Essential Role of Canonical NF-Κb Activity in the Development of Stromal Cell Subsets in Secondary Lymphoid Organs

Total Page:16

File Type:pdf, Size:1020Kb

Essential Role of Canonical NF-Κb Activity in the Development of Stromal Cell Subsets in Secondary Lymphoid Organs Essential Role of Canonical NF-κB Activity in the Development of Stromal Cell Subsets in Secondary Lymphoid Organs This information is current as Dana Bogdanova, Arata Takeuchi, Madoka Ozawa, of September 24, 2021. Yasuhiro Kanda, M. Azizur Rahman, Burkhard Ludewig, Tatsuo Kinashi and Tomoya Katakai J Immunol published online 5 November 2018 http://www.jimmunol.org/content/early/2018/11/02/jimmun ol.1800539 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2018/11/03/jimmunol.180053 Material 9.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 5, 2018, doi:10.4049/jimmunol.1800539 The Journal of Immunology Essential Role of Canonical NF-kB Activity in the Development of Stromal Cell Subsets in Secondary Lymphoid Organs Dana Bogdanova,* Arata Takeuchi,* Madoka Ozawa,* Yasuhiro Kanda,* M. Azizur Rahman,* Burkhard Ludewig,† Tatsuo Kinashi,‡ and Tomoya Katakai* Organized tissue structure in the secondary lymphoid organs (SLOs) tightly depends on the development of fibroblastic stromal cells (FSCs) of mesenchymal origin; however, the mechanisms of this relationship are poorly understood. In this study, we specifically inactivated the canonical NF-kB pathway in FSCs in vivo by conditionally inducing IkBa mutant in a Ccl19-IkBSR mouse system in which NF-kB activity is likely to be suppressed in fetal FSC progenitors. Given that NF-kB activation in fetal FSCs is essential for SLO development, the animals were expected to lack SLOs. However, all SLOs were preserved in Ccl19-IkBSR mice. Instead, Downloaded from the T cell area was severely disturbed by the lack of CCL21-expressing FSCs, whereas the follicles and associated FSC networks were formed. Fate mapping revealed that IkBSR-expressing cells constituted only a small fraction of stromal compartment outside the follicles. Taken together, our findings indicate an essential role of the canonical NF-kB pathway activity in the development of three FSC subsets common to SLOs and suggest transient or stochastic CCL19 expression in FSC progenitors and a compensatory differentiation program of follicular FSCs. The Journal of Immunology, 2018, 201: 000–000. http://www.jimmunol.org/ econdary lymphoid organs (SLOs) develop through com- for the expression of chemokines such as CXCL13, CCL19, and plex processes of intimate interactions between lymphoid CCL21, which recruit lymphoid cells to SLOs (11–16). However, S cells and nonhematopoietic stromal cells (1, 2). The in- in a strict sense, it has not been proven directly that NF-kB terplay of lymphoid tissue inducer cells, an innate lymphoid cell activity in LTo cells or mesenchymal progenitors itself is es- population, with mesenchymal lymphoid tissue organizer (LTo) sential for the development and tissue organization of SLOs cells in fetal anlagen is necessary for the formation of lymph in vivo. Recent studies have suggested the presence of other nodes (LNs) and Peyer’s patches (PPs) (3–6), whereas the orga- complicated cellular interactions involving endothelial com- nization of white pulps in the spleen involves postnatal collabo- partments in LN formation and distinct organ-specific develop- ration of mature lymphocytes and perivascular stromal cells (7, 8). ment programs (8, 17). by guest on September 24, 2021 In these cellular processes, lymphotoxin (LT) a1b2 and LTbR, In adult SLOs, B and T cells are clearly segregated in the follicles which are displayed on lymphoid cells and mesenchymal cells, re- and T cell area. Different types of fibroblastic stromal cells (FSCs) spectively, and the activation of NF-kB transcription factors via the that form intricate networks support each of the regions by pro- canonical (RelA/p50 complex) and noncanonical (RelB/p52 com- viding a structural backbone (18). Follicular dendritic cells (FDCs) plex)pathwaysarebelievedtoplaythekeyroles;genedefi- and marginal reticular cells (MRCs) in the center and outer part of ciencies of these signaling mediators lead to the absence or the follicle, respectively, produce CXCL13 that regulates B cell malformation of SLOs (1, 9–12). In particular, NF-kB is required localization and motility (19–21). MRCs, which display charac- teristics similar to those of LTo cells, such as the expression of RANKL and MAdCAM-1, have been shown to be FDC precursors *Department of Immunology, Niigata University Graduate School of Medical and (21–23). In T cell area, T zone reticular cells (TRCs), also known Dental Sciences, Niigata 951-8510, Japan; †Institute of