Sr 030 607 .TITLE Space Refescope

Total Page:16

File Type:pdf, Size:1020Kb

Sr 030 607 .TITLE Space Refescope DOCEMENT RESUME ED 184 898 Sr 030 607 .TITLE Space refescope. INsnrano; National Aeronautics and SpaceAdministration, Huntsville, Ala. Gedrge C. Marshall Space Flight :enter. PUB DATE 80 NOTE 12p.; Illustrations will pot reproduce cfearly. EDRS PRICE SF01/P:01 Plus Postage. uscRIETORs *Astronomy; Elementary Secondary Education; Higher Education; *Pamphlets; Science 2ducatiok; Scientific Eaterprise; *Space Sciences; *Technological Advancement I, IDENTIFIERS' *Telescopes ABSTRAC2 - This pamphlet describes the Space Telescope, an unmanael multi-purpose telescope observatory planned,for la.unch into orbit by the Space Shuttle in the 1990s. The dnigue capabilities of this telescope are detailed, the major elements of the telescope are described;'and its prOposed mission operatioms are outlined. (S) 4. ***************************************4****************************#0 * . Reproductiong supplied by EDPS are th6 best tat,.can be maie I* * from the original document. 4 * ************************** U.S. DEPARTMENT OF HEALTH, EDucAnctio WELFARE MAMMAL. INSTITUTE OF National Aeronautics and EDUCATION THIS DOZUMENT HAS SEEN REPRO-. Space Administration . DUCED EXACTLY AS RECEIVED FROM NEPERSON OR ORGANIZATION ORIGIN- ATING IT POINTS OF VIEW OR OPINIONS -STATED DO AIDT NECESSARILY REPRE- Maishall Space Flight Center SENT OFFICIAL NATIOhAL INSTITUTE OE EDUCATION POSITION OR POLICY 'Ng c.04 Space Teescope 11 A sr, is.#* , . N2L. j.rs. S. Ttie Space Telescope is án 'unmanned multi-purpose optyial telescope observatory pianned for launch into Earth orbit by the Space Shuttle in the 1980s.The Marshall Space. Flight Center, Huntsville, Ala.; is NASA's lead center for ma'n- agement of the Space Tele- scope projebt. APR 1 7 1996 4 I. 4 NM Why Astronomy ? Astronomy deals with the most enhanced by the Spac-e Telescope, of the evolution of. a star like our fundamental issues that face rea- envisioned today as'mankind's eye 'Sun are very long compared with soning man: how did my world come to the univers.e for the next 20 years. .the.total lifetime of men on the into being, what is the order of the Some.may wonder why we need Earth, bi observing individual Universe, what role does my world to look toNthe stars. Why, other stars in different phases of their play; and what is its future? thar; curiosity, should man strive changes, the astronomer can Answering these questions is to examine thefar reaches of the accurately picture the Sun from the challenge to th2 astronomer, cosmos? We look 1573catise the , cradle to grave. Even though the the.theolog* and the philosopher. missing pieces in thpuzzle bf the universe is abundant in its The'astronomer seeks to learnarid universe are out these. We want to phenomena and subjects, the ob-. understand the laws governing the know how it began, ,how it grew, sehrational nature of thisfscience structure and evolution of his hoyv it is changing, and what is its means that the astronbmer's 'universe by observation and ultimate fate. "eyes" are-only as good as his interpretation. The scale of distanceS.to,even imagination andA.uccesi in con- For more than a century, astron- the nearest stars is so great as to ceiving and realizing hew ways omers have dreamedof viewing the preyent the present generatiogs of of observing. sky through a telescope in space man from visiting them.for study. ,The view of a serene universe, outside the Earth's obscuring This`tnggls that the astronomer is , composed of stars and syStems of atrnotphere. Vyhi*.le,it may have only an observernot 'an experi- stars (galaxiqs), has given way in the been a tirea.rn f8i- ()berth, the menter. He cannot punch, squeeze, past ZO years to a picture of a violent Gerhian scientist who first men- melt, or perform Pperations on the universe, filled with many.cata.- tioned the possibility in0923, objects 'of -his study, but must lparn clysmic events accompanying the and even for those who discussed only from observing what nature is origin of galaxies 'and the death of it extenslwly in thelate'1940's doing. stars.' We now know of quasars, and eaffy 1950's, today it has' Fortunately, the same vastness of, neutran stars and possibly black become a reality. scale that prohibits our travel also holes, each of which gives off signals Relatively small telescopes are allows a richness of conditions 'to of ItA nature and exisience with no already in orbit, such as NASA's aPply and a host of idifferent obser- regard for the serisitivity of the eyes International Ultraviolet Explorer vable phenomena to occur. For of the most intelligent species, or for' and Orbiting Astronomical Observ- example,-we pan study regions of the paoperties of the atmosphere, of the third planet of a, rather common atory. ionized gaA that are so rarefied as But now NASA is developing a to surpass the best vacuums achiev- star.. much larger and more sophisticated able on.the E 6; and we can study This means that if we are to instrument called the Space Tele- collapSed st_,.so dense that all of get a 'complete viewfof the real scope, a multi-purpose.unm9nned the Earth could be compressed with universd we must continue to- build powerful telescopes and to optical telescope in Earth orbit, equal density into a sphere only observe from space iiself, where we scheduled to become operational 1,000 feet in diameter. in the 1980s. The profusion of observable see the universe as it really is The astronomer's capacity for objects can also be used to advan- not filtered by the terrestrial atmos - observation will be Aremendously tageY Although most of theiAlase% phere. 