Middle Devonian Tabulate Corals from the Kamiarisu Formation, Iwate Prefecture, Japan

Total Page:16

File Type:pdf, Size:1020Kb

Middle Devonian Tabulate Corals from the Kamiarisu Formation, Iwate Prefecture, Japan Bull. Natl. Mus. Nat. Sci., Ser. C, 45, pp. 13–18, December 27, 2019 Middle Devonian tabulate corals from the Kamiarisu Formation, Iwate Prefecture, Japan Shuji Niko Department of Environmental Studies, Faculty of Integrated Arts and Sciences, Hiroshima University, 1–7–1 Kagamiyama, Higashihiroshima, Hiroshima 739–8521, Japan Abstract A coral fauna was discovered from the lowest part of the Kamiarisu Formation in Iwate pre- fecture, Northeast Japan. Among the faunal constituents, two species of pachyporid tabulate corals, Gracilopora? sp. indet. and Thamnopora sumitaensis sp. nov., are described herein. The new species is diagnosed by its relatively slender corallites, abundant mural pores, well-developed septal spines in peripheral stereozone, and commonly developed tabulae. On the basis of similarities between the spe- cies and such previously known taxa as Thamnopora itoae Niko, Ibaraki and Tazawa, 2014, T. nichol- soni (Frech, 1885), and T. siavis Dubatolov in Dubatolov et al., 1959, the fauna is considered to be of Middle Devonian (probably Givetian) age. Co-occurrence of Gracilopora? sp. indet. will not contradict this conclusion. Although the Kamiarisu Formation has been assigned to the Silurian, its age should be changed upwardly by this new finding. Key words: pachyporid tabulate corals, Gracilopora, Thamnopora, Givetian, Southern Kitakami Belt, Northeast Japan Introduction locality. Judging from north-south to N 5°E strikes with nearly vertical dips of the shales and the During the field work in May, 2017, an abundant absence of disturbed stratification by fault between coral fauna was discovered from the Kamiarisu For- locality 1 and 2, these two localities probably situate mation (Tazawa et al., 1984) belonging within the the same stratigraphic horizon that represents the Southern Kitakami Belt, Northeast Japan. This dis- lowest part of the Kamiarisu Formation (Figure 2). covery represents the first record of fossil corals All specimens examined in this study are prefixed from the formation. Among the constituents of this NSMS and housed in National Museum of Nature fauna, the present paper focuses on relatively well- and Science, Tokyo. preserved tabulate corals and discusses their strati- graphic significance. Two localities from which the Systematic Paleontology material was taken are in the Kamiarisu area of Sumita-cho, Kesen-gun, Iwate Prefecture (Figure 1). Subclass Tabulata Milne-Edwards and Haime, 1850 Locality 1 occurs at latitude 39°15′9″N and longi- Order Favositida Wedekind, 1937 tude 141°41′43″E, where a forest road cuts fossilif- Suborder Favositina Wedekind, 1937 erous shale. Except for tabulates, fossils in this out- Superfamily Pachyporidae Gerth, 1921 crop are rugose corals, brachiopods, and bryozoans. Locality 2 occurs at latitude 39°15′17″N and longi- Family Pachyporidae Gerth, 1921 tude 141°41′44″E, where shale and intercalates of Genus Gracilopora Chudinova, 1964 thin sandstone layers are exposed on stream bank Type species: Gracilopora acuta Chudinova, 1964. near the junction of the Tuchikura-zawa and Kanno- zawa Valleys. The both rocks of Locality 2 yielded Gracilopora? sp. indet. rich fossils including brachiopods, bryozoans and (Figs. 3-A, B) crinoids, but tabulates ware obtained only from sandstone. Rugose corals were not detected in this Material examined: NMNS PA18684. Description: A single internal mold was available © 2019 National Museum of Nature and Science for study; it is ramose corallum formed by cylindri- 14 S. Niko Fig. 1. Index map showing fossil localities in the Kamiarisu area, Sumita-cho, Iwate prefecture, Northeast Japan, on the “Digital Japan Basic Map” published by Geospatial Information Authority of Japan. Fig. 2. Stratigraphic