1 Molecular and Genetic Regulation of Pig Pancreatic Islet Cell Development 2 3 4 Seokho Kim1,9, Robert L

Total Page:16

File Type:pdf, Size:1020Kb

1 Molecular and Genetic Regulation of Pig Pancreatic Islet Cell Development 2 3 4 Seokho Kim1,9, Robert L bioRxiv preprint doi: https://doi.org/10.1101/717090; this version posted January 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Molecular and genetic regulation of pig pancreatic islet cell development 2 3 4 Seokho Kim1,9, Robert L. Whitener1,9, Heshan Peiris1, Xueying Gu1, Charles A. Chang1, 5 Jonathan Y. Lam1, Joan Camunas-Soler2, Insung Park3, Romina J. Bevacqua1, Krissie Tellez1, 6 Stephen R. Quake2,4, Jonathan R. T. Lakey5, Rita Bottino6, Pablo J. Ross3, Seung K. Kim1,7,8 7 8 1Department of Developmental Biology, Stanford University School of Medicine, 9 Stanford, CA, 94305 USA 10 2Department of Bioengineering, Stanford University, Stanford, CA, 94305 USA 11 3Department of Animal Science, University of California Davis, Davis, CA, 95616 USA 12 4Chan Zuckerberg Biohub, San Francisco, CA 94518, USA. 13 5Department of Surgery, University of California at Irvine, Irvine, CA, 92868 USA 14 6Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, 15212 USA 15 7Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305 USA 16 8Stanford Diabetes Research Center, Stanford University School of Medicine, 17 Stanford, CA, 94305 USA 18 19 9These authors contributed equally 20 21 Correspondence and requests for materials should be addressed to S.K.K (email: 22 [email protected]) 23 24 Key Words: pancreas; metabolism; organogenesis; b-cell; a-cell; d-cell; diabetes mellitus 25 26 Summary Statement: This study reveals transcriptional, signaling and cellular programs 27 governing pig pancreatic islet development, including striking similarities to human islet 28 ontogeny, providing a novel resource for advancing human islet replacement strategies. 1 bioRxiv preprint doi: https://doi.org/10.1101/717090; this version posted January 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 29 Abstract 30 Reliance on rodents for understanding pancreatic genetics, development and islet function 31 could limit progress in developing interventions for human diseases like diabetes mellitus. 32 Similarities of pancreas morphology and function suggest that porcine and human pancreas 33 developmental biology may have useful homologies. However, little is known about pig 34 pancreas development. To fill this knowledge gap, we investigated fetal and neonatal pig 35 pancreas at multiple, crucial developmental stages using modern experimental approaches. 36 Purification of islet b-, a- and d-cells followed by transcriptome analysis (RNA-Seq) and 37 immunohistology identified cell- and stage-specific regulation, and revealed that pig and human 38 islet cells share characteristic features not observed in mice. Morphometric analysis also 39 revealed endocrine cell allocation and architectural similarities between pig and human islets. 40 Our analysis unveiled scores of signaling pathways linked to native islet b-cell functional 41 maturation, including evidence of fetal a-cell GLP-1 production and signaling to b-cells. Thus, 42 the findings and resources detailed here show how pig pancreatic islet studies complement 43 other systems for understanding the developmental programs that generate functional islet cells, 44 and that are relevant to human pancreatic diseases. 45 2 bioRxiv preprint doi: https://doi.org/10.1101/717090; this version posted January 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 46 Introduction 47 Progress from studies of pancreas biology in humans (Hart and Powers, 2019; Hrvatin et al., 48 2014b) has advanced our understanding of post-natal islet regulation and function. The 49 recognition that mouse pancreas biology – while essential – has limitations for understanding 50 human pancreas formation or diseases (Hattersley and Patel, 2017; Maestro et al., 2007), has 51 intensified interest in experimental systems that more closely reflect human pancreas 52 development (McKnight et al., 2010; Pan and Brissova, 2014). There