5 NEARBY GALAXY This spiral galaxy, in ttie constellation Andromeda, is just barely .visible to the naked aye. While it is our 'closest large neighboring galaxy, it is 'still 2.2 million light yearsaway. The Space Telescope will enable astronomers to study this galaxy, which is very similar to our own, and other celestial objects in far greater detail than ever before. , It canibe argued that astronomy NASA's Space Shuttle,lhe Space is an eso,teric science, justifiable Telescope will orbit friigh above only on the grounds.pf fundamen- the hazy and turbulent atmosphere, tal curiosity; however, there is fur- where it will enable scZists to the0 justification in its study of see the universe moreearly. unique phenomena*. Nature pro- The Space Tele§cope is a superb vides conditions that.cannot be system that will fully exploit the duplicated-on the Earth and other advantages of space observations. conditions whose cost to duplicate lt is a natural next step in the cur- would be prohibi.tively expensive rent revolution in astronomy, a for basic research. revolution that history VII probably This means that we find condi- equate with Gillleo's inifention of tions that expand ot.d current the simple telescope 370 years ago. understanding of natural laws. Th history of science shows that it is when tljerexisting laws. are putlo . the mostdemanding tests that the greatest advances in understanding 'occur. This raises the real possi- bility that fundamental processes I first understood from astronomi- cal observations can, eventuaHy be ppplied to aid the Earth and its 4 ,* popuAtion. All types of observations are possible, from low-energy radio waves through the ultra-high- energy gamma rays; but the greatest supplier of astronomical information is stiH the optical tele- scope. Since the turbulence of the SUPERNOVAE REMNANT This vs the Earth's atmosphere imposes prac- Crab Nebula in the constellation Taurus It is the remnant of a supernova, or explod- tical limitations in all 'but a very ing star, that first appeared in 1054 A.D. selected few types of observa- Supernovae are very rare; only six have tions, the only practical successor ,been recorded in our galaxy in the past 2,000 years. They may flare to as much as to the giant Earth-based telescope is a billion times their original brightness. thiiiigh-qualityspace telescope. fading in less than a year The Sp'ace Tele- The Space Telescope Project scope will study these and many other will provide such a telescope. objects in the ultraviolet, visible and near infrared spectrum. Launched into Earth orbit by 2 What Space Telescope CanDo The Space Telescope's unique 50 times.fainter than those seen capability for high angular resolu-, by the most powerful telescopes'. tion imagery, large auxiliary equip- Within the solar System, they tan ment payload and efficiency of monitor atmospheric and surface operation will make it the most . phenomena of the planets. powerful telesco`pe ever built, With a telescope in Earth orbit, enabling man to gaze seven times long time exposure images more 'farther into space than now than 1=0 times sharper tharrthose possible perhaps.to the outer from the ground can be achieved. edges of the universe. Another great advantageof The largestkirth-basedtele- orbital observation is the absence scopes in oper,ation today can- of atmospheric material that see an estimated two billion light absorbs the ultraviolet and infrared years, or about 12 billion trillion radiation froni stars. miles, intOspace. The Space Tele- Tlcerisper images of the e scope will be able to see much telescope, combined wifh the deeper 14 billion light-years. darker sky background, will Some scientists believe the universealso permit much fainter objects was formed nearly1,4 bi4lion years to be detected. By concentrating ago so the Space Teletcope mightthe starlighhinto a smaller provide views of galaxies at the timearea, the contrast with the they were forpetr*\ background (which is lower, due Studying the stars isn't 'merely to the absence of scattered light a matter of distance,however; it and airglow emission) is improved, cOMPARI N WITH EARTH-BASED, is also one of clarity. All Earth- while the concentration means TELESCOPE Resolution of the Space.