column of the Kamiarisu Forma- tion (alter Tazawa et al., 1984) showing position of the present tabulate corals. cal branches; branching frequent and probably bifurcate; branches slender, approximately 2–3 mm in diameter, and composed by numerous and gradu- phology also is suggestive of Egosiella Dubatolov in ally inflated corallites; diameters of corallites are Sokolov, 1955, but the Kamiarisu specimen does not very small, up to 0.5 mm; each corallite differenti- show anastomoses of adjoining branches that are the ated into proximal narrowly divergent portion and most diagnostic features of the latter genus. distal outwardly curved one; calical opening is per- pendicular to branch surface. Genus Thamnopora Steininger, 1831 Occurrence: Locality 1. Type species: Thamnopora madreporacea Steininger, 1831. Discussion: The present corallum is tentatively placed in Gracilopora on the basis of the possessions of slender branches composed by numerous coral- lites having very small diameters. Its corallite mor- Fig. 3. A, B, Gracilopora? sp. indet., NMNS PA18684. A, weathered surface, showing longitudinal section of branches, ×5. B, partial enlargements of Fig. 3-A, ×10. C–K, Thamnopora sumitaensis sp. nov. C, paratype, NMNS PA18649, external view of branch, silicon rubber replica, ×2. D, paratype, NMNS PA18653, external views of branches, silicon rubber replica, ×2. E, paratype, NMNS PA18655, longitudinal thin section, ×10. F, G, holo- type, NMNS PA18654. F, transverse polished section, ×5. G, longitudinal polished section, ×5. H, I, paratype, NMNS PA18650. H, external view of branch, silicon rubber replica, ×5. I, weathered surface, showing longitudi- nal and oblique sections of branches, ×2.5. J, paratype, NMNS PA18660, longitudinal polished section, ×5. K, paratype, NMNS PA18652, weathered surface, showing longitudinal sections of corallites, arrow indicates vestiges of septal spines, ×10. Devonian Corals from Iwate 15 16 S. Niko Thamnopora sumitaensis sp. nov. type series consisting of fifteen specimens. Except (Figs. 3-C–K) for a paratype (NMNS PA18655, Fig. 3-E), skele- tons of these specimens are dissolved and their Material examined: Holotype, NMNS PA18654. internal structures are preserved as “steinkern”. Paratypes, NMNS PA18649–18653, 18655–18663. Accordingly, darker parts in branches of the holo- In addition, 20 specimens, NMNS PA18664–18683, type (Figs. 3-F, G) and a paratype (NMNS were also assigned to this species. PA18660, Fig. 3-J) are acrylic resins injected into Diagnosis: Species of Thamnopora with traces of intercorallite walls and tabulae. 5–12 mm in usual diameters of branches and rela- The most closely related species to Thamnopora tively slender corallites having diameters of 0.2– sumitaensis sp. nov. is T. itoae Niko, Ibaraki and 2.1 mm; intercorallite walls attain approximately Tazawa (2014, pp. 61, 63, figs. 2-1–3, 4-1–6). They 0.8 mm in thickness; mural pores abundant; short show the similarities in the measurements of branch conical septal spines well-developed in peripheral diameters, intercorallite wall thickness, the mode of stereozone; tabulae common. occurrence of mural pores, and the possession of Description: Coralla ramose with cylindrical to well-developed septal spines at their peripheral rarely foliose branches, cerioid; branching common, zones. The principal differences between the two bifurcate or trifurcate; diameters of branches are rel- species are slightly smaller corallite diameters atively slender for the genus, 5–12 mm in cylindri- (approximately 1.4 mm in distal parts) and some- cal one; corallum diameter and growth form are what fewer development of tabulae in T. itoae. The unknown owing to fragile nature. Corallites pris- new species rather closely resembles T. nicholsoni matic, mostly 4–6 sided; there are approximately (Frech, 1885, pp. 104, 105) and T. siavis Dubatolov 50–70 corallites in transverse section of branch; in Dubatolov et al. (1959, pp. 