is a specific, crucial 53 knowledge gap in our understanding of human islet and pancreas development from mid- 54 gestation through neonatal and juvenile stages, a period when critical aspects of islet 55 development are known to occur (Arda et al., 2016). The use of human primary tissues to 56 address such questions is limited by inter-individual heterogeneity, unpredictable and restricted 57 access to tissue from key developmental stages, and challenges implementing high-throughput 58 molecular approaches. Likewise, reconstitution of islet development from stem cell sources or 59 fetal human cell lines remains imperfect (Sneddon et al., 2018), thereby limiting interpretation of 60 developmental studies in those systems. 61 Humans and pigs are omnivorous mammals with similar physiology and metabolic diseases, 62 including diabetes mellitus and its complications, from diet-induced obesity, insulinopathy and b- 63 cell stress (Dyson et al., 2006; Lim et al., 2018; Renner et al., 2013). Recent experimental 64 advances expand possible studies of pig pancreas development to include gain- and loss-of- 65 function genetics (Kemter et al., 2017; Matsunari et al., 2013; Sheets et al., 2018; Wu et al., 66 2017), fetal surgery and immunomodulation (Fisher et al., 2013), and primary islet cell genetics 67 (Peiris et al., 2018). Prior studies of pig pancreas development have largely relied on 68 immunohistological survey of tissue cell types (Carlsson et al., 2010; Ferrer et al., 2008; 69 Hassouna et al., 2018; Nagaya et al., 2019). Moreover, studies linking hallmark islet functions, 70 like regulated insulin secretion and dynamic changes in gene expression at advancing 71 developmental stages, have not been previously reported (Mueller et al., 2013). Thus, pancreas 72 and metabolic research could benefit from systematic application of powerful methods like cell 73 purification by flow cytometry, high-throughput transcriptome analysis, and islet physiological 74 studies across a comprehensive range of pig developmental stages. 75 Here we apply these and other modern approaches to delineate pig pancreas development, 76 with a focus on islet b-cells, the sole source of insulin, and a-cells, the principal systemic source 77 of the hormone glucagon. Dysregulation of hormone secretion by these cells is thought to be a 78 leading cause of both type 1 diabetes (T1D) and type 2 diabetes (T2D) in humans (Holst et al., 79 2017; Lee et al., 2016). Our findings provide evidence of greater similarity between pig and 3 bioRxiv preprint doi: https://doi.org/10.1101/717090; this version posted January 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 80 human b-cells and a-cells than to cognate mouse cells, and demonstrate how studies of pig 81 pancreatic cells can advance our understanding of the genetic, molecular, signaling and 82 physiological programs that generate functional pancreatic islet cells. 83 84 Results 85 Pancreas dissociation and FACS purification of islet cells from fetal and neonatal pigs 86 To measure gene expression and functional changes in the developing pig pancreas, we 87 established a reliable infrastructure to procure pancreata from fetal or neonatal pigs using 88 rigorous criteria that optimized tissue quality and gene expression analysis (Fig. 1A). To 89 investigate the crucial period of ontogeny culminating in functional islet cells, we systematically 90 isolated pancreata from gestational days (d) 40, 70, 90 and post-natal days (P) 8 and 22 (Fig. 91 1A). We surveyed sorting methods based on cell surface epitopes, like in prior work with mouse 92 and human cells (Arda et al., 2016; Arda et al., 2018; Sugiyama et al., 2013), but have not yet 93 achieved reliable cell fractionation based with this strategy (R. Whitener and S. K. Kim, unpubl. 94 results). Instead, we used intracellular sorting with specific antibodies against insulin-, glucagon- 95 and somatostatin- to isolate b-, a- and d-cells, respectively, from fetal or neonatal pancreata 96 (Fig. S1A), like in prior work on human islets (Arda et al., 2016; Hrvatin et al., 2014a; Peiris et 97 al., 2018). Quantitative RT-PCR (qRT-PCR: Fig. 1B) confirmed enrichment or depletion of 98 expected marker genes for b- (INS), a- (GCG), d- (SST), ductal (KRT19) and acinar cells 99 (AMY2). 