Lecture Notes for Math
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Open Handbook of Formal Epistemology
THEOPENHANDBOOKOFFORMALEPISTEMOLOGY Richard Pettigrew &Jonathan Weisberg,Eds. THEOPENHANDBOOKOFFORMAL EPISTEMOLOGY Richard Pettigrew &Jonathan Weisberg,Eds. Published open access by PhilPapers, 2019 All entries copyright © their respective authors and licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. LISTOFCONTRIBUTORS R. A. Briggs Stanford University Michael Caie University of Toronto Kenny Easwaran Texas A&M University Konstantin Genin University of Toronto Franz Huber University of Toronto Jason Konek University of Bristol Hanti Lin University of California, Davis Anna Mahtani London School of Economics Johanna Thoma London School of Economics Michael G. Titelbaum University of Wisconsin, Madison Sylvia Wenmackers Katholieke Universiteit Leuven iii For our teachers Overall, and ultimately, mathematical methods are necessary for philosophical progress. — Hannes Leitgeb There is no mathematical substitute for philosophy. — Saul Kripke PREFACE In formal epistemology, we use mathematical methods to explore the questions of epistemology and rational choice. What can we know? What should we believe and how strongly? How should we act based on our beliefs and values? We begin by modelling phenomena like knowledge, belief, and desire using mathematical machinery, just as a biologist might model the fluc- tuations of a pair of competing populations, or a physicist might model the turbulence of a fluid passing through a small aperture. Then, we ex- plore, discover, and justify the laws governing those phenomena, using the precision that mathematical machinery affords. For example, we might represent a person by the strengths of their beliefs, and we might measure these using real numbers, which we call credences. Having done this, we might ask what the norms are that govern that person when we represent them in that way. -
Probabilities, Random Variables and Distributions A
Probabilities, Random Variables and Distributions A Contents A.1 EventsandProbabilities................................ 318 A.1.1 Conditional Probabilities and Independence . ............. 318 A.1.2 Bayes’Theorem............................... 319 A.2 Random Variables . ................................. 319 A.2.1 Discrete Random Variables ......................... 319 A.2.2 Continuous Random Variables ....................... 320 A.2.3 TheChangeofVariablesFormula...................... 321 A.2.4 MultivariateNormalDistributions..................... 323 A.3 Expectation,VarianceandCovariance........................ 324 A.3.1 Expectation................................. 324 A.3.2 Variance................................... 325 A.3.3 Moments................................... 325 A.3.4 Conditional Expectation and Variance ................... 325 A.3.5 Covariance.................................. 326 A.3.6 Correlation.................................. 327 A.3.7 Jensen’sInequality............................. 328 A.3.8 Kullback–LeiblerDiscrepancyandInformationInequality......... 329 A.4 Convergence of Random Variables . 329 A.4.1 Modes of Convergence . 329 A.4.2 Continuous Mapping and Slutsky’s Theorem . 330 A.4.3 LawofLargeNumbers........................... 330 A.4.4 CentralLimitTheorem........................... 331 A.4.5 DeltaMethod................................ 331 A.5 ProbabilityDistributions............................... 332 A.5.1 UnivariateDiscreteDistributions...................... 333 A.5.2 Univariate Continuous Distributions . 335 -
(Introduction to Probability at an Advanced Level) - All Lecture Notes
Fall 2018 Statistics 201A (Introduction to Probability at an advanced level) - All Lecture Notes Aditya Guntuboyina August 15, 2020 Contents 0.1 Sample spaces, Events, Probability.................................5 0.2 Conditional Probability and Independence.............................6 0.3 Random Variables..........................................7 1 Random Variables, Expectation and Variance8 1.1 Expectations of Random Variables.................................9 1.2 Variance................................................ 10 2 Independence of Random Variables 11 3 Common Distributions 11 3.1 Ber(p) Distribution......................................... 11 3.2 Bin(n; p) Distribution........................................ 11 3.3 Poisson Distribution......................................... 12 4 Covariance, Correlation and Regression 14 5 Correlation and Regression 16 6 Back to Common Distributions 16 6.1 Geometric Distribution........................................ 16 6.2 Negative Binomial Distribution................................... 17 7 Continuous Distributions 17 7.1 Normal or Gaussian Distribution.................................. 17 1 7.2 Uniform Distribution......................................... 18 7.3 The Exponential Density...................................... 18 7.4 The Gamma Density......................................... 18 8 Variable Transformations 19 9 Distribution Functions and the Quantile Transform 20 10 Joint Densities 22 11 Joint Densities under Transformations 23 11.1 Detour to Convolutions...................................... -