22, 23, pl. 7, figs. each corallites differentiated into proximal portion 2a–e), but it differs from the latter two species prin- that runs nearly parallel with branch axis and out- cipally in having well-developed septal spines. wardly curved distal one; inflation of corallite is gradual in proximal and relatively rapid in distal Significance portions; diameters of corallites 0.2–2.1 mm, with 1.7 mm mean at calical rim; calices open obliquely Although Thamnopora ranges from Silurian to upward with approximately 40°–75° in angle for Devonian, most species of the genus have been branch surface; calical pits very deep; lateral recorded from Devonian strata (Hill, 1981; May, increases of new corallites frequently occur in axial 1997). Exceptional late Silurian species, such as T. zone of branch. Intercorallite walls weakly thick- senzaii Niko, 2003, and T. suberidaniensis Niko, ened, 0.13–0.21 mm in axial zone, then they 2003, possess slender branches, small diameters of increase in thickness up to approximately 0.8 mm corallites and thin intercorallite walls, whose primi- and form indistinct peripheral stereozone; walls tive characters are not recognized in T. sumitaensis consist of median dark line and stereoplasm; micro- sp. nov. from the Kamiarisu Formation. The new structure of stereoplasm is not preserved; tabularia species is closely related with T. itoae, T. nichol- (lumina) subcylindrical; mural pores abundant on soni, and T. siavis. The stratigraphic position of T. corallite faces, subcircular in profile, approximately itoae is unclear per se, because the species occurs 0.1–0.2 mm in diameter; septal spines common in from limestone pebbles belonging to Mesozoic con- axial zone and well-developed in peripheral ste- glomerate. However, some index species, such as reozone, short conical; tabulae common, complete. Thamnoptychia mana Niko and Senzai, 2010,
Recommended publications
  • Corals (Anthozoa, Tabulata and Rugosa)
    Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Terre, 2008, n°30, 1-12. Corals (Anthozoa, Tabulata and Rugosa) and chaetetids (Porifera) from the Devonian of the Semara area (Morocco) at the Museo Geominero (Madrid, Spain), and their biogeographic significance Andreas MAY Saint Louis University - Madrid campus, Avenida del Valle 34, E-28003 Madrid, Spain e-mail: [email protected] Abstract. The paper describes the three tabulate coral species Caliapora robusta (Pradáčová, 1938), Pachyfavosites tumulosus Janet, 1965 and Thamnopora major (Radugin, 1938), the rugose coral Phillipsastrea ex gr. irregularis (Webster & Fenton in Fenton & Fenton, 1924) and the chaetetid Rhaphidopora crinalis (Schlüter, 1880). The specimens are described for the first time from Givetian and probably Frasnian strata of Semara area (Morocco, former Spanish Sahara). The material is stored in the Museo Geominero in Madrid. The tabulate corals and the chaetetid demonstrate close biogeographic relationships to Central and Eastern Europe as well as to Western Siberia. The fauna does not show any special influence of the Eastern Americas Realm. Key words: Anthozoa, biogeography, Devonian, tabulate corals, Morocco, West Sahara palaeogeographic province Coraux (Anthozoa, Tabulata et Rugosa) et chaetétides (Porifera) du Dévonien de la région de Smara (Maroc) déposés au Museo Geominero (Madrid) et leur signification biogéographique. Résumé. L´article décrit trois espèces de coraux tabulés : Caliapora robusta (Pradáčová, 1938), Pachyfavosites tumulosus Janet, 1965, et Thamnopora major (Radugin, 1938), le corail rugueux Phillipsastrea ex gr. irregularis (Webster & Fenton in Fenton & Fenton, 1924) ainsi que le chaetétide Rhaphidopora crinalis (Schlüter, 1880). Les spécimens, entreposés au Museo Geominero de Madrid, proviennent des couches givétiennes et probablement frasniennes de différents gisements de la région de Smara (Maroc, ancien Sahara espagnol), d’où elles sont décrites pour la première fois.
