae Fox overall length (snout tip to occiput), giving and a geographical range from North America & Naylor 1982. Yaksha perettii gen. et sp. nov. an estimated snout-to-pelvis length (SPL) of (3, 4) through Europe (5) and central Asia lSID urn:lsid:zoobank.org:pub:0C8EC7C5- 52 mm [based on the proportions of Celtedens (6) to Japan (7). To date, the only records from 66D4-4144-917D-5BFA3704EFA4. Etymology: ibericus (10)]. The newly discovered Myanmar http://science.sciencemag.org/ a southern (Gondwanan) continental mass, The generic name is derived from Yaksha, a type skull reveals the presence of epipterygoids [mis- albeit marginal, are from Morocco (8, 9). Most of mythical spirit in Eastern belief systems, interpreted in the Japanese Shirerpeton (7)] of albanerpetontid records comprise jaws and guardian of natural treasures hidden in the that form an integral part of the jaw suspen- sculptured frontal bones (5), although Cretaceous earth or tree roots. The specific epithet recog- sion; a complete braincase with ossification localities [in Spain and Italy (1, 10, 11)and nizes Adolf Peretti, director of the Peretti Mu- of the pila antoticae; a palate with a large, open Japan (7)] have yielded more substantive mate- seum Foundation and GemResearch Swisslab pyriform fossa undivided by a median para- rial, some with associated soft tissue showing the (GRS), who discovered the fossil and has con- sphenoid rostrum; a trifurcated unpaired vomer, presence of dermal scales (10). Originally classi- ducted fieldwork and humanitarian projects with paired palatines and pterygoids, all lack- fied as salamanders (11, 12), albanerpetontids in Myanmar for the past 10 years. Holotype: ing teeth; and a long median hyoid “entoglossal” are now considered a distinct lineage (10, 13). Peretti Museum Foundation, Switzerland, GRS- process (not homologous with that of lizards). Nonetheless, many questions remain as to the Ref-060829 (15), a complete articulated skull There are no ossified ceratobranchial elements. on May 20, 2021 anatomy, lifestyle, and relationships of these (Figs.1,AandGtoN;2,AandB;and3). GRS-Ref-060829 also preserves remnants of unusual amphibians. Paratype: JZC Bu154 (16) [Fig. 1, B to F; figs. the original soft tissues, notably the anterior Here we describe a new genus and species S2 and S3; and figure 2K in Daza et al.(14)], tongue pad, into which the tip of the entoglossal of albanerpetontid from the amber deposits of James Zigras Collection, juvenile specimen, process is embedded, and parts of the eyelids, Myanmar. The material includes a complete housed at the American Museum of Natural palatal fascia, and jaw musculature. three-dimensional adult skull, a tiny juvenile History, New York, USA. Referred material: Thejuvenilespecimen,JZCBu154(Fig.1,B skeleton originally identified as a putative stem- Peretti Museum Foundation, Switzerland, GRS- to F, and supplementary text S2.3), establishes chameleon (14), and a partial adult postcranium. Ref-27746 (17), partial postcranial skeleton (fig. thepresenceofafour-digitmanus,uncertain The exquisite preservation of both skeletal re- S5). Locality and horizon: GRS-Ref-060829 in other articulated specimens (1, 10), and curved mainsandsofttissuesrevealsimportantclues (holotype) and GRS-Ref-27746 (referred mate- ungual phalanges covered by claw sheaths. GRS- rial) were ethically sourced from the Hukaung Ref-27746 (fig. S5 and supplementary text S2.4) Valley, near Tanaing Township, Myitkyina Dis- demonstrates that the tripartite pelvis (pubis, 1Department of Biological Sciences, Sam Houston State trict, Kachin Province, Myanmar, and legally ischium, and vertical ilium) was supported by