100 To obtain comprehensive gene expression profiles, we performed RNA-Seq on 37 libraries 101 generated from fetal and neonatal pancreatic cells (Table S1). An average of 7 million reads per 102 sample library uniquely mapped to a current pig reference transcriptome (Sscrofa11.1). 103 Unsupervised hierarchical clustering of transcriptome data with Pearson correlation analysis 104 revealed distinct expression profiles that changed with advancing developmental stage within 105 specific cell types (Fig. S1B). Principal component analysis with these samples showed that 106 transcriptomes clustered in the first principal component according to cell type (b-, a- or d-cells: 107 PC1, 35% of variance), and according to advancing developmental stage in the second principal 108 component (PC2, 25% of variance: Fig. S1C). Samples from ‘late fetal’ stages d70 and d90 109
Recommended publications
  • Aquaporin Channels in the Heart—Physiology and Pathophysiology
    International Journal of Molecular Sciences Review Aquaporin Channels in the Heart—Physiology and Pathophysiology Arie O. Verkerk 1,2,* , Elisabeth M. Lodder 2 and Ronald Wilders 1 1 Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; [email protected] 2 Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +31-20-5664670 Received: 29 March 2019; Accepted: 23 April 2019; Published: 25 April 2019 Abstract: Mammalian aquaporins (AQPs) are transmembrane channels expressed in a large variety of cells and tissues throughout the body. They are known as water channels, but they also facilitate the transport of small solutes, gasses, and monovalent cations. To date, 13 different AQPs, encoded by the genes AQP0–AQP12, have been identified in mammals, which regulate various important biological functions in kidney, brain, lung, digestive system, eye, and skin. Consequently, dysfunction of AQPs is involved in a wide variety of disorders. AQPs are also present in the heart, even with a specific distribution pattern in cardiomyocytes, but whether their presence is essential for proper (electro)physiological cardiac function has not intensively been studied. This review summarizes recent findings and highlights the involvement of AQPs in normal and pathological cardiac function. We conclude that AQPs are at least implicated in proper cardiac water homeostasis and energy balance as well as heart failure and arsenic cardiotoxicity. However, this review also demonstrates that many effects of cardiac AQPs, especially on excitation-contraction coupling processes, are virtually unexplored.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Emerging Roles for Multifunctional Ion Channel Auxiliary Subunits in Cancer T ⁎ Alexander S
    Cell Calcium 80 (2019) 125–140 Contents lists available at ScienceDirect Cell Calcium journal homepage: www.elsevier.com/locate/ceca Emerging roles for multifunctional ion channel auxiliary subunits in cancer T ⁎ Alexander S. Hawortha,b, William J. Brackenburya,b, a Department of Biology, University of York, Heslington, York, YO10 5DD, UK b York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK ARTICLE INFO ABSTRACT Keywords: Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been Auxiliary subunit shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are Cancer typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Calcium channel Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further Chloride channel expanding the repertoire of cellular processes governed by ion channel complexes to processes such as trans- Potassium channel cellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it Sodium channel is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will − focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+,K+,Na+ and Cl channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregu- lated (e.g. Cavβ,Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1,Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets.