    [Show full text]
  • Guide to the Identification of Precious and Semi-Precious Corals in Commercial Trade
    'l'llA FFIC YvALE ,.._,..---...- guide to the identification of precious and semi-precious corals in commercial trade Ernest W.T. Cooper, Susan J. Torntore, Angela S.M. Leung, Tanya Shadbolt and Carolyn Dawe September 2011 © 2011 World Wildlife Fund and TRAFFIC. All rights reserved. ISBN 978-0-9693730-3-2 Reproduction and distribution for resale by any means photographic or mechanical, including photocopying, recording, taping or information storage and retrieval systems of any parts of this book, illustrations or texts is prohibited without prior written consent from World Wildlife Fund (WWF). Reproduction for CITES enforcement or educational and other non-commercial purposes by CITES Authorities and the CITES Secretariat is authorized without prior written permission, provided the source is fully acknowledged. Any reproduction, in full or in part, of this publication must credit WWF and TRAFFIC North America. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC network, WWF, or the International Union for Conservation of Nature (IUCN). The designation of geographical entities in this publication and the presentation of the material do not imply the expression of any opinion whatsoever on the part of WWF, TRAFFIC, or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership are held by WWF. TRAFFIC is a joint program of WWF and IUCN. Suggested citation: Cooper, E.W.T., Torntore, S.J., Leung, A.S.M, Shadbolt, T. and Dawe, C.
    [Show full text]
  • A New Early Visean Coral Assemblage from Azrou-Khenifra Basin, Central Morocco and Palaeobiogeographic Implications Sergio Rodríguez1,2* , Ian D
    Rodríguez et al. Journal of Palaeogeography (2020) 9:5 https://doi.org/10.1186/s42501-019-0051-5 Journal of Palaeogeography ORIGINAL ARTICLE Open Access A new early Visean coral assemblage from Azrou-Khenifra Basin, central Morocco and palaeobiogeographic implications Sergio Rodríguez1,2* , Ian D. Somerville3, Pedro Cózar2, Javier Sanz-López4, Ismael Coronado5, Felipe González6, Ismail Said1 and Mohamed El Houicha7 Abstract A new early Visean coral assemblage has been recorded from turbidite facies in the southern part of the Azrou- Khenifra Basin, northwest of Khenifra, central Morocco. The newly discovered Ba Moussa West (BMW) coral fauna includes Siphonophyllia khenifrense sp. nov., Sychnoelasma urbanowitschi, Cravenia lamellata, Cravenia tela, Cravenia rhytoides, Turnacipora megastoma and Pleurosiphonella crustosa. The early Visean age of the coral assemblage is supported by foraminiferal and conodont data, with the recognition of the basal Visean MFZ9 Zone. This confirms that the first transgression in the Azrou-Khenifra Basin was during the earliest Visean. The allochthonous coral assemblage was recovered from coarse-grained proximal limestone debris flow and turbidite beds within a fault- bounded unit, lying to the west of a thrust syncline containing upper Visean limestones. No evidence exists of the former early Visean shallow-water platform from which the corals were derived. All other in situ platform carbonate rocks around the southern margin of the Azrou-Khenifra Basin are probably of late Visean (Asbian–Brigantian) age. The early Visean Ba Moussa West coral fauna can be compared with that at Tafilalt in eastern Morocco, as well as in other Saharian basins of Algeria. Many of the genera and species in the Ba Moussa West assemblage are identical to those in NW Europe, with which it must have had marine connections.