Recommended publications
  • IVS NICT-TDC News No.39
    ISSN 1882-3432 CONTENTS Proceedings of the 18th NICT TDC Symposium (Kashima, October 1, 2020) KNIFE, Kashima Nobeyama InterFErometer . 3 Makoto Miyoshi Space-Time Measurements Research Inspired by Kashima VLBI Group . 8 Mizuhiko Hosokawa ALMA High Frequency Long Baseline Phase Correction Using Band-to-band ..... 11 (B2B) Phase Referencing Yoshiharu Asaki and Luke T. Maud Development of a 6.5-22.5 GHz Very Wide Band Feed Antenna Using a New ..... 15 Quadruple-Ridged Antenna for the Traditional Radio Telescopes Yutaka Hasegawa*, Yasumasa Yamasaki, Hideo Ogawa, Taiki Kawakami, Yoshi- nori Yonekura, Kimihiro Kimura, Takuya Akahori, Masayuki Ishino, Yuki Kawa- hara Development of Wideband Antenna . 18 Hideki Ujihara Performance Survey of Superconductor Filter Introduced in Wideband Re- ..... 20 ceiver for VGOS of the Ishioka VLBI Station Tomokazu Nakakuki, Haruka Ueshiba, Saho Matsumoto, Yu Takagi, Kyonosuke Hayashi, Toru Yutsudo, Katsuhiro Mori, Tomokazu Kobayashi, and Mamoru Sekido New Calibration Method for a Radiometer Without Using Liquid Nitrogen ..... 23 Cooled Absorber Noriyuki Kawaguchi, Yuichi Chikahiro, Kenichi Harada, and Kensuke Ozeki Comparison of Atmospheric Delay Models (NMF, VMF1, and VMF3) in ..... 27 VLBI analysis Mamoru Sekido and Monia Negusini HINOTORI Status Report . 31 Hiroshi Imai On-the-Fly Interferometer Experiment with the Yamaguchi Interferometer . 34 Kenta Fujisawa, Kotaro Niinuma, Masanori Akimoto, and Hideyuki Kobayashi Superconducting Wide-band BRF for Geodetic VLBI Observation with ..... 36 VGOS Radio Telescope
    [Show full text]
  • Orbital Phase Resolved Spectroscopy of 4U1538-52 with MAXI
    Astronomy & Astrophysics manuscript no. jjrr-mif-maxi_rev5 c ESO 2018 September 12, 2018 Orbital phase resolved spectroscopy of 4U1538−52 with MAXI J. J. Rodes-Roca1, 2, 3,,⋆ T. Mihara3, S. Nakahira4, J. M. Torrejón1, 2, Á. Giménez-García1, 2, 5, and G. Bernabéu1, 2 1 Dept. of Physics, Systems Engineering and Sign Theory, University of Alicante, 03080 Ali- cante, Spain e-mail: [email protected] 2 University Institute of Physics Applied to Sciences and Technologies, University of Alicante, 03080 Alicante, Spain 3 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan e-mail: [email protected] 4 ISS Science Project Office, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan 5 School of Physics, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia XX-XX-XX; XX-XX-XX ABSTRACT Context. 4U 1538−52, an absorbed high mass X-ray binary with an orbital period of ∼3.73 days, shows moderate orbital intensity modulations with a low level of counts during the eclipse. Sev- eral models have been proposed to explain the accretion at different orbital phases by a spherically arXiv:1507.04274v2 [astro-ph.HE] 18 Jul 2015 symmetric stellar wind from the companion. Aims. The aim of this work is to study both the light curve and orbital phase spectroscopy of this source in the long term. Particularly, the folded light curve and the changes of the spectral parameters with orbital phase to analyse the stellar wind of QV Nor, the mass donor of this binary system.