University, Huntsville, TX, USA. 2Department of Herpetology, exported (materials and methods section S1.1 two sacral ribs (unlike the single sacral rib typ- Florida Museum of Natural History, Gainesville, FL, USA. 3 in the supplementary materials). The juvenile ically found in lissamphibians). Moreover, the Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain. paratype, JZC Bu154, is recorded as being vertical iliac blade, like that of chameleons, 4School of Earth Sciences, University of Bristol, Bristol, UK. from ~100 km west of the Myitkyina District. suggests a deep pelvis that may have allowed 5 Department of Biology and Center for Biodiversity and Amber from these mines has been dated as the legs to be angled ventrally for climbing. Ecosystem Stewardship, Villanova University, Villanova, PA, USA. 6Unidad Ejecutora Lillo, CONICET - FML, San Miguel early Cenomanian, ~99 million years ago (Ma), de Tucumán, Argentina. 7Department of Ecology, Laboratory of using U-Pb isotopes (18). Diagnosis for Phylogenetic position Evolutionary Biology, Faculty of Natural Sciences, Comenius genus and species: A genus and species of Most albanerpetontid species are represented University in Bratislava, Bratislava, Slovakia. 8Australian Centre for Neutron Scattering, Australian Nuclear Science and albanerpetontid distinguished by the follow- by isolated bones, and data matrices for the Technology Organisation, Sydney, NSW, Australia. 9Department ing combination of character states: paired group rely mainly on frontal and jaw character of Research and Conservation, Allwetterzoo Münster, Münster, 10 robust premaxillae with a dorsal boss, wide states. We ran an analysis using the most com- Germany. Department of Cell and Developmental Biology, 7 19 University College London, London, UK. lateral lingual buttress, and elongate vertical prehensive recent data matrix ( , ). In their *Corresponding author. Email: [email protected] suprapalatal pits (Fig. 3, A to C); posteriorly possession of dorsal cranial fenestrae, Yaksha Daza et al., Science 370, 687–691 (2020) 6 November 2020 1of5 RESEARCH | RESEARCH ARTICLE ABC DEFvomer maxilla nasal lacrimal pterygoid lacrimal jaw jugal frontal pterygoid maxilla pterygoid jaw frontal pterygoid jaw parietal? squamosal jaw frontal jugal hyoid quadrate entoglossal squamosal quadrate process squamosal hyoid parietal entoglossal process humerus humerus 0 10 mm humerus 0 2 mm parietal frontal neurocranium G Jlacrimal nasal epipterygoid squamosal vomer M premaxilla maxilla hyoid entoglossal process palatine Downloaded from jugal pterygoid quadrate parietal symphyseal prong H K nasal neurocranium premaxilla hyoid entoglossal process frontal http://science.sciencemag.org/ maxilla lacrimal squamosal palatine epipterygoid jugal pterygoid quadrate I L basicranium vomer N hyoid entoglossal process jaw premaxilla nasal frontal parietal maxilla palatine epipterygoid on May 20, 2021 jugal quadrate 0 5 10 mm pterygoid Fig. 1. Holotype and paratype of Y. perettii. Holotype GRS-Ref-060829 (A and G to I) and paratype JZC Bu154 (B to F). High-resolution computed tomography (HRCT) of the paratype with segmented bones [(C) to (F)]; the holotype with jaw articulated [(G) to (I)]; the holotype with all bones segmented and jaw removed (J to L); and the jaw of the holotype, with close-up of the mandibular symphysis (M and N). Lateral [(D), (F), (G), and (J)], dorsal [(C), (H), (K), (M), and (N)], and ventral [(E), (I), and (L)] views. most closely resembles the older (120 Ma) amphibians, are currently debated, we updated
Recommended publications
  • Szentesi Et Al.Indd
