Sparse Aperture Masking at the VLT II. Detection Limits for the Eight
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
NASA Astrobiology Institute 2018 Annual Science Report
A National Aeronautics and Space Administration 2018 Annual Science Report Table of Contents 2018 at the NAI 1 NAI 2018 Teams 2 2018 Team Reports The Evolution of Prebiotic Chemical Complexity and the Organic Inventory 6 of Protoplanetary Disk and Primordial Planets Lead Institution: NASA Ames Research Center Reliving the Past: Experimental Evolution of Major Transitions 18 Lead Institution: Georgia Institute of Technology Origin and Evolution of Organics and Water in Planetary Systems 34 Lead Institution: NASA Goddard Space Flight Center Icy Worlds: Astrobiology at the Water-Rock Interface and Beyond 46 Lead Institution: NASA Jet Propulsion Laboratory Habitability of Hydrocarbon Worlds: Titan and Beyond 60 Lead Institution: NASA Jet Propulsion Laboratory The Origins of Molecules in Diverse Space and Planetary Environments 72 and Their Intramolecular Isotope Signatures Lead Institution: Pennsylvania State University ENIGMA: Evolution of Nanomachines in Geospheres and Microbial Ancestors 80 Lead Institution: Rutgers University Changing Planetary Environments and the Fingerprints of Life 88 Lead Institution: SETI Institute Alternative Earths 100 Lead Institution: University of California, Riverside Rock Powered Life 120 Lead Institution: University of Colorado Boulder NASA Astrobiology Institute iii Annual Report 2018 2018 at the NAI In 2018, the NASA Astrobiology Program announced a plan to transition to a new structure of Research Coordination Networks, RCNs, and simultaneously planned the termination of the NASA Astrobiology Institute -
Download This Article in PDF Format
A&A 609, A8 (2018) Astronomy DOI: 10.1051/0004-6361/201731453 & c ESO 2017 Astrophysics The completeness-corrected rate of stellar encounters with the Sun from the first Gaia data release? C. A. L. Bailer-Jones Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] Received 27 June 2017 / Accepted 12 August 2017 ABSTRACT I report on close encounters of stars to the Sun found in the first Gaia data release (GDR1). Combining Gaia astrometry with radial velocities of around 320 000 stars drawn from various catalogues, I integrate orbits in a Galactic potential to identify those stars which pass within a few parsecs. Such encounters could influence the solar system, for example through gravitational perturbations of the Oort cloud. 16 stars are found to come within 2 pc (although a few of these have dubious data). This is fewer than were found in a similar study based on Hipparcos data, even though the present study has many more candidates. This is partly because I reject stars with large radial velocity uncertainties (>10 km s−1), and partly because of missing stars in GDR1 (especially at the bright end). The closest encounter found is Gl 710, a K dwarf long-known to come close to the Sun in about 1.3 Myr. The Gaia astrometry predict a much closer passage than pre-Gaia estimates, however: just 16 000 AU (90% confidence interval: 10 000–21 000 AU), which will bring this star well within the Oort cloud. Using a simple model for the spatial, velocity, and luminosity distributions of stars, together with an approximation of the observational selection function, I model the incompleteness of this Gaia-based search as a function of the time and distance of closest approach. -
View & Download
78-8970 70MM REFRACTOR WITH REALVOICE™ OUTPUT INSTRUCTION MANUAL 78-8930 76MM REFLECTOR MANUEL D’INSTRUCTIONS MANUAL DE INSTRUCCIONES BEDIENUNGSANLEITUNG MANUALE DI ISTRUZIONI MANUAL DE INSTRUÇÕES 78-8945 114MM REFLECTOR Lit.#: 98-0965/06-07 PAGE GUIDE ENGLISH ............... 4 Catalog Index........... 18 FrANÇAIS.............. 34 ESPAÑOL ............... 50 DEUTSCH............... 66 ITALIANO............... 82 PORTUGUÊS........... 98 ENGLISH Congratulations on the purchase of your Bushnell Discoverer Telescope with Real Voice Output! This is one of the first telescopes ever created that actually speaks to you to educate you about the night sky. Consider this feature as your personal astronomy assistant. After reading through this manual and preparing for your observing session as outlined in these pages you can start enjoying the Real Voice Output feature by doing the following: To activate your telescope, simply turn it on! The Real Voice Output feature is built in to the remote control handset. Along the way the telescope will speak various helpful comments during the alignment process. Once aligned, the Real Voice Output feature will really shine anytime the enter key is depressed when an object name or number is displayed at the bottom right of the LCD viewscreen. That object description will be spoken to you as you follow along with the scrolling text description. If at anytime you wish to disable the speaking feature, you can cancel the speech by pressing the “Back” button on the remote control keypad. It is our sincere hope that you will enjoy this telescope for years to come! NEVER LOOK DIRECTLY AT THE SUN ❂ WITH YOUR TELESCOPE PERMANENT DAMAGE TO YOUR EYES MAY OCCUR WHERE DO I START? Your Bushnell telescope can bring the wonders of the universe to your eye. -