    [Show full text]
  • Pushing the Limits of the Coronagraphic Occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph
    Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph John H. Debes Bin Ren Glenn Schneider John H. Debes, Bin Ren, Glenn Schneider, “Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph,” J. Astron. Telesc. Instrum. Syst. 5(3), 035003 (2019), doi: 10.1117/1.JATIS.5.3.035003. Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 02 Jul 2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Journal of Astronomical Telescopes, Instruments, and Systems 5(3), 035003 (Jul–Sep 2019) Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph John H. Debes,a,* Bin Ren,b,c and Glenn Schneiderd aSpace Telescope Science Institute, AURA for ESA, Baltimore, Maryland, United States bJohns Hopkins University, Department of Physics and Astronomy, Baltimore, Maryland, United States cJohns Hopkins University, Department of Applied Mathematics and Statistics, Baltimore, Maryland, United States dUniversity of Arizona, Steward Observatory and the Department of Astronomy, Tucson Arizona, United States Abstract. The Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) contains the only currently operating coronagraph in space that is not trained on the Sun. In an era of extreme-adaptive- optics-fed coronagraphs, and with the possibility of future space-based coronagraphs, we re-evaluate the con- trast performance of the STIS CCD camera. The 50CORON aperture consists of a series of occulting wedges and bars, including the recently commissioned BAR5 occulter. We discuss the latest procedures in obtaining high-contrast imaging of circumstellar disks and faint point sources with STIS.
    [Show full text]
  • Large-Angle Observatory with Energy Resolution for Synoptic X-Ray Studies (LOBSTER-SXS) ∗ Paul Gorenstein , Harvard-Smithsonian Center for Astrophysics, 60 Garden St
    Large-angle OBServaTory with Energy Resolution for Synoptic X-ray Studies (LOBSTER-SXS) ∗ Paul Gorenstein , Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS-4, Cambridge, MA USA 02138 ABSTRACT The soft X-ray band hosts a larger, more diverse range of variable sources than any other region of the electromagnetic spectrum. They are stars, compact binaries, SMBH’s, the X-ray components of Gamma-Ray Bursts, their X-ray afterglows, and soft X-ray flares from supernova. We describe a concept for a very wide field (~ 4 ster) modular hybrid X-ray telescope system that can measure positions of bursts and fast transients with as good as arc second accuracy, the precision required to identify fainter and increasingly more distant events. The dimensions and materials of all telescope modules are identical. All but two are part of a cylindrical lobster-eye telescope with flat double sided mirrors that focus in one dimension and utilize a coded mask for resolution in the other. Their positioning accuracy is about an arc minute. The two remaining modules are made from the same materials but configured as a Kirkpatrick-Baez telescope with longer focal length that focuses in two dimensions. When pointed it refines the hybrid telescope’s arc minute positions to an arc second and provides larger effective area for spectral and temporal measurements. Above 10 keV the mirrors act as an imaging collimator with positioning capability. For short duration events this hybrid focusing/coded mask system is more sensitive and versatile than either a 2D coded mask or a 2D lobster-eye telescope.
