Oxidative Stress Inhibits Healthy Adipose Expansion Through Suppression Of

Total Page:16

File Type:pdf, Size:1020Kb

Oxidative Stress Inhibits Healthy Adipose Expansion Through Suppression Of Page 1 of 52 Diabetes Oxidative stress inhibits healthy adipose expansion through suppression of SREBF1-mediated lipogenic pathway Short title: ROS inhibits healthy adipose expansion Authors Yosuke Okuno1, Atsunori Fukuhara1,2, Erika Hashimoto1, Hironori Kobayashi1, Sachiko Kobayashi1,3, Michio Otsuki1, Iichiro Shimomura1 Affiliations 1Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, Japan 2Department of Adipose Management, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, Japan 3Department of Metabolism and Atherosclerosis, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, Japan Corresponding author Atsunori Fukuhara; Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan. Phone: +81-6-6879-3732; Email: [email protected] Word count: 4453 Number of tables and figures: 8 Diabetes Publish Ahead of Print, published online April 4, 2018 Diabetes Page 2 of 52 Abstract Recent studies have emphasized the association of adipose oxidative stress (Fat ROS) with the pathogenesis of metabolic disorders in obesity. However, the causal roles of Fat ROS in metabolic disturbances in vivo remain unclear because no mouse model has been available in which oxidative stress is manipulated targeting adipocytes. In this research, we generated two models of Fat ROS-manipulated mice and evaluated the metabolic features in diet-induced obesity. Fat ROS-eliminated mice in which Cat and Sod1 were overexpressed in adipocytes exhibited adipose expansion with decreased ectopic lipid accumulation and improved insulin sensitivity. Conversely, Fat ROS-augmented mice, in which glutathione was depleted specifically in adipocytes, exhibited restricted adipose expansion associated with increased ectopic lipid accumulation and deteriorated insulin sensitivity. In the white adipose tissues of these mice, macrophage polarization, tissue fibrosis and de novo lipogenesis were significantly changed. In vitro approaches identified KDM1A-mediated attenuation of SREBF1 transcriptional activities as the underlying mechanism for the suppression of de novo lipogenesis by oxidative stress. Thus, our study uncovered the novel roles of Fat ROS in healthy adipose expansion, ectopic lipid accumulation and insulin resistance, providing the possibility for the adipocyte-targeting antioxidant therapy. Page 3 of 52 Diabetes The prevalence of obesity and type 2 diabetes (T2DM) is increasing worldwide. T2DM is characterized by peripheral insulin resistance and insufficient insulin release from pancreatic beta cells. Among the drugs used for the treatment of T2DM, two agents, metformin and PPARγ agonists, can clinically improve peripheral insulin resistance. For better treatment of T2DM, it is important to elucidate the mechanisms of insulin resistance in obesity and to develop insulin-sensitizing drugs. Under excess calorie intake or insufficient energy expenditure, the white adipose tissue (WAT) stores lipids and becomes hypertrophic. Hypertrophic adipocytes impair insulin signaling not only in these cells but also in other insulin-sensitive organs through dysregulated secretion of adipocytokines, such as ADIPOQ (1), TNF (2), IL6 (3) and RETN (4). Recent works have demonstrated that such changes are preceded by various changes in WAT, such as infiltration of inflammatory cells (5), endoplasmic reticulum stress (6), hypoxia (7) and oxidative stress (8). We reported that the presence of high levels of prooxidants, such as NADPH oxidases, and low levels of antioxidant enzymes, such as Cat and Sod, in obese WAT resulted in high oxidative stress, conceptualized as adipose oxidative stress (Fat reactive oxygen species (ROS)), in mice (8) and humans (9-11). Many studies have suggested that Fat ROS is involved in various pathways in metabolic syndrome, including adipocyte insulin signaling (12), adipose inflammation (8), endoplasmic reticulum stress (13), mitochondrial function (14), cellular senescence (15), gut microbiota (16), adiponectin (Adipoq) (8), adiponectin receptor (AdipoR) (17) and angiotensin II signaling (18). Systemic or skeletal muscle-specific manipulation of oxidative stress in vivo, including administration