The Electric Sun Hypothesis
Basics of astrophysics revisited. II. Mass- luminosity- rotation relation for F, A, B, O and WR class stars Edgars Alksnis [email protected] Small volume statistics show, that luminosity of bright stars is proportional to their angular momentums of rotation when certain relation between stellar mass and stellar rotation speed is reached. Cause should be outside of standard stellar model. Concept allows strengthen hypotheses of 1) fast rotation of Wolf-Rayet stars and 2) low mass central black hole of the Milky Way. Keywords: mass-luminosity relation, stellar rotation, Wolf-Rayet stars, stellar angular momentum, Sagittarius A* mass, Sagittarius A* luminosity. In previous work (Alksnis, 2017) we have shown, that in slow rotating stars stellar luminosity is proportional to spin angular momentum of the star. This allows us to see, that there in fact are no stars outside of “main sequence” within stellar classes G, K and M. METHOD We have analyzed possible connection between stellar luminosity and stellar angular momentum in samples of most known F, A, B, O and WR class stars (tables 1-5). Stellar equatorial rotation speed (vsini) was used as main parameter of stellar rotation when possible. Several diverse data for one star were averaged. Zero stellar rotation speed was considered as an error and corresponding star has been not included in sample. RESULTS 2 F class star Relative Relative Luminosity, Relative M*R *eq mass, M radius, L rotation, L R eq HATP-6 1.29 1.46 3.55 2.950 2.28 α UMi B 1.39 1.38 3.90 38.573 26.18 Alpha Fornacis 1.33 -
Download This Issue (Pdf)
Volume 43 Number 1 JAAVSO 2015 The Journal of the American Association of Variable Star Observers The Curious Case of ASAS J174600-2321.3: an Eclipsing Symbiotic Nova in Outburst? Light curve of ASAS J174600-2321.3, based on EROS-2, ASAS-3, and APASS data. Also in this issue... • The Early-Spectral Type W UMa Contact Binary V444 And • The δ Scuti Pulsation Periods in KIC 5197256 • UXOR Hunting among Algol Variables • Early-Time Flux Measurements of SN 2014J Obtained with Small Robotic Telescopes: Extending the AAVSO Light Curve Complete table of contents inside... The American Association of Variable Star Observers 49 Bay State Road, Cambridge, MA 02138, USA The Journal of the American Association of Variable Star Observers Editor John R. Percy Edward F. Guinan Paula Szkody University of Toronto Villanova University University of Washington Toronto, Ontario, Canada Villanova, Pennsylvania Seattle, Washington Associate Editor John B. Hearnshaw Matthew R. Templeton Elizabeth O. Waagen University of Canterbury AAVSO Christchurch, New Zealand Production Editor Nikolaus Vogt Michael Saladyga Laszlo L. Kiss Universidad de Valparaiso Konkoly Observatory Valparaiso, Chile Budapest, Hungary Editorial Board Douglas L. Welch Geoffrey C. Clayton Katrien Kolenberg McMaster University Louisiana State University Universities of Antwerp Hamilton, Ontario, Canada Baton Rouge, Louisiana and of Leuven, Belgium and Harvard-Smithsonian Center David B. Williams Zhibin Dai for Astrophysics Whitestown, Indiana Yunnan Observatories Cambridge, Massachusetts Kunming City, Yunnan, China Thomas R. Williams Ulisse Munari Houston, Texas Kosmas Gazeas INAF/Astronomical Observatory University of Athens of Padua Lee Anne M. Willson Athens, Greece Asiago, Italy Iowa State University Ames, Iowa The Council of the American Association of Variable Star Observers 2014–2015 Director Arne A. -
Observations, Modeling and Theory of Debris Discs
Observations, Modeling and Theory of Debris Discs Brenda Matthews (HIA, Canada) Geoff Bryden (JPL) Carlos Eiroa (Universidad Autonoma de Madrid) Alexander Krivov (University of Jena) Mark Wyatt (Institute of Astronomy) Physical picture • Debris disks are produced from the remnants of the planet formation process • They are evidence that systems were able to produce at least planetesimal-scale oligarchs (100s of km) • Second generation dust is produced through collisional processes • Debris discs include – Planetesimals (unseen), potentially in narrow “birth rings” – Dust produced from collisions (detected optical centimetre) – All size scales in between 05/28/13 Protostars & Planets VI Courtesy: Zoe Leinhardt Onset of Debris phase 10 Myr Protoplanetary Debris Hernandez et al. 2008, 686, 1195 Dust from 0.1 – 100 AU Dust in belts Massive gas disk No gas Panić et al. 2013, MNRAS, accepted Accretion onto star No accretion (after Wyatt 2008 ARA&A, 46, 