    [Show full text]
  • Variants in the KCNE1 Or KCNE3 Gene and Risk of Ménière’S Disease: a Meta-Analysis
    Journal of Vestibular Research 25 (2015) 211–218 211 DOI 10.3233/VES-160569 IOS Press Variants in the KCNE1 or KCNE3 gene and risk of Ménière’s disease: A meta-analysis Yuan-Jun Li, Zhan-Guo Jin and Xian-Rong Xu∗ The Center of Clinical Aviation Medicine, General Hospital of Air Force, Beijing, China Received 1 August 2015 Accepted 8 December 2015 Abstract. BACKGROUND: Ménière’s disease (MD) is defined as an idiopathic disorder of the inner ear characterized by the triad of tinnitus, vertigo, and sensorineural hearing loss. Although many studies have evaluated the association between variants in the KCNE1 or KCNE3 gene and MD risk, debates still exist. OBJECTIVE: Our aim is to evaluate the association between KCNE gene variants, including KCNE1 rs1805127 and KCNE3 rs2270676, and the risk of MD by a systematic review. METHODS: We searched the literature in PubMed, SCOPUS and EMBASE through May 2015. We calculated pooled odds ra- tios (OR) and 95% confidence intervals (CIs) using a fixed-effects model or a random-effects model for the risk to MD associated with different KCNE gene variants. The heterogeneity assumption decided the effect model. RESULTS: A total of three relevant studies, with 302 MD cases and 515 controls, were included in this meta-analysis. The results indicated that neither the KCNE1 rs1805127 variant (for G vs. A: OR = 0.724, 95%CI 0.320, 1.638, P = 0.438), nor the KCNE3 rs2270676 variant (for T vs. C: OR = 0.714, 95%CI 0.327, 1.559, P = 0.398) was associated with MD risk.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Non-Coding Rnas in the Cardiac Action Potential and Their Impact on Arrhythmogenic Cardiac Diseases
    Review Non-Coding RNAs in the Cardiac Action Potential and Their Impact on Arrhythmogenic Cardiac Diseases Estefania Lozano-Velasco 1,2 , Amelia Aranega 1,2 and Diego Franco 1,2,* 1 Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; [email protected] (E.L.-V.); [email protected] (A.A.) 2 Fundación Medina, 18016 Granada, Spain * Correspondence: [email protected] Abstract: Cardiac arrhythmias are prevalent among humans across all age ranges, affecting millions of people worldwide. While cardiac arrhythmias vary widely in their clinical presentation, they possess shared complex electrophysiologic properties at cellular level that have not been fully studied. Over the last decade, our current understanding of the functional roles of non-coding RNAs have progressively increased. microRNAs represent the most studied type of small ncRNAs and it has been demonstrated that miRNAs play essential roles in multiple biological contexts, including normal development and diseases. In this review, we provide a comprehensive analysis of the functional contribution of non-coding RNAs, primarily microRNAs, to the normal configuration of the cardiac action potential, as well as their association to distinct types of arrhythmogenic cardiac diseases. Keywords: cardiac arrhythmia; microRNAs; lncRNAs; cardiac action potential Citation: Lozano-Velasco, E.; Aranega, A.; Franco, D. Non-Coding RNAs in the Cardiac Action Potential 1. The Electrical Components of the Adult Heart and Their Impact on Arrhythmogenic The adult heart is a four-chambered organ that propels oxygenated blood to the entire Cardiac Diseases. Hearts 2021, 2, body. It is composed of atrial and ventricular chambers, each of them with distinct left and 307–330.
    [Show full text]
  • Alternative Splicing in SCN1A: Biophysical
    Alternative splicing in SCN1A: Biophysical consequences for NaV1.1 channels Emily Fletcher A thesis submitted to University College London for the degree of Doctor of Philosophy Department of Molecular Neuroscience Institute of Neurology Queen Square London WC1N 3BG 1 Declaration I, Emily Fletcher, confirm that the work presented in this thesis is my original research work. Where contributions of others are involved, this has been clearly indicated in the thesis. The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author. 2 Acknowledgements I would like to thank my supervisor Stephanie Schorge for her continued support, patience and kindness towards me during my PhD and also to Dimitri Kullmann for the opportunity to work in his excellent lab. Most of all I‟d like to thank my family for their unconditional support and love. To my Dad for reading this gobbledygook through, to my Mum for her pep talks, to Ashleigh and my grandparents for making me laugh and to Claire especially, you‟re a fantastic big sister. Thank you. Lastly, I am truly grateful to have had opportunities for a good education. I am a very lucky person indeed. It's a new dawn It's a new day It's a new life For me And I'm feeling good Eunice Waymon, 1965 3 Abstract NaV1.1 is a voltage-gated sodium channel encoded by the gene SCN1A. Mutations in SCN1A cause dominantly inherited epilepsy syndromes in humans and NaV1.1 is an important target of several anti-epileptic drugs (AEDs).