of apocynin (8) or MnTBAP (19), overexpression of Sod (19; 20) or Cat (21; 22) and glutathione depletion (23-25) showed various effects on insulin sensitivity. However, the causal role of Fat ROS in Diabetes Page 4 of 52 obesity in vivo still remains unclear because no mouse model has been available in which oxidative stress is manipulated targeting adipocytes. We describe here the generation of mice with genetically manipulated ROS specifically in adipocytes. Elimination of Fat ROS potentiated healthy adipose expansion with decreased ectopic lipid deposition and improved insulin sensitivity. Conversely, augmented Fat ROS inhibited healthy adipose expansion with ectopic lipid accumulation and deteriorated insulin sensitivity. As a mechanism, Fat ROS accelerated adipose inflammation and adipose tissue fibrosis and inhibited de novo lipogenesis with the suppression of SREBF1 transcriptional activity through a reduction in KDM1A protein expression. Page 5 of 52 Diabetes Research Design and Methods Animal models. To generate aP2-Cat/SOD1 double transgenic mice, the rat Cat gene and human SOD1 gene were amplified by PCR and were inserted into an aP2 promoter cassette. These plasmids were microinjected into fertilized eggs from C57BL/6J mice, generating an aP2-Cat transgenic mouse and aP2-SOD1 transgenic mouse. The expression of transgenes was checked in several lines of aP2-Cat transgenic and aP2-SOD1 transgenic mice, and the line with the highest expression of each transgene in WAT was selected. In the next step, the aP2-Cat transgenic and aP2-SOD1 transgenic mice were crossed, and the resultant wild-type mice and aP2-Cat/SOD1 double transgenic mice were analyzed as littermates. Adipoq-Cre mice were kindly provided by Dr. Rosen (26). The LacZ-Neo cassette was removed from Gclc mutant mice (05085, The European Mouse Mutant Archive) by crossing them with CAG-FLPe mice (Riken). The resultant Gclc floxed mice were crossed with Adipoq-Cre mice to generate Adipoq-Gclc-knockout mice. Adipoq-Gclc-knockout mice and Gclc floxed mice were crossed, and the resultant Adipoq-Gclc-knockout mice and Gclc floxed mice were analyzed as littermates. To distinguish the floxed allele from the wild-type allele, the following primers were used: 5’-AGGAGGAGGGTGGGAAATTAC-3’ and 5’-GCATAACATCAAAGCCTGCAG. To distinguish null alleles from floxed alleles, the following primers were used: 5’-GTCAGCATCTCTGCTGTGGATC-3’ and 5’-AGGAGGAGGGTGGGAAATTAC-3’. In experiments with a high fat/high sucrose diet, the mice were fed F2HFHSD (Oriental Yeast) from 6 weeks of age. All mice were maintained under specific pathogen-free conditions and had free access to water and chow. Tissue collection. The mice were anesthetized, and blood samples were collected from the inferior vena cava. Tissues were carefully removed and snap frozen in nitrogen. Diabetes Page 6 of 52 mRNA analysis. Total RNA was isolated with Sepasol-RNA I Super G (Nacalai Tesque, Kyoto, Japan) or TRI Reagent (Sigma), according to the protocol provided by the manufacturer. First-strand cDNA was synthesized from total RNA using a Transcriptor First Strand cDNA Synthesis Kit (Roche) and was subjected to real-time RT-PCR using a Light Cycler (Roche) according to the instructions provided by the manufacturer. Values were expressed relative to the mRNA level of Rplp0. The primers used were shown in Supplementary Table. Fractionation of adipose tissue and isolation of ATMs. Adipose tissues were fractionated, and adipose tissue macrophages (ATMs) were collected by FACS Aria II (BD Biosciences) as described previously (27). M1 and M2 macrophages were analyzed by FACS Aria II as described previously (28). Measurement of enzymatic activity. Catalase and Sod activities in WAT were measured using a Catalase Assay Kit (Cayman) and a Superoxide Dismutase Assay Kit (Cayman), respectively, according to the instructions supplied by the manufacturer. Values were adjusted to the level of protein measured by a Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Measurement of hydrogen peroxide. Tissue hydrogen peroxide was measured using a Hydrogen Peroxide Assay Kit (Abcam), according to the instructions supplied by the manufacturer. Values were adjusted to the level of protein measured by a Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Page 7 of 52 