    FRAGMENTA PALAEONTOLOGICA HUNGARICA Volume 32 Budapest, 2015 pp. 49–66 Albanerpetontidae from the late Pliocene (MN 16A) Csarnóta 3 locality (Villány Hills, South Hungary) in the collection of the Hungarian Natural History Museum Zoltán Szentesi1, Piroska Pazonyi2 & Lukács Mészáros3 1Department of Palaeontology and Geology, Hungarian Natural History Museum, H-1083 Budapest, Ludovika tér 2, Hungary. E-mail: [email protected] 2MTA–MTM–ELTE Research Group for Palaeontology H-1083 Budapest, Ludovika tér 2, Hungary. E-mail: [email protected] 3Department of Palaeontology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary. E-mail: [email protected] Abstract – Based on cranial and jaw elements, the presence of Albanerpeton pannonicum species (Allocaudata: Albanerpetontidae) was noticed from the late Pliocene Csarnóta 3 locality (Villány Hills). Since it is considered a poor fossil site, it had not been suffi ciently studied. Th ese fossils represent the geologically youngest record of the species from Hungary. Th ough, the Csarnóta 3 albanerpetontid assemblage is small the bones are well preserved, and all are informative on spe- cies or at least on genus level. Th e red coloured bone-bearing deposits and the preservation quality of bones are very similar to the uppermost strata (4–1) of the Csarnóta 2 palaeovertebrate locality. Th e study of small mammal fauna also suggests this correlation, as well as explains the age of the site. Th e studied vertebrate fauna forms a transition between the woodland and steppe wildlife. With 17 fi gures and 3 tables. Key words – Albanerpeton, Albanerpetontidae, late Pliocene, small mam mals, taphonomy, Vil- lány Hills INTRODUCTION Albanerpetontidae are a Middle Jurassic – late Pliocene clade of salaman- der-like lissamphibians that are closely related to anurans and salamanders (e.g.
    [Show full text]
  • A New Microvertebrate Assemblage from the Mussentuchit
    A new microvertebrate assemblage from the Mussentuchit Member, Cedar Mountain Formation: insights into the paleobiodiversity and paleobiogeography of early Late Cretaceous ecosystems in western North America Haviv M. Avrahami1,2,3, Terry A. Gates1, Andrew B. Heckert3, Peter J. Makovicky4 and Lindsay E. Zanno1,2 1 Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA 2 North Carolina Museum of Natural Sciences, Raleigh, NC, USA 3 Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA 4 Field Museum of Natural History, Chicago, IL, USA ABSTRACT The vertebrate fauna of the Late Cretaceous Mussentuchit Member of the Cedar Mountain Formation has been studied for nearly three decades, yet the fossil-rich unit continues to produce new information about life in western North America approximately 97 million years ago. Here we report on the composition of the Cliffs of Insanity (COI) microvertebrate locality, a newly sampled site containing perhaps one of the densest concentrations of microvertebrate fossils yet discovered in the Mussentuchit Member. The COI locality preserves osteichthyan, lissamphibian, testudinatan, mesoeucrocodylian, dinosaurian, metatherian, and trace fossil remains and is among the most taxonomically rich microvertebrate localities in the Mussentuchit Submitted 30 May 2018 fi fi Accepted 8 October 2018 Member. To better re ne taxonomic identi cations of isolated theropod dinosaur Published 16 November 2018 teeth, we used quantitative analyses of taxonomically comprehensive databases of Corresponding authors theropod tooth measurements, adding new data on theropod tooth morphodiversity in Haviv M. Avrahami, this poorly understood interval. We further provide the first descriptions of [email protected] tyrannosauroid premaxillary teeth and document the earliest North American record of Lindsay E.