    [Show full text]
  • Genome-Wide Association and Transcriptome Studies Identify Candidate Genes and Pathways for Feed Conversion Ratio in Pigs
    Miao et al. BMC Genomics (2021) 22:294 https://doi.org/10.1186/s12864-021-07570-w RESEARCH ARTICLE Open Access Genome-wide association and transcriptome studies identify candidate genes and pathways for feed conversion ratio in pigs Yuanxin Miao1,2,3, Quanshun Mei1,2, Chuanke Fu1,2, Mingxing Liao1,2,4, Yan Liu1,2, Xuewen Xu1,2, Xinyun Li1,2, Shuhong Zhao1,2 and Tao Xiang1,2* Abstract Background: The feed conversion ratio (FCR) is an important productive trait that greatly affects profits in the pig industry. Elucidating the genetic mechanisms underpinning FCR may promote more efficient improvement of FCR through artificial selection. In this study, we integrated a genome-wide association study (GWAS) with transcriptome analyses of different tissues in Yorkshire pigs (YY) with the aim of identifying key genes and signalling pathways associated with FCR. Results: A total of 61 significant single nucleotide polymorphisms (SNPs) were detected by GWAS in YY. All of these SNPs were located on porcine chromosome (SSC) 5, and the covered region was considered a quantitative trait locus (QTL) region for FCR. Some genes distributed around these significant SNPs were considered as candidates for regulating FCR, including TPH2, FAR2, IRAK3, YARS2, GRIP1, FRS2, CNOT2 and TRHDE. According to transcriptome analyses in the hypothalamus, TPH2 exhibits the potential to regulate intestinal motility through serotonergic synapse and oxytocin signalling pathways. In addition, GRIP1 may be involved in glutamatergic and GABAergic signalling pathways, which regulate FCR by affecting appetite in pigs. Moreover, GRIP1, FRS2, CNOT2,andTRHDE may regulate metabolism in various tissues through a thyroid hormone signalling pathway.
    [Show full text]
  • Goblet Cell LRRC26 Regulates BK Channel Activation and Protects Against Colitis in Mice
    Goblet cell LRRC26 regulates BK channel activation and protects against colitis in mice Vivian Gonzalez-Pereza,1, Pedro L. Martinez-Espinosaa, Monica Sala-Rabanala, Nikhil Bharadwaja, Xiao-Ming Xiaa, Albert C. Chena,b, David Alvaradoc, Jenny K. Gustafssonc,d,e, Hongzhen Hua, Matthew A. Ciorbab, and Christopher J. Linglea aDepartment of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; bMcKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130; cDepartment of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; dDepartment of Medical Chemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden; and eDepartment of Physiology, University of Gothenburg, 405 30 Gothenburg, Sweden Edited by Richard W. Aldrich, The University of Texas at Austin, Austin, TX, and approved December 21, 2020 (received for review September 16, 2020) Goblet cells (GCs) are specialized cells of the intestinal epithelium Despite this progress, ionic transport in GCs and its implications contributing critically to mucosal homeostasis. One of the func- in GC physiology is a topic that remains poorly understood. tions of GCs is to produce and secrete MUC2, the mucin that forms Here, we address the role of the Ca2+- and voltage-activated K+ the scaffold of the intestinal mucus layer coating the epithelium channel (BK channel) in GCs. and separates the luminal pathogens and commensal microbiota GCs play two primary roles: One related to the maintenance from the host tissues. Although a variety of ion channels and of the mucosal barrier (reviewed in refs.