Diabetes Measurement of tissue 8-isoprostane. Tissue 8-isoprostane was extracted and measured using an 8-Isoprostane EIA Kit (Cayman) according to the protocol recommended by the manufacturer. Briefly, tissue was lysed, incubated with potassium hydroxide, trapped with C18 Sep-Pak (Waters), washed with water and hexane, eluted with ethyl acetate, evaporated and reconstituted with EIA buffer. Values were adjusted to the DNA amounts measured by the CellTox Green Cytotoxicity Assay (Promega). Measurement of tissue glutathione. Tissue total glutathione was measured using a GSSG/GSH Quantification Kit (Dojindo Laboratories, Kumamoto, Japan) according to the protocol recommended by the manufacturer. Values were adjusted to the level of protein measured by Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Measurement of protein carbonylation. Tissue carbonylated protein was detected using an OxyBlot Protein Oxidation
Recommended publications
  • 06. Baransel Saygi
    Turkish Journal of Trauma & Emergency Surgery Ulus Travma Acil Cerrahi Derg 2008;14(2):103-109 The effect of dehydration and irrigation on the healing of Achilles tendon: an experimental study Dehidrasyon (kuruluk) ve irigasyonun (y›kama) Aflil tendon iyileflmesi üzerine etkileri: Deneysel çalıflma Baransel SA Y G I,1 Yakup YI L D I R I M,2 Cengiz ÇA B U K O ⁄ L U,3 Hasan KA R A,3 Saime Sezgin RA M A D A N,4 Tanıl ES E M E N L ‹ 5 BACKGROUND AMAÇ Air exposure is a factor that inhibits in vitro cellular prolifer- Hava teması tendonlarda canl›-d›fl› (in vitro) ortamda matriks ation and matrix synthesis in tendons. Aim of this experimen- sentezini ve hücre ilerlemesini azaltabilir ve hatta önleyebilir. tal study was to evaluate effect of dehydration and irrigation Bu çalıflmanın amacı, dehidrasyon ve irigasyonun Aflil tendon on healing of Achilles tendon. iyileflmesi üzerine etkisinin canl›-içi (in vivo) hayvan modeli METHODS üzerinde gösterilmesidir. Achilles tenotomy was done in forty-five Sprague-Dawley GEREÇ VE YÖNTEM rats. In control group, tendon was sutured immediately. In the K›rk befl adet Sprague-Dawley cinsi s›çan›n Aflil tenotomisi remaining two groups, the Achilles tendons were allowed to yapıldı. Kontrol grubunda, tendon hemen dikildi. Di¤er iki direct exposure of air. Irrigation of Achilles tendon was per- grubun cilt ve cilt altı dokuları ekarte edilerek Aflil tendon- formed in one of exposed groups, while irrigation was not larının do¤rudan hava ile teması sa¤landı. Bu gruplardan biri- done in other group.
    [Show full text]
  • Endotrophin Triggers Adipose Tissue Fibrosis and Metabolic Dysfunction
    ARTICLE Received 12 Sep 2013 | Accepted 21 Feb 2014 | Published 19 Mar 2014 DOI: 10.1038/ncomms4485 Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction Kai Sun1,*, Jiyoung Park1,2,*, Olga T. Gupta1, William L. Holland1, Pernille Auerbach3, Ningyan Zhang4, Roberta Goncalves Marangoni5, Sarah M. Nicoloro6, Michael P. Czech6, John Varga5, Thorkil Ploug3, Zhiqiang An4 & Philipp E. Scherer1,7 We recently identified endotrophin as an adipokine with potent tumour-promoting effects. However, the direct effects of local accumulation of endotrophin in adipose tissue have not yet been studied. Here we use a doxycycline-inducible adipocyte-specific endotrophin overexpression model to demonstrate that endotrophin plays a pivotal role in shaping a metabolically unfavourable microenvironment in adipose tissue during consumption of a high-fat diet (HFD). Endotrophin serves as a powerful co-stimulator of pathologically relevant pathways within the ‘unhealthy’ adipose tissue milieu, triggering fibrosis and inflammation and ultimately leading to enhanced insulin resistance. We further demonstrate that blocking endotrophin with a neutralizing antibody ameliorates metabolically adverse effects and effectively reverses metabolic dysfunction induced during HFD exposure. Collectively, our findings demonstrate that endotrophin exerts a major influence in adipose tissue, eventually resulting in systemic elevation of pro-inflammatory cytokines and insulin resistance, and the results establish endotrophin as a potential target in the context of metabolism and cancer. 1 Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA. 2 Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST street, Ulsan 689-798, Korea.