    [Show full text]
  • Lee-Riding-2018.Pdf
    Earth-Science Reviews 181 (2018) 98–121 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Marine oxygenation, lithistid sponges, and the early history of Paleozoic T skeletal reefs ⁎ Jeong-Hyun Leea, , Robert Ridingb a Department of Geology and Earth Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea b Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA ARTICLE INFO ABSTRACT Keywords: Microbial carbonates were major components of early Paleozoic reefs until coral-stromatoporoid-bryozoan reefs Cambrian appeared in the mid-Ordovician. Microbial reefs were augmented by archaeocyath sponges for ~15 Myr in the Reef gap early Cambrian, by lithistid sponges for the remaining ~25 Myr of the Cambrian, and then by lithistid, calathiid Dysoxia and pulchrilaminid sponges for the first ~25 Myr of the Ordovician. The factors responsible for mid–late Hypoxia Cambrian microbial-lithistid sponge reef dominance remain unclear. Although oxygen increase appears to have Lithistid sponge-microbial reef significantly contributed to the early Cambrian ‘Explosion’ of marine animal life, it was followed by a prolonged period dominated by ‘greenhouse’ conditions, as sea-level rose and CO2 increased. The mid–late Cambrian was unusually warm, and these elevated temperatures can be expected to have lowered oxygen solubility, and to have promoted widespread thermal stratification resulting in marine dysoxia and hypoxia. Greenhouse condi- tions would also have stimulated carbonate platform development, locally further limiting shallow-water cir- culation. Low marine oxygenation has been linked to episodic extinctions of phytoplankton, trilobites and other metazoans during the mid–late Cambrian.
    [Show full text]
  • A New Trachypsammiid Cnidarian from the Late Permian of Spitsbergen
    POLISH POLAR RESEARCH 18 3-4 159-169 1997 Aleksander NOWIŃSKI Institute of Paleobiology Polish Academy of Sciences Twarda 51/55 00-818 Warszawa, POLAND A new trachypsammiid cnidarian from the Late Permian of Spitsbergen ABSTRACT: Starostinella nordica gen. et sp. n. is described from the uppermost Permian (Kapp Starostin Formation) of the Kapp Starostin (Isfjorden) in West Spitsbergen. The new genus is attributed to Trachypsammiidae Gerth - a family incertae sedis among Cnidaria. Members of the Trachypsammiidae have been previously associated with different higher rank taxa within the Cnidaria, or their skeletons were interpreted as a result of symbiosis of a cladochonoidal organism (Tabulata) with an indeterminate hydroid or stromatoporoid. S. nordica gen. et sp. n. seems to support the latter assumption. Hydrocoralla of S. nordica have a simpler structure than those of other Trachypsammiidae and are branching like those of Cladochonus. Their thick-walled, horn-shaped hydrocorallites are surrounded with a very thick cortical zone of sclerenchyme organized into trabecular microstructure. The proper corallite wall is fibro-radial in structure, sharply distinct from the outer cortical zone. Key words: Arctic, Permian, Cnidaria (Trachypsammiidae). Introduction The family Trachypsammiidae Gerth, to which the new genus Starostinella is here assigned, occupies an incertae sedis position among the Cnidaria. Its representatives have been variously included into Tabulata (Favositida, Aulo- porida), Octocorallia (Trachypsammiacea), or simply to Cnidaria without further indication of class nor order. A hypothesis was also put forward that the hydro­ coralla of Trachypsammiidae result from symbiosis of two skeletal organisms: a cladochonoidal organism (Tabulata) and an indeterminate stromatoporoid or a hydroid.
    [Show full text]
  • Note on the Fine Skeletal Structures in Scleractinia and in Tabulata
    Title Note on the Fine Skeletal Structures in Scleractinia and in Tabulata Author(s) Kato, Makoto Citation Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and mineralogy, 14(1), 51-56 Issue Date 1968-02 Doc URL http://hdl.handle.net/2115/35982 Type bulletin (article) File Information 14(1)_51-56.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP NOTE ON THE FINE SKELETAL STRUCTURES IN SCLERACTINIA AND IN TABULATA by Makoto KATo (with 1 Text-figure) (Contribution from the Department of Geology and Mineralogy, Faculty of Science, Hokl<aido University. No. 1069) On the fine sketetal structures in Scleractinia Scleractinia is a vast group including reef corals of recent time. Much knowl- edge on the ecology, physiology and so on of the recent Scleractinians has been accumulated up to the present by a number of research worlcers. By deduction, biological aspects of fossil Scleractinians may be readily sought in these data on recent corals. Being an extinct group, however, nothing definite has been ascertained as to the true biological aspects of Palaeozoic Rugosa, though many functional features or conditions of Scleractinia can be also attributed to Rugosa, since the former is the nearest ally to the latter. Hence, one must study in every detail the biology of the recent Scleractinia, for the thorough understanding of Palaeozoic Rugosa, It is well known that in Scleractinia microstructure of coral skeleton has been taken as a clue to major divisions of the group. (VAuGHAN 8c WELLs, 1943 : WEms, 1956) Recent comprehensive work on Scleractinia by ALLoiTEAu (1957) also gave importance to the microstructure in the classification of the said group, For the sake of comparison with Palaeozoic corals, the writer also examined many thin sections of Scleractinians kept at the British Museum of Natural History.