    [Show full text]
  • Early Cretaceous) Wessex Formation of the Isle of Wight, Southern England
    A new albanerpetontid amphibian from the Barremian (Early Cretaceous) Wessex Formation of the Isle of Wight, southern England STEVEN C. SWEETMAN and JAMES D. GARDNER Sweetman, S.C. and Gardner, J.D. 2013. A new albanerpetontid amphibian from the Barremian (Early Cretaceous) Wes− sex Formation of the Isle of Wight, southern England. Acta Palaeontologica Polonica 58 (2): 295–324. A new albanerpetontid, Wesserpeton evansae gen. et sp. nov., from the Early Cretaceous (Barremian) Wessex Formation of the Isle of Wight, southern England, is described. Wesserpeton is established on the basis of a unique combination of primitive and derived characters relating to the frontals and jaws which render it distinct from currently recognized albanerpetontid genera: Albanerpeton (Late Cretaceous to Pliocene of Europe, Early Cretaceous to Paleocene of North America and Late Cretaceous of Asia); Celtedens (Late Jurassic to Early Cretaceous of Europe); and Anoualerpeton (Middle Jurassic of Europe and Early Cretaceous of North Africa). Although Wesserpeton exhibits considerable intraspecific variation in characters pertaining to the jaws and, to a lesser extent, frontals, the new taxon differs from Celtedens in the shape of the internasal process and gross morphology of the frontals in dorsal or ventral view. It differs from Anoualerpeton in the lack of pronounced heterodonty of dentary and maxillary teeth; and in the more medial loca− tion and direction of opening of the suprapalatal pit. The new taxon cannot be referred to Albanerpeton on the basis of the morphology of the frontals. Wesserpeton currently represents the youngest record of Albanerpetontidae in Britain. Key words: Lissamphibia, Albanerpetontidae, microvertebrates, Cretaceous, Britain. Steven C.
    [Show full text]
  • Yaksha Perettii
    Yaksha perettii Yaksha perettii is an extinct species of albanerpetontid amphibian, and the only species in the genus Yaksha. It is known from three Yaksha perettii specimens found in Cenomanian aged Burmese amber from Temporal range: Early Cenomanian Myanmar. The remains of Yaksha perettii are the best preserved of 99 Ma all albanerpetontids, which usually consist of isolated fragments or ↓ crushed flat, and have provided significant insights in the PreꞒ Ꞓ O S D C P T J K PgN morphology and lifestyle of the group. Contents Etymology Discovery Description Phylogeny Holotype skull of Yaksha perettii, dark References grey represents preserved soft tissue Scientific classification Etymology Kingdom: Animalia Phylum: Chordata The generic epithet is named after the Yaksha, a class of nature Class: Amphibia and guardian spirits in Indian religions, while the specific epithet honors Dr. Adolf Peretti, who provided some of the specimens, Order: †Allocaudata including the holotype.[1] Family: †Albanerpetontidae Discovery Genus: †Yaksha Daza et al, 2020 The paratype specimen was originally described in 2016 amongst Species: †Y. perettii a collection of fossil lizard species from Burmese amber, and was initially identified as a stem-chameleon.[2] However Professor Binomial name Susan E. Evans, a researcher who has extensively worked on †Yaksha perettii albanerpetontids, recognised the specimen as belonging to the Daza et al, 2020 group.[3] Subsequently, another specimen was discovered in the collection of gemologist Dr. Adolf Peretti, which would later become the holotype specimen.[4] The paper describing Yaksha perettii was published in November 2020 in the journal Science.[1] Description The species is known from three specimens, the small juvenile skeleton described in the 2016 paper (JZC Bu154), a complete adult skull and lower jaws (GRS-Ref-060829), and a partial adult postcranium (GRSRef- 27746).