    [Show full text]
  • Fibrosis in Human Adipose Tissue
    ORIGINAL ARTICLE Fibrosis in Human Adipose Tissue: Composition, Distribution, and Link With Lipid Metabolism and Fat Mass Loss Adeline Divoux,1 Joan Tordjman,1 Danie`le Lacasa,2 Nicolas Veyrie,1,3 Danielle Hugol,1,4 Abdelhalim Aissat,1,3 Arnaud Basdevant,1,2 Miche`le Guerre-Millo,1 Christine Poitou,1,2 Jean-Daniel Zucker,1 Pierre Bedossa,1,5 and Karine Cle´ment1,2 OBJECTIVE—Fibrosis is a newly appreciated hallmark of the pathological alteration of human white adipose tissue (WAT). We investigated the composition of subcutaneous (scWAT) and hite adipose tissue (WAT) is the main energy omental WAT (oWAT) fibrosis in obesity and its relationship with repository in the body. It stores and mobi- metabolic alterations and surgery-induced weight loss. lizes, according to body demand, fatty acids RESEARCH DESIGN AND METHODS—Surgical biopsies for Wthat have been implicated in the development scWAT and oWAT were obtained in 65 obese (BMI 48.2 Ϯ 0.8 of insulin resistance. In turns, the phenotype and the kg/m2) and 9 lean subjects (BMI 22.8 Ϯ 0.7 kg/m2). Obese biology of WAT cellular components are altered by two subjects who were candidates for bariatric surgery were major processes: adipose cell hypertrophy and immune clinically characterized before, 3, 6, and 12 months after cells accumulation. Inflammation, reticulum endoplasmic surgery, including fat mass evaluation by dual energy X-ray stress, and hypoxia are part of the biologic alterations that absorptiometry. WAT fibrosis was quantified and character- ized using quantitative PCR, microscopic observation, and attract and retain inflammatory cells in WAT (1).
    [Show full text]
  • Empowering Collagen Targeting for Diagnosis and Treatment of Human Conditions
    EmpoweringEmpowering collagen collagen targetingtargeting for for diagnosis prognosis of fibrotic and treatment of Manka,SW. 2012 conditions.human conditions. 1 3Helix as a platform diagnostic company 2020 2022 2030 Innovative research reagent for Clinic histopathology providing Platform fibrotic prognostic detection of collagen damage best in class prognostic ability in within multi-disease states liver fibrosis (NAFLD, NASH) Strengthening IP portfolio with market Clinical histopathology AND Non-Invasive approaches serum testing and medical disrupting products while subsequently Analytic specific reagent to allow for fast imaging developing strong partnerships with world market access leading companies for commercialization Targeting impactful markets of IPF, kidney Focused on paired biopsy research and fibrosis, AMD, Keloids and cardiac fibrosis collaboration with clinical laboratories. in addition to fibrotic liver diseases. 2 Liver Fibrosis market is GROWING Fatty Liver Fibrotic Liver Healthy Liver Cirrhosis NAFLD NASH USA Epidemiology 328 Million 83 Million 16 Million 1.5 Million (2015) Predicted USA Epidemiology 360 Million 101 Million 27 Million 3.4 Million (2030) Estes,C. 2018 3 NASH Therapeutics are finishing clinical trials and are coming to market. • VK2809 Phase II • OCALIVA (OCA) • NDA Filed • $78,000/year current cost • $20,000 predicted • Resmetirom Phase III • 23% respond to treatment 16 Million NASH patients in the USA * $20,000 • $320 Billion Annual Cost for treatable market Aramchol Phase III/IV 4 Stratification of patient population is needed to reduce unnecessary therapeutic intervention. • Progression of NAFL and 100% NASH is variable patient to NAFLD patient. 33% • Prediction of the progression can modify the Fibrosis Progression 20% disease intervention and treatment. Rapid Fibrosis • No product on the market Progression (stage 0 to stage today is equipped for 3/4 over 5.9 years) prognosis of liver fibrosis Singh, S.