339) Optically thick Optically thin 05/28/13 Protostars & Planets VI Detecting Debris Discs Scattered light Thermal emission Shows up subtle structures Highlights larger grains Highlights position of small Can reveal hot/warm/cold grains components Extent of outer disc/halos Can trace the “birth ring” of Does not trace planetesimal planetesimals “birth ring” Resolution has been a Inner region blocked See poster limitation in the past 2B072 (Debes) 05/28/13 Protostars & Planets VI Why we think debris systems could have planets Dust replenished by km- sized planetesimals Debris disks stirred somehow Cleared inner regions & eccentric rings Some disks are asymmetric Some systems actually have planets Kalas et al. (2008) Nature / ISAS / JAXA 05/28/13 Protostars & Planets VI Why we think debris systems could have planets Dust replenished by km- Kalas et al. -
Introduction to Basic Stargazing Part III by Michael Usher
Introduction to Basic Stargazing Part III By Michael Usher Before you read this, you need to spend some time out under the stars learning your way around the sky. Now, when you read what I have to say next it will make much better sense. Otherwise you just might say “What is he talking about?” rather than “Oh yeah, I was wondering about that, now I know.” Nevertheless, there is still a great deal of information compressed into a few pages, so don’t feel bad if you have trouble understanding it. Humans took at least 5,000 years to figure all of this out, it’s ok for you to take your time. You can’t spend very much time out under the stars without noticing that everything is moving. Most of the motion is obviously because the earth is rotating. (This was not clear to our ancestors, but that is another subject.) The earth rotates 15 degrees an hour and thus that is the speed the stars move. Notice that the actual velocity the stars move is slower near the pole rather than the celestial equator. The 360 degree circle they need to traverse each day is smaller near the pole than the equator, thus they don’t need to move as quickly. The star gazer can’t help but notice the slow turning of the sky after 15 minutes or so, but there is another additional motion which is which is superimposed on the daily rotational one. If you go out at the same time each night the stars in the east are ever so slightly higher than they were the night before. -
Feasibility of Transit Photometry of Nearby Debris Discs
A Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 19 October 2018 (MN L TEX style file v2.2) Feasibility of transit photometry of nearby debris discs S.T. Zeegers1,3⋆, M.A. Kenworthy1, P. Kalas2 1 Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, the Netherlands 2 Astronomy Department, University of California, Berkeley, CA 94720 3 SRON-Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht, The Netherlands Accepted for publication 20 December 2013 ABSTRACT Dust in debris discs is constantly replenished by collisions between larger objects. In this paper, we investigate a method to detect these collisions. We generate models based on recent results on the Fomalhaut debris disc, where we simu- late a background star transiting behind the disc, due to the proper motion of Fomalhaut. By simulating the expanding dust clouds caused by the collisions in the debris disc, we investigate whether it is possible to observe changes in the brightness of the background star. We conclude that in the case of the Fomal- haut debris disc, changes in the optical depth can be observed, with values of the optical depth ranging from 10−0.5 for the densest dust clouds to 10−8 for the most diffuse clouds with respect to the background optical depth of ∼ 1.2×10−3. Key words: techniques: photometric – occultations – circumstellar matter – stars: individual: Fomalhaut. 1 INTRODUCTION diameters > 2000 km) stir up the disc and start a cascade of collisions (Kenyon and Bromley 2005). However, it is Debris discs are circumstellar belts of dust and debris not clear from these models how the dust is replenished around stars. -
The Completeness-Corrected Rate of Stellar Encounters with the Sun from the first Gaia Data Release C.A.L