    [Show full text]
  • The Earliest Diverging Extant Scleractinian Corals Recovered by Mitochondrial Genomes Isabela G
    www.nature.com/scientificreports OPEN The earliest diverging extant scleractinian corals recovered by mitochondrial genomes Isabela G. L. Seiblitz1,2*, Kátia C. C. Capel2, Jarosław Stolarski3, Zheng Bin Randolph Quek4, Danwei Huang4,5 & Marcelo V. Kitahara1,2 Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging “Basal” lineage remains poorly studied compared to “Robust” and “Complex” corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confrm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as
    [Show full text]
  • Transcriptome Analysis of the Reef-Building Octocoral, Heliopora
    www.nature.com/scientificreports OPEN Transcriptome analysis of the reef-building octocoral, Heliopora coerulea Received: 25 August 2017 Christine Guzman1,2, Chuya Shinzato3, Tsai-Ming Lu 4 & Cecilia Conaco1 Accepted: 9 May 2018 The blue coral, Heliopora coerulea, is a reef-building octocoral that prefers shallow water and exhibits Published: xx xx xxxx optimal growth at a temperature close to that which causes bleaching in scleractinian corals. To better understand the molecular mechanisms underlying its biology and ecology, we generated a reference transcriptome for H. coerulea using next-generation sequencing. Metatranscriptome assembly yielded 90,817 sequences of which 71% (64,610) could be annotated by comparison to public databases. The assembly included transcript sequences from both the coral host and its symbionts, which are related to the thermotolerant C3-Gulf ITS2 type Symbiodinium. Analysis of the blue coral transcriptome revealed enrichment of genes involved in stress response, including heat-shock proteins and antioxidants, as well as genes participating in signal transduction and stimulus response. Furthermore, the blue coral possesses homologs of biomineralization genes found in other corals and may use a biomineralization strategy similar to that of scleractinians to build its massive aragonite skeleton. These fndings thus ofer insights into the ecology of H. coerulea and suggest gene networks that may govern its interactions with its environment. Octocorals are the most diverse coral group and can be found in various marine environments, including shallow tropical reefs, deep seamounts, and submarine canyons1. Tey reportedly exhibit greater resistance and resil- ience to environmental perturbations, particularly to thermal stress, compared to scleractinians2–4.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Newsletter Number 80
    The Palaeontology Newsletter Contents 80 Editorial 2 Association Business 3 News 16 Association Meetings 19 From our correspondents The very Dickens of a palaeontologist 23 PalaeoMath 101: Round the Bend … 32 Future meetings of other bodies 49 Meeting Report British Ecological Society Macro-SIG 57 Reporter: A fossil-fuelled future? 60 Encouraging palaeontology in schools 63 James Mckay – palaeo artist 75 Caithness fish on Edinburgh street 79 Palaeontology vol 55 parts 3 & 4 82–83 SPP 87: Tabulate Corals in Poland 84 Reminder: The deadline for copy for Issue no 81 is 3rd November 2012. On the Web: <http://www.palass.org/> ISSN: 0954-9900 Newsletter 80 2 Editorial Summer is upon us, whatever that means for you. For me in Scotland it is the long hours of daylight and the chance to get round lots of mountaintops in a day and collect fossils in better light than usual. As the short report about Ken Shaw’s fossil fish find in a paving slab in the heart of Edinburgh shows, sometimes exciting finds await us in rather unexpected places. For others, school is out – but Gordon Neighbour’s article on palaeontology and schools reminds us that we should be looking to what we can do to help encourage school pupils to engage with palaeontology. Although Liam Herringshaw’s somewhat downbeat article about the lack of retention of post-Ph.D. palaeontologists by UK universities and other institutions may have those pupils asking why they should focus on palaeontology. The analytical palaeobiologist in me would ask immediately whether other “clades” of Earth Scientists are having a similarly hard time of it.