    [Show full text]
  • Skeletal Muscle – Fibrosis
    Skeletal Muscle – Fibrosis Figure Legend: Figure 1 Skeletal muscle - Fibrosis in a male Harlan Sprague-Dawley rat from a subchronic study. Early change consists of increased perimysial deposits of pale eosinophilic material (immature collagen). Figure 2 Skeletal muscle - Fibrosis in a male Harlan Sprague-Dawley rat from a subchronic study. Note the perimysial proliferation of fibroblasts and early collagen deposition. Figure 3 Skeletal muscle - Fibrosis in a male Harlan Sprague-Dawley rat from a subchronic study (higher magnification of Figure 2). There is deposition of perimysial connective tissue and attenuation of several muscle fibers. Figure 4 Skeletal muscle - Fibrosis in a male F344/N rat from a chronic study. There is marked fibrosis with attenuation and loss of muscle bundles. 1 Skeletal Muscle – Fibrosis Comment: In skeletal muscle, the predominant histologic features of fibrosis are increased numbers of plump reactive fibroblasts with prominent vesiculated nuclei, and increased amounts of pale eosinophilic fibrillar material (collagen deposition) separating and surrounding adjacent myofibers (Figure 1, Figure 2, Figure 3, and Figure 4). Affected myofibers may or may not exhibit histologic features of atrophy, degeneration, necrosis, or regeneration. Fibrosis is the end result of a cascade of events that begins with tissue injury and inflammation and ends in permanent scar formation. When tissue is damaged, profibrotic cytokines, such as transforming growth factor beta, are released by the infiltrating inflammatory cells. These cytokines signal the fibroblasts to migrate into the affected region and to begin producing and remodeling the extracellular matrix. The stromal fibroblasts then begin producing cytokines, growth factors, and proteases that further trigger and uphold the inflammatory/profibrotic conditions.
    [Show full text]
  • Deciphering the Cellular Interplays Underlying Obesity-Induced Adipose Tissue Fibrosis
    Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis Geneviève Marcelin, … , Adaliene V.M. Ferreira, Karine Clément J Clin Invest. 2019. https://doi.org/10.1172/JCI129192. Review Series Obesity originates from an imbalance between caloric intake and energy expenditure that promotes adipose tissue expansion, which is necessary to buffer nutrient excess. Patients with higher visceral fat mass are at a higher risk of developing severe complications such as type 2 diabetes and cardiovascular and liver diseases. However, increased fat mass does not fully explain obesity’s propensity to promote metabolic diseases. With chronic obesity, adipose tissue undergoes major remodeling, which can ultimately result in unresolved chronic inflammation leading to fibrosis accumulation. These features drive local tissue damage and initiate and/or maintain multiorgan dysfunction. Here, we review the current understanding of adipose tissue remodeling with a focus on obesity-induced adipose tissue fibrosis and its relevance to clinical manifestations. Find the latest version: https://jci.me/129192/pdf The Journal of Clinical Investigation REVIEW SERIES: MECHANISMS UNDERLYING THE METABOLIC SYNDROME Series Editor: Philipp E. Scherer Deciphering the cellular interplays underlying obesity- induced adipose tissue fibrosis Geneviève Marcelin,1 Ana Letícia M. Silveira,1,2 Laís Bhering Martins,1,2 Adaliene V.M. Ferreira,2 and Karine Clément1,3 1Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France. 2Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. 3Nutrition Department, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Paris, France. Obesity originates from an imbalance between caloric intake and energy expenditure that promotes adipose tissue expansion, which is necessary to buffer nutrient excess.
    [Show full text]
  • Fibrotix: Significant Reduction in Skin Scar Area, Fibrosis, Hyperpigmentation and Improved Appearance
    Fibrotix: Significant Reduction in Skin Scar Area, Fibrosis, Hyperpigmentation and Improved Appearance Challenge • Wound healing is complex: excessive inflammation, angiogenesis and dermal fibroblast function significantly contribute to scarring; additionally, scar hyperpigmentation negatively impacts scar quality · Reduces skin scar area • Scars cause serious cosmetic and functional problems that can be emotionally and physically debilitating and place and hyperpigmentation heavy financial burdens on healthcare systems post wound in vivo • There are currently no clinically tested or licensed · Uses Salbutamol a safe, interventions/pharmaceuticals available to reduce scarring or widely used, approved scar hyperpigmentation therapeutic · Strong intellectual Solution property position • Salbutamol (Sal), delivered topically, ameliorates excess deposition of scar tissue and reduces hyperpigmentation post trauma, significantly improving scar appearance www.le.ac.uk/business Fibrotix: Significant Reduction in Skin Scar Area, Fibrosis, Hyperpigmentation and Improved Appearance Macroscopic scar assessment at 56 days post wounding figure 1 Using a number of in vitro and in vivo models we have Salbutamol reduces scar area at 28, 42 and 56 days post wounding demonstrated that Sal-induced beta 2 adrenoceptor activation can restrain inflammation, angiogenesis and dermal fibroblast differentiation, function and pro- fibrotic signature via a number of mechanisms. In vivo proof-of-principle studies were performed in the Red Duroc pig and demonstrated Sal treatment reduced scar area by almost 50%, 56 days post-wounding. Hyperpigmentation, colour match, sheen, height, texture and pliability were also significantly improved (figure 1). Market Immunostaining demonstrated a significant early 100 million patients in the developed world heal with a scar reduction in both macrophage infiltration and every year as a result of elective procedures and trauma.