Probability with Engineering Applications ECE 313 Course Notes
Probability with Engineering Applications ECE 313 Course Notes Bruce Hajek Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign January 2017 c 2017 by Bruce Hajek All rights reserved. Permission is hereby given to freely print and circulate copies of these notes so long as the notes are left intact and not reproduced for commercial purposes. Email to [email protected], pointing out errors or hard to understand passages or providing comments, is welcome. Contents 1 Foundations 3 1.1 Embracing uncertainty . .3 1.2 Axioms of probability . .6 1.3 Calculating the size of various sets . 10 1.4 Probability experiments with equally likely outcomes . 13 1.5 Sample spaces with infinite cardinality . 15 1.6 Short Answer Questions . 20 1.7 Problems . 21 2 Discrete-type random variables 25 2.1 Random variables and probability mass functions . 25 2.2 The mean and variance of a random variable . 27 2.3 Conditional probabilities . 32 2.4 Independence and the binomial distribution . 34 2.4.1 Mutually independent events . 34 2.4.2 Independent random variables (of discrete-type) . 36 2.4.3 Bernoulli distribution . 37 2.4.4 Binomial distribution . 38 2.5 Geometric distribution . 41 2.6 Bernoulli process and the negative binomial distribution . 43 2.7 The Poisson distribution{a limit of binomial distributions . 45 2.8 Maximum likelihood parameter estimation . 47 2.9 Markov and Chebychev inequalities and confidence intervals . 50 2.10 The law of total probability, and Bayes formula . 53 2.11 Binary hypothesis testing with discrete-type observations . -
Reliable Reasoning”
Abstracta SPECIAL ISSUE III, pp. 10 – 17, 2009 COMMENTS ON HARMAN AND KULKARNI’S “RELIABLE REASONING” Glenn Shafer Gil Harman and Sanjeev Kulkarni have written an enjoyable and informative book that makes Vladimir Vapnik’s ideas accessible to a wide audience and explores their relevance to the philosophy of induction and reliable reasoning. The undertaking is important, and the execution is laudable. Vapnik’s work with Alexey Chervonenkis on statistical classification, carried out in the Soviet Union in the 1960s and 1970s, became popular in computer science in the 1990s, partly as the result of Vapnik’s books in English. Vapnik’s statistical learning theory and the statistical methods he calls support vector machines now dominate machine learning, the branch of computer science concerned with statistical prediction, and recently (largely after Harman and Kulkarni completed their book) these ideas have also become well known among mathematical statisticians. A century ago, when the academic world was smaller and less specialized, philosophers, mathematicians, and scientists interested in probability, induction, and scientific methodology talked with each other more than they do now. Keynes studied Bortkiewicz, Kolmogorov studied von Mises, Le Dantec debated Borel, and Fisher debated Jeffreys. Today, debate about probability and induction is mostly conducted within more homogeneous circles, intellectual communities that sometimes cross the boundaries of academic disciplines but overlap less in their discourse than in their membership. Philosophy of science, cognitive science, and machine learning are three of these communities. The greatest virtue of this book is that it makes ideas from these three communities confront each other. In particular, it looks at how Vapnik’s ideas in machine learning can answer or dissolve questions and puzzles that have been posed by philosophers. -
Chapter 2: Probability
16 Chapter 2: Probability The aim of this chapter is to revise the basic rules of probability. By the end of this chapter, you should be comfortable with: • conditional probability, and what you can and can’t do with conditional expressions; • the Partition Theorem and Bayes’ Theorem; • First-Step Analysis for finding the probability that a process reaches some state, by conditioning on the outcome of the first step; • calculating probabilities for continuous and discrete random variables. 2.1 Sample spaces and events Definition: A sample space, Ω, is a set of possible outcomes of a random experiment. Definition: An event, A, is a subset of the sample space. This means that event A is simply a collection of outcomes. Example: Random experiment: Pick a person in this class at random. Sample space: Ω= {all people in class} Event A: A = {all males in class}. Definition: Event A occurs if the outcome of the random experiment is a member of the set A. In the example above, event A occurs if the person we pick is male. 17 2.2 Probability Reference List The following properties hold for all events A, B. • P(∅)=0. • 0 ≤ P(A) ≤ 1. • Complement: P(A)=1 − P(A). • Probability of a union: P(A ∪ B)= P(A)+ P(B) − P(A ∩ B). For three events A, B, C: P(A∪B∪C)= P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C) . If A and B are mutually exclusive, then P(A ∪ B)= P(A)+ P(B). -