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • A New Genus and Species of Basal Salamanders from the Middle Jurassic of Western Siberia, Russia P.P
    Proceedings of the Zoological Institute RAS Vol. 315, No. 2, 2011, рр. 167–175 УДК 57.072:551.762.2 A NEW GENUS AND SPECIES OF BASAL SALAMANDERS FROM THE MIDDLE JURASSIC OF WESTERN SIBERIA, RUSSIA P.P. Skutschas1* and S.A. Krasnolutskii2 1Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia; e-mail: [email protected] 2Sharypovo Regional Museum, 2nd microrayon 10, Sharypovo, 662311 Krasnoyarsk Territory, Russia; e-mail: [email protected] ABSTRACT A new basal stem salamander, Urupia monstrosa gen. et sp. nov., is described based on an atlantal centrum (holotype), fragments of trunk vertebrae, and some associated elements (fragmentary dentaries and a femur) from the Middle Jurassic (Bathonian) Itat Formation of Krasnoyarsk Territory in Western Siberia, Russia. The new taxon is characterized by the following combination of characters: lack of the spinal nerve foramina in the atlas, presence atlantal transverse processes and a deep depression on the ventral surface of the atlas; lateral surface of anterior part of the dentary is sculptured by oval and rounded pits; very short diaphyseal part of femur. The absence of intercotylar tubercle on the atlas and presence of atlantal transverse processes support for neotenic nature of Urupia monstrosa gen. et sp. nov. Large size, presence of sculpture on vertebrae, and the absence of spinal nerve foramina in the atlas suggest that Urupia monstrosa gen. et sp. nov. is a stem group salamander. The phylogenetic relationships of Urupia monstrosa gen. et sp. nov. with other stem group salamanders cannot be established on the available material. Key words: Caudata, Itat Formation, Jurassic, Russia НОВЫЙ РОД И ВИД БАЗАЛЬНЫХ ХВОСТАТЫХ АМФИБИЙ ИЗ СРЕДНЕЙ ЮРЫ ЗАПАДНОЙ СИБИРИ, РОССИЯ П.П.
    [Show full text]
  • Fossils Importance Bibliography
    GEOL 204 The Fossil Record Las Hoyas Spring 2020 Section 0101 Daniel Boyarsky, Noor Nabulsi, Alyssa Pryputniewicz & Elijah WeBB Fossils Geological Layout This Lagerstätten site has exceptionally preserved fossils. Some of these fossils include Microbial mats: responsible for the preservation of soft tissue in many fossils The iron structures that are rarely found in the fossil record, such as soft tissues, patterns of carbonate depositions, as a result from bacterial metabolism which covered the dinosaur's crest coloring, nerviation, and gut tracts (Buscalioni, A.D.). Below are some of the other animals increased the preservation of those soft tissues. Evidence of these mats comes from the studies that researchers have found fossils of. on microfacies and the fossils themselves. Albanerpeton (amphibian) Europejara (pterosaur) Crusafontia (mammal) Abruption: Notable in the formation, due to the presence of complex specimens. From studies on several different organisms it can be estimated that the burial of most entities was quick. Stagnation: Millions of years with the lack of external forces on the site created an untouched site of easily accessible fossils. 20 mm 35 cm 5 cm Fig. 1: Tamura, N. (Albanerpeton); Fig. 2: “Euro” Fig. 3: “Crusafontia” Venczel, M. Fig. 6: “Crusafontia” Http://Gomeslab.weebly.com/Uploads/1/0/9/2/10 Https://d1k5w7mbrh6vq5.Cloudfront.net/Images/ 9219815/Published/Img-1803- Cache/0d/34/7d/0d347d1e06f219283da2064b963 Importance 2.Jpg?1503670391, 5b420.Jpg,mages.app.goo.gl/qTGBW7NvY4X9v The Las Hoyas site has recorded a wide array of species of diverse plant and animal taxa. At images.app.goo.gl/C2zWPTU1rVD9VzoR7. 6HU8. present, the biodiversity count comprises 118 families and 201 species.