    [Show full text]
  • Pulmonary Fibrosis What It Is and How It Affects Your Breathing
    Pulmonary fibrosis What it is and how it affects your breathing What is pulmonary fibrosis? Pulmonary fibrosis is a term that covers many different conditions that cause scar tissue to build up in your lungs. This build-up of scar tissue, which makes your lungs stiff, is called fibrosis. Pulmonary fibrosis is a type of interstitial lung disease (ILD). ‘Interstitial’ means the disease affects the interstitium, the lace-like network of tissue that supports the air sacs in your lungs. There are more than 200 different ILDs. Some types of pulmonary fibrosis have an identifiable cause. But for many types, a definite cause cannot be found. In ILDs, there can be scarring in your lungs or inflammation in your lungs. Some ILDs mostly cause scarring, some mostly cause inflammation. But often there is a combination of these processes going on. Which of these processes is dominant can determine what kind of treatment you may have. The treatment and outlook for different types of pulmonary fibrosis vary considerably, so if you’re not sure about your diagnosis, check with your doctor or nurse for the exact name of your lung condition. All types of pulmonary fibrosis are rare. We have specific information about those seen most often in other PDFs: • idiopathic pulmonary fibrosis or IPF • hypersensitivity pneumonitis formerly called extrinsic allergic alveolitis • pneumoconiosis, also known as an occupational interstitial lung disease • pulmonary fibrosis associated with connective tissue and autoimmune diseases • drug-induced pulmonary fibrosis Although we do not always know what causes pulmonary fibrosis, we do know it is not a form of cancer or cystic fibrosis, and it is not contagious.
    [Show full text]
  • White Adipocyte Plasticity in Physiology and Disease
    cells Review White Adipocyte Plasticity in Physiology and Disease Ewa Bielczyk-Maczynska Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; [email protected] Received: 19 October 2019; Accepted: 21 November 2019; Published: 25 November 2019 Abstract: Cellular plasticity is a transformation of a terminally differentiated cell into another cell type, which has been long known to occur in disease and regeneration. However, white adipocytes (fat cells) have only recently been observed to undergo different types of cellular plasticity. Adipocyte transdifferentiation into myofibroblasts and cancer-associated fibroblasts occurs in fibrosis and cancer, respectively. On the other hand, reversible adipocyte dedifferentiation into adipocyte progenitor cells (preadipocytes) has been demonstrated in mammary gland and in dermal adipose tissue. Here we discuss the research on adipocyte plasticity, including the experimental approaches that allowed to detect and study it, the current state of the knowledge, major research questions which remain to be addressed, and the advances required to stimulate adipocyte plasticity research. In the future, the knowledge of the molecular mechanisms of adipocyte plasticity can be utilized both to prevent adipocyte plasticity in disease and to stimulate it for use in regenerative medicine. Keywords: cell plasticity; adipocytes; fat; cell dedifferentiation; cell transdifferentiation; cell differentiation 1. Introduction In the traditional view of cell differentiation, cells follow a differentiation trajectory in discrete developmental stages, beginning with stem cells and culminating with a terminally differentiated state [1]. The terminally differentiated state is thought to be permanent as the cells can no longer transfer into other cell fates. However, in many systems the phenomenon of cellular plasticity, which is a transformation of a cellular phenotype beginning with a terminally differentiated cell, has been described not only in pathologies like cancer, but also during physiological processes [2].