18.600: Lecture 31 .1In Strong Law of Large Numbers and Jensen's
18.600: Lecture 31 Strong law of large numbers and Jensen's inequality Scott Sheffield MIT Outline A story about Pedro Strong law of large numbers Jensen's inequality Outline A story about Pedro Strong law of large numbers Jensen's inequality I One possibility: put the entire sum in government insured interest-bearing savings account. He considers this completely risk free. The (post-tax) interest rate equals the inflation rate, so the real value of his savings is guaranteed not to change. I Riskier possibility: put sum in investment where every month real value goes up 15 percent with probability :53 and down 15 percent with probability :47 (independently of everything else). I How much does Pedro make in expectation over 10 years with risky approach? 100 years? Pedro's hopes and dreams I Pedro is considering two ways to invest his life savings. I Riskier possibility: put sum in investment where every month real value goes up 15 percent with probability :53 and down 15 percent with probability :47 (independently of everything else). I How much does Pedro make in expectation over 10 years with risky approach? 100 years? Pedro's hopes and dreams I Pedro is considering two ways to invest his life savings. I One possibility: put the entire sum in government insured interest-bearing savings account. He considers this completely risk free. The (post-tax) interest rate equals the inflation rate, so the real value of his savings is guaranteed not to change. I How much does Pedro make in expectation over 10 years with risky approach? 100 years? Pedro's hopes and dreams I Pedro is considering two ways to invest his life savings. -
Stochastic Models Laws of Large Numbers and Functional Central
This article was downloaded by: [Stanford University] On: 20 July 2010 Access details: Access Details: [subscription number 731837804] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Stochastic Models Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597301 Laws of Large Numbers and Functional Central Limit Theorems for Generalized Semi-Markov Processes Peter W. Glynna; Peter J. Haasb a Department of Management Science and Engineering, Stanford University, Stanford, California, USA b IBM Almaden Research Center, San Jose, California, USA To cite this Article Glynn, Peter W. and Haas, Peter J.(2006) 'Laws of Large Numbers and Functional Central Limit Theorems for Generalized Semi-Markov Processes', Stochastic Models, 22: 2, 201 — 231 To link to this Article: DOI: 10.1080/15326340600648997 URL: http://dx.doi.org/10.1080/15326340600648997 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. -
On the Law of the Iterated Logarithm for L-Statistics Without Variance
Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 3 (2008), No. 3, pp. 417-432 ON THE LAW OF THE ITERATED LOGARITHM FOR L-STATISTICS WITHOUT VARIANCE BY DELI LI, DONG LIU AND ANDREW ROSALSKY Abstract Let {X, Xn; n ≥ 1} be a sequence of i.i.d. random vari- ables with distribution function F (x). For each positive inte- ger n, let X1:n ≤ X2:n ≤ ··· ≤ Xn:n be the order statistics of X1, X2, · · · , Xn. Let H(·) be a real Borel-measurable function de- fined on R such that E|H(X)| < ∞ and let J(·) be a Lipschitz function of order one defined on [0, 1]. Write µ = µ(F,J,H) = ← 1 n i E L : (J(U)H(F (U))) and n(F,J,H) = n Pi=1 J n H(Xi n), n ≥ 1, where U is a random variable with the uniform (0, 1) dis- ← tribution and F (t) = inf{x; F (x) ≥ t}, 0 <t< 1. In this note, the Chung-Smirnov LIL for empirical processes and the Einmahl- Li LIL for partial sums of i.i.d. random variables without variance are used to establish necessary and sufficient conditions for having L with probability 1: 0 < lim supn→∞ pn/ϕ(n) | n(F,J,H) − µ| < ∞, where ϕ(·) is from a suitable subclass of the positive, non- decreasing, and slowly varying functions defined on [0, ∞). The almost sure value of the limsup is identified under suitable con- ditions. Specializing our result to ϕ(x) = 2(log log x)p,p > 1 and to ϕ(x) = 2(log x)r,r > 0, we obtain an analog of the Hartman- Wintner-Strassen LIL for L-statistics in the infinite variance case. -
Probability (Graduate Class) Lecture Notes