    [Show full text]
  • Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal)
    Alexandre Renaud Daniel Guillaume Licenciatura em Biologia celular Mestrado em Sistemática, Evolução, e Paleobiodiversidade Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal) Dissertação para obtenção do Grau de Mestre em Paleontologia Orientador: Miguel Moreno-Azanza, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Co-orientador: Octávio Mateus, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Júri: Presidente: Prof. Doutor Paulo Alexandre Rodrigues Roque Legoinha (FCT-UNL) Arguente: Doutor Hughes-Alexandres Blain (IPHES) Vogal: Doutor Miguel Moreno-Azanza (FCT-UNL) Júri: Dezembro 2018 MICROVERTEBRATES OF THE LOURINHÃ FORMATION (LATE JURASSIC, PORTUGAL) © Alexandre Renaud Daniel Guillaume, FCT/UNL e UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa tem o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. ACKNOWLEDGMENTS First of all, I would like to dedicate this thesis to my late grandfather “Papi Joël”, who wanted to tie me to a tree when I first start my journey to paleontology six years ago, in Paris. And yet, he never failed to support me at any cost, even if he did not always understand what I was doing and why I was doing it. He is always in my mind. Merci papi ! This master thesis has been one-year long project during which one there were highs and lows.
    [Show full text]
  • La Cantalera: an Exceptional Window Onto the Vertebrate Biodiversity of the Hauterivian-Barremian Transition in the Iberian Peninsula
    ISSN (print): 1698-6180. ISSN (online): 1886-7995 www.ucm.es/info/estratig/journal.htm Journal of Iberian Geology 36 (2) 2010: 205-224 doi:10.5209/rev_JIGE.2010.v36.n2.8 La Cantalera: an exceptional window onto the vertebrate biodiversity of the Hauterivian-Barremian transition in the Iberian Peninsula La Cantalera: una excepcional ventana a la biodiversidad del tránsito Hauteriviense- Barremiense en la Península Ibérica J.I. Canudo1, J.M. Gasca1, M. Aurell2, A. Badiola1, H.-A. Blain3, P. Cruzado-Caballero1, D. Gómez- Fernández1, M. Moreno-Azanza1, J. Parrilla1, R. Rabal-Garcés1, J. I. Ruiz-Omeñaca1,4 1Grupo Aragosaurus (http://www.aragosaurus.com). Universidad de Zaragoza. 50009 Zaragoza, Spain. [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] 2Estratigrafía. Universidad de Zaragoza. 50009 Zaragoza. Spain. [email protected] 3Institut Català de Paleoecologia Humana y Evolució Social (Unitat asociada al CSIC). Universitat Rovira i Virgili. 43005 Tarragona. Spain. [email protected] 4Museo del Jurásico de Asturias (MUJA). 33328 Colunga. Asturias. Spain. [email protected] Received: 15/11/09 / Accepted: 30/06/10 Abstract La Cantalera is an accumulation site for fossil vertebrates consisting mainly of teeth and isolated postcranial remains. It has the greatest vertebrate biodiversity of any site from the Hauterivian-Barremian transition in the Iberian Peninsula. Up to now, 31 vertebrate taxa have been recognized: an osteichthyan (Teleostei indet.), two amphibians (Albanerpetonidae indet. and Discoglos- sidae indet.), a chelonian (Pleurosternidae? indet.), a lizard (Paramacellodidae? indet.), four crocodylomorphs (cf. Theriosuchus sp., Bernissartiidae indet., Goniopholididae indet., cf.