    [Show full text]
  • Optical Blocking Performance of Ccds Developed for the X-Ray
    Optical Blocking Performance of CCDs Developed for the X-ray Astronomy Satellite XRISM Hiroyuki Uchidaa,∗, Takaaki Tanakaa, Yuki Amanoa, Hiromichi Okona, Takeshi G. Tsurua, Hirofumi Nodae,f, Kiyoshi Hayashidae,f, Hironori Matsumotoe,f, Maho Hanaokae, Tomokage Yoneyamae, Koki Okazakie, Kazunori Asakurae, Shotaro Sakumae, Kengo Hattorie, Ayami Ishikurae, Hiroshi Nakajimah, Mariko Saitod, Kumiko K. Nobukawad,b, Hiroshi Tomidag, Yoshiaki Kanemaruc, Jin Satoc, Toshiyuki Takakic, Yuta Teradac, Koji Moric, Hikari Kashimurah, Takayoshi Kohmurai, Kouichi Haginoi, Hiroshi Murakamij, Shogo B. Kobayashik, Yusuke Nishiokac, Makoto Yamauchic, Isamu Hatsukadec, Takashi Sakol, Masayoshi Nobukawal, Yukino Urabem, Junko S. Hiragam, Hideki Uchiyaman, Kazutaka Yamaokao, Masanobu Ozakip, Tadayasu Dotanip,q, Hiroshi Tsunemie, Hisanori Suzukir, Shin-ichiro Takagir, Kenichi Sugimotor, Sho Atsumir, Fumiya Tanakar aDepartment of Physics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, Kyoto 606-8502, Japan bDepartment of Physics, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan cFaculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan dDepartment of Physics, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara, Nara 630-8506, Japan eDepartment of Earth and Space Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan fProject Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan gJapan
    [Show full text]
  • Optical Design of Diffraction-Limited X-Ray Telescopes
    Research Article Vol. 59, No. 16 / 1 June 2020 / Applied Optics 4901 Optical design of diffraction-limited x-ray telescopes Brandon D. Chalifoux, Ralf K. Heilmann, Herman L. Marshall, AND Mark L. Schattenburg* Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA *Corresponding author: [email protected] Received 11 March 2020; revised 21 April 2020; accepted 23 April 2020; posted 23 April 2020 (Doc. ID 392479); published 27 May 2020 Astronomical imaging with micro-arcsecond (µas) angular resolution could enable breakthrough scientific discov- eries. Previously proposed µas x-ray imager designs have been interferometers with limited effective collecting area. Here we describe x-ray telescopes achieving diffraction-limited performance over a wide energy band with large effective area, employing a nested-shell architecture with grazing-incidence mirrors, while matching the optical path lengths between all shells. We present two compact nested-shell Wolter Type 2 grazing-incidence telescope designs for diffraction-limited x-ray imaging: a micro-arcsecond telescope design with 14 µas angular resolution and 2.9 m2 of effective area at 5 keV photon energy (λ D 0.25 nm), and a smaller milli-arcsecond telescope design with 525 µas resolution and 645 cm2 effective area at 1 keV (λ D 1.24 nm). We describe how to match the optical path lengths between all shells in a compact mirror assembly and investigate chromatic and off-axis aberrations. Chromatic aberration results from total external reflection off of mirror surfaces, and we greatly mitigate its effects by slightly adjusting the path lengths in each mirror shell.
    [Show full text]
  • An Extremely Powerful Long Lived Superluminal Ejection from the Black Hole MAXI J1820+070
    An extremely powerful long lived superluminal ejection from the black hole MAXI J1820+070 J. S. Bright1, R. P. Fender1;2, S. E. Motta1, D. R. A. Williams1, J. Moldon3;4, R. M. Plotkin5;6, J. C. A. Miller-Jones6, I. Heywood1;7;8, E. Tremou9, R. Beswick4, G. R. Sivakoff10, S. Corbel9;11, D. A. H. Buckley12, J. Homan13;14;15, E. Gallo16, A. J. Tetarenko17, T. D. Russell18, D. A. Green19, D. Titterington19, P. A. Woudt2;20, R. P. Armstrong2;1;8, P. J. Groot21;2;12, A. Horesh22, A. J. van der Horst23;24, E. G. Kording¨ 21, V. A. McBride2;12;25, A. Rowlinson18;26 & R. A. M. J. Wijers18 1Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK 2Department of Astronomy, University of Cape Town, Private Bag X3, Rondenbosch, 7701, South Africa 3Instituto de Astrof´ısica de Andaluc´ıa (IAA, CSIC), Glorieta de las Astronom´ıa, s/n, E-18008 Granada, Spain 4Jodrell Bank Centre for Astrophysics, The University of Manchester, M13 9PL, UK 5Department of Physics, University of Nevada, Reno, Nevada, 89557, USA 6International Centre for Radio Astronomy Research, Curtin University, GPO Box, U1987, Perth, WA 6845, Australia 7Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa 8South African Radio Astronomy Observatory (SARAO), 2 Fir Street, Observatory, Cape Town, 7925, South Africa 9AIM/CEA Paris-Saclay, Universite` Paris Diderot, CNRS, F-91191 Gif-sur-Yvette, France 1 10Department of Physics, CCIS 4-183, University of Alberta, Edmonton, AB, T6G 2E1, Canada 11Station de Radioastronomie de Nanc¸ay, Observatoire de Paris, PSL Research University, CNRS, Univ.