Astronomy & Astrophysics manuscript no. stellar_encounters_tgas c ESO 2017 30 August 2017 The completeness-corrected rate of stellar encounters with the Sun from the first Gaia data release C.A.L. Bailer-Jones Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany. Email: [email protected] Submitted 27 June 2017; revised 4 August 2017; accepted 12 August 2017 ABSTRACT I report on close encounters of stars to the Sun found in the first Gaia data release (GDR1). Combining Gaia astrometry with radial velocities of around 320 000 stars drawn from various catalogues, I integrate orbits in a Galactic potential to identify those stars which pass within a few parsecs. Such encounters could influence the solar system, for example through gravitational perturbations of the Oort cloud. 16 stars are found to come within 2 pc (although a few of these have dubious data). This is fewer than were found in a similar study based on Hipparcos data, even though the present study has many more candidates. This is partly because I reject stars with large radial velocity uncertainties (>10 km s−1), and partly because of missing stars in GDR1 (especially at the bright end). The closest encounter found is Gl 710, a K dwarf long-known to come close to the Sun in about 1.3 Myr. The Gaia astrometry predict a much closer passage than pre-Gaia estimates, however: just 16 000 AU (90% confidence interval: 10 000–21 000 AU), which will bring this star well within the Oort cloud. Using a simple model for the spatial, velocity, and luminosity distributions of stars, together with an approximation of the observational selection function, I model the incompleteness of this Gaia-based search as a function of the time and distance of closest approach. -
A. Meredith Hughes Curriculum Vitae – May 29, 2019 Van Vleck Observatory [email protected] 96 Foss Hill Dr
A. Meredith Hughes Curriculum Vitae – May 29, 2019 Van Vleck Observatory [email protected] 96 Foss Hill Dr. http://amhughes.web.wesleyan.edu/ Middletown, CT 06459 Phone: (860) 685-3667 Office: VVO109 EDUCATION Harvard University, Cambridge, Massachusetts Ph.D., Astronomy (Advisor: Dr. David Wilner) May 2010 Thesis title: Circumstellar Disk Structure through Resolved Submillimeter Observations Yale University, New Haven, Connecticut B.S., Astronomy and Physics (with distinction), summa cum laude 2005 PROFESSIONAL EXPERIENCE Associate Professor, Wesleyan University Department of Astronomy 2019-present Assistant Professor, Wesleyan University Department of Astronomy 2013-2019 Miller Fellow, UC Berkeley Department of Astronomy 2010-2012 Graduate Student Researcher, Harvard University Department of Astronomy 2005-2010 RESEARCH INTERESTS Planet formation. Circumstellar disk structure and dynamics: gas and dust. Disk evolution: viscous transport and clearing processes. Radio astronomy. Aperture synthesis techniques. HONORS AND AWARDS Cottrell Scholar, Research Corporation for Science Advancement (for outstanding teacher-scholars) 2018 Bok Prize, Harvard University Dept of Astronomy (research excellence by PhD graduate under age 35) 2015 Miller Fellowship, Miller Institute for Basic Research in Science, UC Berkeley 2010-2012 Fireman Fellowship, Harvard University Dept of Astronomy (outstanding PhD thesis) 2010 National Science Foundation Graduate Research Fellowship 2007-2010 Certificate of Distinction in Teaching, Derek Bok Center at Harvard University 2009 George Beckwith Prize in Astronomy, Yale University 2005 Phi Beta Kappa, Yale University (top 1% of Junior class) 2003 TEACHING & ADVISING Postdoctoral Collaborators Supervised Kevin Flaherty, 2013-2018 à Williams College Lecturer and Observatory Supervisor MA Theses Supervised 2013-present 6. Jonas Powell ’19 à Systems & Technology Research, Woburn, MA Exploring the Role of Environment in the Composition of ONC Proplyds. -
API Publications 2016-2019
2016 King, A. and Muldrew, S. I., Black hole winds II: Hyper-Eddington winds and feedback, 2016, MNRAS, 455, 1211 Carbone, D., Exploring the transient sky: from surveys to simulations, 2016, AAS, 227, 421.03 van den Heuvel, E., The Amazing Unity of the Universe, 2016 (book), Springer Ellerbroek, L. E. ., Planet Hunters: the Search for Extraterrestrial Life, 2016 (book), Reak- tion Books Lef`evre, C., Pagani, L., Min, M., Poteet, C., and Whittet, D., On the importance of scattering at 8 µm: Brighter than you think, 2016, A&A, 585, L4 Min, M., Rab, C., Woitke, P., Dominik, C., and M´enard, F., Multiwavelength optical prop- erties of compact dust aggregates in protoplanetary disks, 2016, A&A, 585, A13 Babak, S., Petiteau, A., Sesana, A., Brem, P., Rosado, P. A., Taylor, S. R., Lassus, A., Hes- sels, J. W. T., Bassa, C. G., Burgay, M., and 26 colleagues, European Pulsar Timing Array limits on continuous gravitational waves from individual supermassive black hole binaries, 2016, MNRAS, 455, 1665 Sclocco, A., van Leeuwen, J., Bal, H. E., and van Nieuwpoort, R. V., Real-time dedispersion for fast radio transient surveys, using auto tuning on many-core accelerators, 2016, A&C, 14, 1 Tramper, F., Sana, H., Fitzsimons, N. E., de Koter, A., Kaper, L., Mahy, L., and Moffat, A., The mass of the very massive binary WR21a, 2016, MNRAS, 455, 1275 Pinilla, P., Klarmann, L., Birnstiel, T., Benisty, M., Dominik, C., and Dullemond, C. P., A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap, 2016, A&A, 585, A35 van den Heuvel, E., Neutron Stars, 2016, ASCO Conference, 20 Van Den Eijnden, J., Ingram, A., and Uttley, P., The energy dependence of quasi periodic oscillations in GRS 1915+105, 2016, AAS, 227, 411.07 Calzetti, D., Johnson, K.