Immunobiology, CH-9007 St. Gallen, Switzerland; and ‡Department of Molecular Genetics, Institute of Biomedical as fibroblastic reticular cells, produce CCL19 and CCL21, af- Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan fecting the localization and migration of T cells and dendritic cells ORCIDs: 0000-0003-0412-533X (A.T.); 0000-0001-5026-2306 (M.O.); 0000-0001- (24–27). These three stromal cell subsets are common to all types 8131-8130 (Y.K.); 0000-0002-7685-573X (B.L.); 0000-0002-4290-7028 (T. Katakai). of SLOs and are considered to originate from a common mesen- Received for publication April 16, 2018. Accepted for publication October 11, 2018. chymal progenitor (17, 28, 29). This work was supported by Grant-in-Aid for Scientific Research on Innovative The factors required for the development of FDCs are well Areas 24111005 and Grant-in-Aid for Scientific Research Scientific Research (B) studied, as this stromal cell type is absent in mice engineered to lack 16H05204 from the Ministry of Education, Culture, Sports, Science and Technology– Japan Society for the Promotion of Science (both to T. Katakai). some immune system–related genes (10, 30). In particular, signals b k Address correspondence and reprint requests to Prof. Tomoya Katakai, Department through LT R and TNFR together with subsequent NF- B acti- of Immunology, Graduate School of Medical and Dental Sciences, Niigata Univer- vation play critical roles in the differentiation and maintenance of sity, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan. E-mail address: FDC network in the follicles (16, 31, 32). In contrast, the devel- [email protected] opmental processes of MRCs and TRCs remain poorly under- The online version of this article contains supplemental material. stood. Moreover, the mechanisms that regulate the generation of Abbreviations used in this article: Ccl19-EYFP, Ccl19-Cre/R26-stopflox-EYFP; FDC, follicular dendritic cell; FSC, fibroblastic stromal cell; HEV, high endothelial venule; FSC subsets may possibly differ between SLO types, although it LN, lymph node; LT, lymphotoxin; LTo, lymphoid tissue organizer; MRC, marginal could not be verified in animals that completely lack LNs and PPs reticular cell; PP, Peyer’s patch; SLO, secondary lymphoid organ; TRC, T zone (e.g., in the cases of deficiencies in NF-kB components). reticular cell. Ccl19-Cre BAC transgenic mouse strain is a useful tool for Copyright Ó 2018 by The American Association of Immunologists, Inc. 0022-1767/18/$37.50 conditional gene targeting and fate mapping in FSC lineages www.jimmunol.org/cgi/doi/10.4049/jimmunol.1800539 2 NF-kB CONTROLS THE DEVELOPMENT OF STROMAL SUBSETS during SLO development because LTo cells in fetal anlagen or at 280˚C. Frozen sections (10 mm) were stained with Abs and mounted postnatal progenitors express Cre recombinase driven by the with Permafluor (Thermo Fisher Scientific). The specimens were examined Ccl19 gene (8, 33). A mutant form of IkBa,IkBSR, is resistant to using an LSM710 (Carl Zeiss) or an FV1200 (Olympus) confocal micro- scope. Digital images were prepared using Adobe Photoshop CS6 soft- the degradation upon signaling; it strongly inhibits the activation ware. of the canonical NF-kB pathway (34), which in turn suppresses For whole-mount immunohistochemistry, excised organs were fixed with the expression of noncanonical pathway components. Thus, 1% paraformaldehyde in PBS overnight at 4˚C, and endogenous peroxidase IkBSR potentially inhibits both pathways (15). In this study, to activity was blocked with 0.3% H2O2 and 40% methanol in PBS overnight at 4˚C. The specimens were permeabilized with 0.3% Triton X-100 in PBS assess the consequences of in vivo inactivation of the canonical at 4˚C for 1.5 h followed by blocking with 1% BSA in PBST (0.05% NF-kB pathway specific to FSCs in SLOs, we generated a mouse Tween-20 in PBS) at 4˚C for 2 h. The specimens were then incubated with in which both IkBSR and EGFP are conditionally induced under 2 mg/ml biotin–anti-B220 Ab (eBioscience) in 1% BSA in PBST overnight the control of the Ccl19-Cre locus. Characteristic structural al- at 4˚C. Biotinylated Ab was detected using Vectastain ABC Kit and DAB terations of SLOs in these animals prompted us to address the Substrate Kit (Vector). cause of these abnormalities. Fate mapping using bicistronic Quantitative RT-PCR analysis EGFP expression permitted the identification of IkBSR-expressing Total RNA was extracted from SLOs using an RNeasy Mini kit (QIAGEN) cells in situ, which allowed us to elucidate the indispensable or TRIzol reagent (Invitrogen), and cDNA was synthesized using the Su- role of the canonical NF-kB pathway activity in the development perscript III First-Strand Synthesis System (Invitrogen).