    [Show full text]
  • Kibo HANDBOOK
    Kibo HANDBOOK September 2007 Japan Aerospace Exploration Agency (JAXA) Human Space Systems and Utilization Program Group Kibo HANDBOOK Contents 1. Background on Development of Kibo ............................................1-1 1.1 Summary ........................................................................................................................... 1-2 1.2 International Space Station (ISS) Program ........................................................................ 1-2 1.2.1 Outline.........................................................................................................................1-2 1.3 Background of Kibo Development...................................................................................... 1-4 2. Kibo Elements...................................................................................2-1 2.1 Kibo Elements.................................................................................................................... 2-2 2.1.1 Pressurized Module (PM)............................................................................................ 2-3 2.1.2 Experiment Logistics Module - Pressurized Section (ELM-PS)................................... 2-4 2.1.3 Exposed Facility (EF) .................................................................................................. 2-5 2.1.4 Experiment Logistics Module - Exposed Section (ELM-ES)........................................ 2-6 2.1.5 JEM Remote Manipulator System (JEMRMS)............................................................
    [Show full text]
  • Multiwavelength Challenges in the Fermi Era
    71h AGILE Workshop: The Bright -y-ray Sky Multiwavelength Challenges in the Fermi Era D. J. THOMPSON' 'NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA on behalf of the Fermi Large Area Telescope Collaboration ABSTRACT. The gamma-ray surveys of the sky by AGILE and the Fermi Gamma-ray Space Telescope offer both opportunities and challenges for multiwavelength and multi-messenger studies. Gamma-ray bursts, pulsars, binary sources, flaring Active Galactic Nuclei, and Galactic transient sources are all phenomena that can best be studied with a wide variety of instruments simultaneously or contemporaneously. From the gamma-ray side, a principal challenge is the latency from the time of an astrophysical event to the recognition of this event in the data. Obtaining quick and complete multiwavelength coverage of gamma-ray sources of interest can be difficult both in germs of logistics and in terms of generating scientific interest. 1. Introduction - The Multiwavelength Revolution The process of astrophysical research has changed dramatically in the past 30 years, and the inclusion of multiwavelength studies has been an important aspect of that change. As an example of the growing importance of studies that reach beyond a single wavelength, consider this simple literature search using NASA ADS (http://adsabs.harvard.edu/ads-abstracts.html) . The search was for the word "Multiwavelength" in titles for each of four years spanning three decades. The result is shown in Table 1. TABLE I Papers with "Multiwavelength" in the Title Year Papers 1976 0 1986 2 1996 58 2006 97 Even considering the normal growth of scientific publications, the increase in multi- wavelength research has been dramatic.
    [Show full text]
  • 6.61.2.5 Essential Earth Learning Concepts for Teachers and Students
    6.61.2.5 Essential Earth Learning Concepts for Teachers and Students Mario M. Yanez Executive Director of Earth Learning, Inc. in Miami, FL [email protected] Keywords: Change, Interdependence, Earth, Evolution, Humanity, Learning, Life Community, Sustainability Contents 1.0 Introduction 2.0 Essential Concepts 2.1 There is no environment 2.2 Earth is alive 2.3 Evolution is not a theory 2.4 Earth is learning and teaching 2.5 Earth is Slow, Culture is Fast 2.6 Earth is Primary, Humans are Derivative 2.7 Sustainability requires living in place 2.8 Earth is a recycling planet 2.9 There are no second chances 2.10 Humanity must be the change 3.0 Conclusion Glossary: Bioregion A unique but integral geographical subsystem of Earth, most often a watershed, that provides a contextual container for life, one whose living boundaries are permeable and exist for the purpose of identity not separation. Carrying Capacity The ability of a bioregion or the planet to sustain given populations and their associated consumption and waste production. Co-evolution When two or more entities adapt to each other in a given place over long periods of time; requires the acquisition of local knowledge of what works and what does not work Ecological footprint A representation of the amount of land, ocean, energy, and natural materials necessary to feed human activities and assimilate their waste for any given population. Linear Progress The misconception that it is possible and necessary for humans to achieve unlimited material growth and accumulation of material wealth; linear progress is a consumptive practice, which ignores that we live on one materially finite planet who’s ecosystems are being altered, drastically diminishing their capacity to support life.