    [Show full text]
  • Progress to Extinction: Increased Specialisation Causes the Demise of Animal Clades ReceiE: 3 OEmEr 015 P
    www.nature.com/scientificreports OPEN Progress to extinction: increased specialisation causes the demise of animal clades receie: 3 oemer 015 P. Raia1, F. Carotenuto1, A. Mondanaro1, S. Castiglione1, F. Passaro1, F. Saggese1, accepte: 1 u 016 M. Melchionna1, C. Serio1, L. Alessio1, D. Silvestro2 & M. Fortelius3,4 Puise: 10 uust 016 Animal clades tend to follow a predictable path of waxing and waning during their existence, regardless of their total species richness or geographic coverage. Clades begin small and undiferentiated, then expand to a peak in diversity and range, only to shift into a rarely broken decline towards extinction. While this trajectory is now well documented and broadly recognised, the reasons underlying it remain obscure. In particular, it is unknown why clade extinction is universal and occurs with such surprising regularity. Current explanations for paleontological extinctions call on the growing costs of biological interactions, geological accidents, evolutionary traps, and mass extinctions. While these are efective causes of extinction, they mainly apply to species, not clades. Although mass extinctions is the undeniable cause for the demise of a sizeable number of major taxa, we show here that clades escaping them go extinct because of the widespread tendency of evolution to produce increasingly specialised, sympatric, and geographically restricted species over time. Most animal clades follow a predictable path in geographic commonness and taxonomic diversity over time1,2. Clades usually start within a very restricted range3, and then expand and diversify to occupy large stretches of Earth. Almost immediately afer this peak in success, they start declining in diversity and fnally go extinct1,2,4–6 (although a few may survive with as little diversity as one genus like sphenodonts, coelacanths, and nautiloids).
    [Show full text]
  • Carboniferous Tabulate Corals from the Sardar Formation in the Ozbak-Kuh Mountains, East-Central Iran
    Bull. Natl. Mus. Nat. Sci., Ser. C, 46, pp. 47–59, December 25, 2020 Carboniferous Tabulate Corals from the Sardar Formation in the Ozbak-kuh Mountains, East-Central Iran Shuji Niko1* and Mahdi Badpa2 1 Department of Environmental Studies, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, Hiroshima 739–8521, Japan 2 Department of Geology, Payame Noor University of Qom, Qom, Iran *Author for correspondence: [email protected] Abstract Five species of tabulate corals are described from the Serpukhovian–Bashkirian (late early– early late Carboniferous) part of the Sardar Formation in the Ozbak-kuh Mountains, East-Central Iran. They are Michelinia flugeli sp. nov., late Bashkirian, Michelinia sp. indet., late Bashkirian, Donetzites mariae Flügel, 1975, late Serpukhovian, Syringopora iranica sp. nov., late Serpukhovian, and Multithe- copora sp. cf. M. huanglungensis Lee and Chu in Lee et al., 1930, late Serpukhovian to late Bashkirian. The Sardar tabulate coral fauna occurs from limestones that formed in Peri-Gondwana at the low lati- tudes of the southern hemisphere and faced the Paleo-Tethys Ocean. Except for a cosmopolitan species, closely related to comparable species with the fauna are reported from the Akiyoshi seamount chain, the South China Continent, and the Australian eastern Gondwana. Key words: Serpukhovian–Bashkirian, late early–early late Carboniferous, Favositida, Auloporida, Peri-Gondwana Introduction et al. (2006) separated its upper part from the for- mation as the Zaladu Formation that is correlative The Ozbak-kuh Mountains are a fault topography with the Gzhelian (late late Carboniferous) to Asse- in the Kashmar-Kerman Tectonic Zone (Stöcklin lian (early early Permian).
    [Show full text]