    [Show full text]
  • Interleukin-10 Attenuates Liver Fibrosis Exacerbated by Thermoneutrality
    ORIGINAL RESEARCH published: 26 May 2021 doi: 10.3389/fmed.2021.672658 Interleukin-10 Attenuates Liver Fibrosis Exacerbated by Thermoneutrality Ha Thi Nga 1,2,3, Ji Sun Moon 1,2,3, Jingwen Tian 1,2,3, Ho Yeop Lee 1,2,3, Seok-Hwan Kim 4, Young-Sun Lee 5, Jae-Han Jeon 6 and Hyon-Seung Yi 1,2,3* 1 Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, South Korea, 2 Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea, 3 Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, South Korea, 4 Department of Surgery, Chungnam National University School of Medicine, Daejeon, South Korea, 5 Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea, 6 Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea Background: Crosstalk between brown adipose tissue (BAT) and the liver is receiving increasing attention. This study investigated the effect of BAT dysfunction by thermoneutral (TN) housing on liver fibrosis in mice and examined the effect of secreted Edited by: factors from brown adipocytes on the activation of hepatic stellate cells (HSCs). Zhengtao Liu, Methods: The carbon tetrachloride (CCl4)-induced liver fibrosis mouse model was Zhejiang University, China used to evaluate fibrotic changes in the livers of mice housed under standard and TN Reviewed by: Tian Lan, conditions. The effect of BAT on the activation of HSCs was examined using cultured Guangdong Pharmaceutical cells treated with conditioned media from brown adipocytes. University, China Shengyong Yin, Results: Under TN conditions, mice with CCl4-induced liver fibrosis exhibited increased Zhejiang University, China liver injury, collagen deposition, and alpha smooth muscle actin (α-SMA) expression Renhua Sun, Karolinska Institutet (KI), Sweden in the liver compared with mice maintained at room temperature.
    [Show full text]
  • Idiopathic Pulmonary Fibrosis
    Idiopathic Pulmonary Fibrosis Produced in collaboration with Boehringer Ingelheim Pharmaceuticals, Inc. PC-US-110950 Idiopathic Pulmonary Fibrosis History Why Family Physicians Knowledge of a patient’s medical history and exposures is vital to diagnosing IPF and essential to excluding other ILDs. Questions Should Know About IPF should focus on the following: As front-line health care providers, family physicians play an ● Smoking history. Cigarette smoking is strongly associated essential role in the early detection of idiopathic pulmonary with IPF, especially individuals with a history of more than fibrosis (IPF) and the timely referral to a pulmonologist. The 20 pack-years.2,4 disease is rare and includes signs and symptoms that make ● Other medical conditions. Gastroesophageal reflux disease, it difficult to distinguish among other interstitial lung diseases hiatal hernia, pulmonary malignancy, coronary artery disease, (ILDs). By identifying suspected cases of IPF at primary care obstructive sleep apnea, obesity, emphysema, and pulmonary visits, family physicians have an opportunity to refer patients hypertension are comorbid conditions frequently associated earlier and enable diagnosis and treatment sooner. This makes 2,4 education about IPF a key factor in early detection, which can with IPF. potentially lead to better health outcomes. Diagnostic criteria ● Occupational and environmental exposures. Chronic, and treatment options presented in this brochure are based on repeated exposure to metal dusts (brass, lead, and steel), wood specialist guidelines that have not been reviewed or endorsed dust (pine), and aerosolized organic antigens (primarily, molds, by the AAFP. However given the limited guidance for IPF, the bacteria, and bird antigens) have been associated with IPF.
    [Show full text]
  • Pdgfrα Signaling Drives Adipose Tissue Fibrosis by Targeting Progenitor Cell Plasticity
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press PDGFRα signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity Tomoaki Iwayama,1 Cameron Steele,1 Longbiao Yao,1 Mikhail G. Dozmorov,2,3 Dimitris Karamichos,4,5 Jonathan D. Wren,2 and Lorin E. Olson1,4 1Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; 2Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; 3Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia 23298, USA; 4Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA; 5Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA Fibrosis is a common disease process in which profibrotic cells disturb organ function by secreting disorganized extracellular matrix (ECM). Adipose tissue fibrosis occurs during obesity and is associated with metabolic dys- function, but how profibrotic cells originate is still being elucidated. Here, we use a developmental model to in- vestigate perivascular cells in white adipose tissue (WAT) and their potential to cause organ fibrosis. We show that a Nestin-Cre transgene targets perivascular cells (adventitial cells and pericyte-like cells) in WAT, and Nestin-GFP specifically labels pericyte-like cells. Activation of PDGFRα signaling in perivascular cells causes them to transition into ECM-synthesizing profibrotic cells. Before this transition occurs, PDGFRα signaling up-regulates mTOR sig- naling and ribosome biogenesis pathways and perturbs the expression of a network of epigenetically imprinted genes that have been implicated in cell growth and tissue homeostasis.
    [Show full text]