    [Show full text]
  • The Making of Calibration Sausage Exemplified by Recalibrating the Transcriptomic Timetree of Jawed Vertebrates
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882829; this version posted November 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The making of calibration sausage exemplified by recalibrating the transcriptomic timetree of jawed vertebrates 1 David Marjanović 2 Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, 3 Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, 4 Germany 5 ORCID: 0000-0001-9720-7726 6 Correspondence: 7 David Marjanović 8 [email protected] 9 Keywords: timetree, calibration, divergence date, Gnathostomata, Vertebrata 10 Abstract 11 Molecular divergence dating has the potential to overcome the incompleteness of the fossil record in 12 inferring when cladogenetic events (splits, divergences) happened, but needs to be calibrated by the 13 fossil record. Ideally but unrealistically, this would require practitioners to be specialists in molecular 14 evolution, in the phylogeny and the fossil record of all sampled taxa, and in the chronostratigraphy of 15 the sites the fossils were found in. Paleontologists have therefore tried to help by publishing 16 compendia of recommended calibrations, and molecular biologists unfamiliar with the fossil record 17 have made heavy use of such works (in addition to using scattered primary sources
    [Show full text]
  • Vertebrate Paleontology of the Cloverly Formation (Lower Cretaceous), II: Paleoecology Author(S): Matthew T
    Vertebrate Paleontology of the Cloverly Formation (Lower Cretaceous), II: Paleoecology Author(s): Matthew T. Carrano , Matthew P. J. Oreska , and Rowan Lockwood Source: Journal of Vertebrate Paleontology, 36(2) Published By: The Society of Vertebrate Paleontology URL: http://www.bioone.org/doi/full/10.1080/02724634.2015.1071265 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Vertebrate Paleontology e1071265 (12 pages) Ó by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2015.1071265 ARTICLE VERTEBRATE PALEONTOLOGY OF THE CLOVERLY FORMATION (LOWER CRETACEOUS), II: PALEOECOLOGY MATTHEW T. CARRANO,*,1 MATTHEW P. J. ORESKA,1,2 and ROWAN LOCKWOOD3 1Department of Paleobiology, Smithsonian Institution, P.O. Box 37012, MRC 121, Washington, DC 20013-7012, U.S.A., [email protected]; 2Department of Environmental Sciences, University of Virginia, Clark Hall, 291 McCormick Road, P.O.
    [Show full text]
  • ESTADO DE LAS INVESTIGACIONES SOBRE LOS VERTEBRADOS DEL JURASICO SUPERIOR Y CRETACICO INFERIOR DE GALVE (TERUEL)L J
    Estudios Geol., 60: 179-202 (2004) ESTADO DE LAS INVESTIGACIONES SOBRE LOS VERTEBRADOS DEL JURASICO SUPERIOR y CRETACICO INFERIOR DE GALVE (TERUEL)l J. 1. Ruiz-Omeñaca*, J. 1. Canudo*, M. Aurell**, B. Bádenas**, J. L. Barco***, G. Cuenca-Bescós* y J. Ipas** RESUMEN En Galve (Teruel) hay más de 50 localidades con restos de vertebrados continentales en las Formaciones Higueruelas (Titónico), Villar del Arzobispo (Titónico superior-Berriasien­ se medio), El Castellar (Hauteriviense terminal-Barremiense basal) y Camarillas (Barre­ miense inferior). Por tanto, «Galve» no es un único yacimiento de vertebrados mesozoicos, sino una localidad con numerosos yacimientos de vertebrados del intervalo Titónico-Barre• miense, que geológicamente pertenecen a la Cuenca cretácica inferior del Maestrazgo (Cor­ dillera Ibérica Central), Subcuenca de Galve. La mayor parte de los yacimientos contienen restos óseos, pero también son abundantes los yacimientos paleoicnológicos y paleoológi• coso Los vertebrados mejor conocidos son los mamíferos y dinosaurios, aunque también hay estudios sobre los tiburones, peces óseos, anfibios, escamosos y cocodrilos. Algunos grupos, como tortugas y pterosaurios, permanencen prácticamente sin estudiar. Galve es la localidad tipo de varios taxones de vertebrados: el tiburón Lonchidion microselachos, el anfibio Gal­ verpeton ibericum, el dinosaurio Aragosaurus ischiaticus, los mamíferos Galveodon nan­ nothus, Lavocatia alfambrensis, Eobaatar hispanicus, Parendotherium herreroi, Spalacot­ herium henkeli y Pocamus pepelui, y la cáscara de huevo de dinosaurio Macroolithus turo­ lensis. Es este trabajo se revisa el estado de conocimientos sobre los vertebrados de Galve, y se actualiza la lista faunística de sus yacimientos, siendo la primera vez que se realiza teniendo en cuenta la distribución estratigráfica de los taxones.
    [Show full text]