    [Show full text]
  • An Advance About the Genetic Causes of Epilepsy
    E3S Web of Conferences 271, 03068 (2021) https://doi.org/10.1051/e3sconf/202127103068 ICEPE 2021 An advance about the genetic causes of epilepsy Yu Sun1, a, *, †, Licheng Lu2, b, *, †, Lanxin Li3, c, *, †, Jingbo Wang4, d, *, † 1The School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3633, US 2High School Affiliated to Shanghai Jiao Tong University, Shanghai, 200441, China 3Applied Biology program, University of British Columbia, Vancouver, V6r3b1, Canada 4School of Chemical Machinery and Safety, Dalian University of Technology, Dalian, 116023, China †These authors contributed equally. Abstract: Human hereditary epilepsy has been found related to ion channel mutations in voltage-gated channels (Na+, K+, Ca2+, Cl-), ligand gated channels (GABA receptors), and G-protein coupled receptors, such as Mass1. In addition, some transmembrane proteins or receptor genes, including PRRT2 and nAChR, and glucose transporter genes, such as GLUT1 and SLC2A1, are also about the onset of epilepsy. The discovery of these genetic defects has contributed greatly to our understanding of the pathology of epilepsy. This review focuses on introducing and summarizing epilepsy-associated genes and related findings in recent decades, pointing out related mutant genes that need to be further studied in the future. 1 Introduction Epilepsy is a neurological disorder characterized by 2 Malfunction of Ion channel epileptic seizures caused by abnormal brain activity. 1 in Functional variation in voltage or ligand-gated ion 100 (50 million people) people are affected by symptoms channel mutations is a major cause of idiopathic epilepsy, of this disorder worldwide, with men, young children, and especially in rare genetic forms.
    [Show full text]
  • (253), Re15. [DOI: 10.1126/Stke.2532004Re15] 2004
    The VGL-Chanome: A Protein Superfamily Specialized for Electrical Signaling and Ionic Homeostasis Frank H. Yu and William A. Catterall (5 October 2004) Sci. STKE 2004 (253), re15. [DOI: 10.1126/stke.2532004re15] The following resources related to this article are available online at http://stke.sciencemag.org. This information is current as of 7 July 2009. Article Tools Visit the online version of this article to access the personalization and article tools: http://stke.sciencemag.org/cgi/content/full/sigtrans;2004/253/re15 Supplemental "Supplementary Table 1" Materials http://stke.sciencemag.org/cgi/content/full/sigtrans;2004/253/re15/DC1 Related Content The editors suggest related resources on Science's sites: http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2006/360/tw376 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2006/350/pe33 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2006/333/tw149 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2005/307/pe50 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2005/302/pe46 Downloaded from http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2005/270/tw55 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2004/233/pe22 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2004/233/pe23 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2004/227/pe16 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2004/219/re4 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2003/194/pe32 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2003/188/re10
    [Show full text]
  • Isoform-Specific Regulation of HCN4 Channels by a Family of Endoplasmic Reticulum Proteins
    Isoform-specific regulation of HCN4 channels by a family of endoplasmic reticulum proteins Colin H. Petersa, Mallory E. Myersa, Julie Juchnoa, Charlie Haimbaugha, Hicham Bichraouia, Yanmei Dub, John R. Bankstona, Lori A. Walkerb, and Catherine Proenzaa,b,1 aDepartment of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and bDepartment of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Edited by Bruce P. Bean, Harvard Medical School, Boston, MA, and approved June 5, 2020 (received for review April 13, 2020) Ion channels in excitable cells function in macromolecular com- (14). When HCN4 is expressed in HEK293 cells, it exhibits the plexes in which auxiliary proteins modulate the biophysical properties canonical depolarizing shift in voltage dependence in response to of the pore-forming subunits. Hyperpolarization-activated, cyclic cAMP. However, we found that when HCN4 is expressed in nucleotide-sensitive HCN4 channels are critical determinants of mem- Chinese hamster ovary (CHO) cells, channel activation is con- brane excitability in cells throughout the body, including thalamocort- stitutively shifted to more depolarized membrane potentials and ical neurons and cardiac pacemaker cells. We previously showed that is no longer affected by cAMP. Moreover, the constitutive acti- the properties of HCN4 channels differ dramatically in different cell vation of HCN4 in CHO cells is specific to the HCN4 isoform; types, possibly due to the endogenous expression of auxiliary pro- HCN2 retains a large cAMP-dependent shift in voltage de- teins. Here, we report the discovery of a family of endoplasmic re- pendence (14). We hypothesized that this “CHO effect” is due to ticulum (ER) transmembrane proteins that associate with and expression of an endogenous, isoform-specific modulator of modulate HCN4.
    [Show full text]