Probability (graduate class) Lecture Notes Tomasz Tkocz∗ These lecture notes were written for the graduate course 21-721 Probability that I taught at Carnegie Mellon University in Spring 2020. ∗Carnegie Mellon University; [email protected] 1 Contents 1 Probability space 6 1.1 Definitions . .6 1.2 Basic examples . .7 1.3 Conditioning . 11 1.4 Exercises . 13 2 Random variables 14 2.1 Definitions and basic properties . 14 2.2 π λ systems . 16 − 2.3 Properties of distribution functions . 16 2.4 Examples: discrete and continuous random variables . 18 2.5 Exercises . 21 3 Independence 22 3.1 Definitions . 22 3.2 Product measures and independent random variables . 24 3.3 Examples . 25 3.4 Borel-Cantelli lemmas . 28 3.5 Tail events and Kolmogorov's 0 1law .................. 29 − 3.6 Exercises . 31 4 Expectation 33 4.1 Definitions and basic properties . 33 4.2 Variance and covariance . 35 4.3 Independence again, via product measures . 36 4.4 Exercises . 39 5 More on random variables 41 5.1 Important distributions . 41 5.2 Gaussian vectors . 45 5.3 Sums of independent random variables . 46 5.4 Density . 47 5.5 Exercises . 49 6 Important inequalities and notions of convergence 52 6.1 Basic probabilistic inequalities . 52 6.2 Lp-spaces . 54 6.3 Notions of convergence . 59 6.4 Exercises . 63 2 7 Laws of large numbers 67 7.1 Weak law of large numbers . 67 7.2 Strong law of large numbers . 73 7.3 Exercises . 78 8 Weak convergence 81 8.1 Definition and equivalences . -
The Law of Large Numbers and the Monte-Carlo Method
Lecture 17: The Law of Large Numbers and the Monte-Carlo method The Law of Large numbers Suppose we perform an experiment and a measurement encoded in the random variable X and that we repeat this experiment n times each time in the same conditions and each time independently of each other. We thus obtain n independent copies of the random variable X which we denote X1;X2; ··· ;Xn Such a collection of random variable is called a IID sequence of random variables where IID stands for independent and identically distributed. This means that the random variables Xi have the same probability distribution. In particular they have all the same means and variance 2 E[Xi] = µ ; var(Xi) = σ ; i = 1; 2; ··· ; n Each time we perform the experiment n tiimes, the Xi provides a (random) measurement and if the average value X1 + ··· + Xn n is called the empirical average. The Law of Large Numbers states for large n the empirical average is very close to the expected value µ with very high probability Theorem 1. Let X1; ··· ;Xn IID random variables with E[Xi] = µ and var(Xi) for all i. Then we have 2 X1 + ··· Xn σ P − µ ≥ ≤ n n2 In particular the right hand side goes to 0 has n ! 1. Proof. The proof of the law of large numbers is a simple application from Chebyshev X1+···Xn inequality to the random variable n . Indeed by the properties of expectations we have X + ··· X 1 1 1 E 1 n = E [X + ··· X ] = (E [X ] + ··· E [X ]) = nµ = µ n n 1 n n 1 n n For the variance we use that the Xi are independent and so we have X + ··· X 1 1 σ2 var 1 n = var (X + ··· X ]) = (var(X ) + ··· + var(X )) = n n2 1 n n2 1 n n 1 By Chebyshev inequality we obtain then 2 X1 + ··· Xn σ P − µ ≥ ≤ n n2 Coin flip I: Suppose we flip a fair coin 100 times. -
Laws of Large Numbers in Stochastic Geometry with Statistical Applications
Bernoulli 13(4), 2007, 1124–1150 DOI: 10.3150/07-BEJ5167 Laws of large numbers in stochastic geometry with statistical applications MATHEW D. PENROSE Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom. E-mail: [email protected] Given n independent random marked d-vectors (points) Xi distributed with a common density, define the measure νn = i ξi, where ξi is a measure (not necessarily a point measure) which stabilizes; this means that ξi is determined by the (suitably rescaled) set of points near Xi. For d bounded test functions fPon R , we give weak and strong laws of large numbers for νn(f). The general results are applied to demonstrate that an unknown set A in d-space can be consistently estimated, given data on which of the points Xi lie in A, by the corresponding union of Voronoi cells, answering a question raised by Khmaladze and Toronjadze. Further applications are given concerning the Gamma statistic for estimating the variance in nonparametric regression. Keywords: law of large numbers; nearest neighbours; nonparametric regression; point process; random measure; stabilization; Voronoi coverage 1. Introduction Many interesting random variables in stochastic geometry arise as sums of contributions from each point of a point process Xn comprising n independent random d-vectors Xi, 1 ≤ i ≤ n, distributed with common density function. General limit theorems, including laws of large numbers (LLNs), central limit theorems and large deviation principles, have been obtained for such variables, based on a notion of stabilization (local dependence) of the contributions; see [16, 17, 18, 20].