    [Show full text]
  • ISI Student Text.Book
    11 Astronomy Chapter 30 What is Frequently in the news we hear about discoveries that involve space. In fact, our knowledge of the solar system and beyond is expanding each year because of advancements in technology. In recent years, space probes have been sent to most of Astronomy? the planets in the solar system and we have seen them “up close” for the very first time. Long before the invention of the telescope, ancient civilizations made observations of the heavens that helped people keep track of time and the seasons. In this chapter, you will learn about tools and language of astronomy. 30.1 Cycles on Earth How do we keep track of time? In this Investigation, you will build a solar clock and discover the variables involved with using the sun to keep track of time. You will also observe the lunar cycle over the course of a month and construct a daily calendar based on changes in the moon’s appearance. 30.2 Tools of Astronomy How does a telescope work? In this Investigation, you will build a simple telescope and use it to observe objects around your school. Through this exercise, you will find out how a telescope works. Next, you will use your telescope to observe the surface of the moon. Finally, you will try a more difficult task—observing the planet Jupiter and some of its moons. 587 Chapter 30: What is Astronomy? Learning Goals In this chapter, you will: ! Relate keeping track of time to astronomical cycles. ! Predict how the moon will appear based on its orbital position.
    [Show full text]
  • Curriculum Vitae Feryal Ozel¨
    CURRICULUM VITAE FERYAL OZEL¨ University of Arizona Phone: 1-520-621-7096 Department of Astronomy Fax: 1-520-621-1532 933 N. Cherry Ave. E-mail: [email protected] Tucson, AZ 85721, U.S.A. http://xtreme.as.arizona.edu/~fozel RESEARCH INTERESTS Theoretical, Computational, Nuclear, Plasma, and High Energy Astrophysics, Black Holes, Neutron Stars, High Performance Computing EDUCATION Ph. D. in Physics, Harvard University 2002 Thesis Title: The Effects of Strong Magnetic and Gravitational Fields on Neutron Star Atmospheres, Advisor: Ramesh Narayan M. S. in Particle Physics, Niels Bohr Institute, Denmark 1997 Thesis Title: Search for the Supersymmetric Decays of the Higgs Boson at ALEPH B. S. in Applied Physics and Mathematics, Columbia University 1996 Summa cum Laude, Tau Beta Pi Honor Society POSITIONS Member, University of Arizona Applied Research Corporation 2020 { present Professor, University of Arizona 2015 { Present Associate Professor, University of Arizona 2009 { 2014 Assistant Professor, University of Arizona 2005 { 2009 Hubble Fellow, Member, Institute for Advanced Study 2002 { 2004 VISITING POSITIONS Visiting Professor, Member, Harvard University Black Hole Initiative 2016 { 2017 Visiting Miller Professor, University of California Berkeley 2014 Radcliffe Institute for Advanced Study Fellow, Harvard University 2012 { 2013 SELECTED DISTINCTIONS AND AWARDS Breakthrough Prize 2020 American Astronomical Society Bruno Rossi Prize 2020 Named Breakthrough of the Year by Science 2020 NSF Diamond Achievement Award 2019 Outstanding Achievement Award, METU 2019 Joined JASON, Advisory group to the U.S. government on science and technology 2017 Columbia University Annual Bishop Lecturer 2017 Guggenheim Fellow 2016 Elected Fellow of the American Physical Society 2015 U.C. Berkeley Miller Visiting Professorship 2014 American Physical Society Maria Goeppert Mayer Award 2013 Elected to Science Academy, Turkey 2013 Harvard University Radcliffe Institute Fellowship 2012 { 2013 San Diego Astronomy Association Lucas Award 2010 Bart J.
    [Show full text]