John H. Reif, Quantum Computing. Published in book “Bio-inspired and Nanoscale Integrated Computing”, Chapter 3, pp. 67-110 (edited by Mary Mehrnoosh Eshaghian-Wilner), Publisher: Wiley, Hoboken, NJ, USA, (February 2009). Chapter 3: Quantum Computing John H. Reif Department of Computer Science Duke University ‡ 3.0 Summary Quantum Computation (QC) is a type of computation where unitary and measurement operations are executed on linear superpositions of basis states. This paper provides a brief introduction to QC. We begin with a discussion of basic models for QC such as quantum TMs, quantum gates and circuits and related complexity results. We then discuss a number of topics in quan- tum information theory, including bounds for quantum communication and I/O complexity, methods for quantum data compression. and quantum er- ‡Surface address: Department of Computer Science, Duke University, Durham, NC 27708-0129. E-mail:
[email protected]. This work has been supported by grants from NSF CCF-0432038 and CCF-0523555. A postscript preprint of this Chapter is available online at URL: http://www.cs.duke.edu/∼reif/paper/qsurvey/qsurvey.chapter.pdf. ror correction (that is, techniques for decreasing decoherence errors in QC), Furthermore, we enumerate a number of methodologies and technologies for doing QC. Finally, we discuss resource bounds for QC including bonds for processing time, energy and volume, particularly emphasizing challenges in determining volume bounds for observation apperatus. 3.1 Introduction 3.1.1 Reversible Computations Reversible Computations are computations where each state transformation is a reversible function, so that any computation can be reversed without loss of information.