Recommended publications
  • RUTH FAIR-MÄKELÄ: Lymphatic Endothelial Cells Regulate Traffic in Lymph Nodes Doctoral Dissertation, 180 Pp
    ANNALES UNIVERSITATIS TURKUENSIS UNIVERSITATIS ANNALES D 1507 D Ruth Fair-Mäkelä Ruth LYMPHATIC ENDOTHELIAL CELLS REGULATE TRAFFIC INTO LYMPH NODES Ruth Fair-Mäkelä Painosalama Oy, Turku, Finland 2020 Finland Turku, Oy, Painosalama ISBN 978-951-29-8175-5 (PRINT) – ISBN 978-951-29-8176-2 (PDF) TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS ISSN 0355-9483 (Print) SARJA - SER. D OSA - TOM. 1507 | MEDICA - ODONTOLOGICA | TURKU 2020 ISSN 2343-3213 (Online) LYMPHATIC ENDOTHELIAL CELLS REGULATE TRAFFIC IN LYMPH NODES Ruth Fair-Mäkelä TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS SARJA - SER. D OSA – TOM. 1507 | MEDICA – ODONTOLOGICA | TURKU 2020 University of Turku Faculty of Medicine Institute of Biomedicine Medical Microbiology and Immunology Turku Doctoral Programme of Molecular Medicine Supervised by Academician Sirpa Jalkanen, MD, PhD Professor Masayuki Miyasaka, MD, PhD Medicity Research Laboratory Medicity Research Laboratory Medical Microbiology and Immunology Medical Microbiology and Immunology University of Turku University of Turku Turku, Finland Turku, Finland Adjunct Professor Kati Elima, MD, PhD Medicity Research Laboratory Medical Biochemistry and Genetics University of Turku Turku, Finland Reviewed by Professor Lena Claesson-Welsh, BD, PhD Adjunct Professor Marko Pesu, MD, PhD Rudbeck Laboratory and Science for Laboratory of Immunoregulation Life Laboratory Faculty of Medicine and Health Department of Immunology, Technology Genetics and Pathology Tampere University Uppsala University Tampere, Finland
    [Show full text]
  • Type 3 Innate Lymphoid Cells a Stromal Cell Niche for Human and Mouse
    A Stromal Cell Niche for Human and Mouse Type 3 Innate Lymphoid Cells Kerim Hoorweg, Priyanka Narang, Zhi Li, Anne Thuery, Natalie Papazian, David R. Withers, Mark C. Coles and Tom This information is current as Cupedo of September 28, 2021. J Immunol 2015; 195:4257-4263; Prepublished online 16 September 2015; doi: 10.4049/jimmunol.1402584 http://www.jimmunol.org/content/195/9/4257 Downloaded from References This article cites 42 articles, 9 of which you can access for free at: http://www.jimmunol.org/content/195/9/4257.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology A Stromal Cell Niche for Human and Mouse Type 3 Innate Lymphoid Cells Kerim Hoorweg,*,1 Priyanka Narang,†,1 Zhi Li,† Anne Thuery,† Natalie Papazian,* David R.
    [Show full text]
  • Characterization of Lymph Node Stromal Cells During Treg-Mediated Tolerance
    Characterization of lymph node stromal cells during Treg-mediated tolerance Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Maria Anna Sofia Broggi aus Mailand, Italien Basel, 2013 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von: Prof. Dr. Ed Palmer Prof. Dr. Daniela Finke Basel, den 26. Februar 2013 Prof. Dr Jörg Schibler, Dekan Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Dieses Werk ist unter dem Vertrag „Creative Commons Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 2.5 Schweiz“ lizenziert. Die vollständige Lizenz kann unter creativecommons.org/licences/by-nc-nd/2.5/cheingesehen werden. Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 2.5 Schweiz Sie dürfen: das Werk vervielfältigen, verbreiten und öffentlich zugänglich machen Zu den folgenden Bedingungen: Namensnennung. Sie müssen den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen (wodurch aber nicht der Eindruck entstehen darf, Sie oder die Nutzung des Werkes durch Sie würden entlohnt). Keine kommerzielle Nutzung. Dieses Werk darf nicht für kommerzielle Zwecke verwendet werden. Keine Bearbeitung. Dieses Werk darf nicht bearbeitet oder in anderer Weise verändert werden. • Im Falle einer Verbreitung müssen Sie anderen die Lizenzbedingungen, unter welche dieses Werk fällt, mitteilen. Am Einfachsten ist es, einen Link auf diese Seite einzubinden. • Jede der vorgenannten Bedingungen kann aufgehoben werden, sofern Sie die Einwilligung des Rechteinhabers dazu erhalten. • Diese Lizenz lässt die Urheberpersönlichkeitsrechte unberührt. Die gesetzlichen Schranken des Urheberrechts bleiben hiervon unberührt. Die Commons Deed ist eine Zusammenfassung des Lizenzvertrags in allgemeinverständlicher Sprache: http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de Haftungsausschluss: Die Commons Deed ist kein Lizenzvertrag.
    [Show full text]
  • Application of Tissue Engineering to the Immune System: Development of Artificial Lymph Nodes
    MINI REVIEW ARTICLE published: 16 November 2012 doi: 10.3389/fimmu.2012.00343 Application of tissue engineering to the immune system: development of artificial lymph nodes Tom Cupedo1*, Abraham Stroock2 and Mark Coles3* 1 Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands 2 School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA 3 Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York,York, UK Edited by: The goal of tissue engineering and regenerative medicine is to develop synthetic versions Burkhard Ludewig, Cantonal Hospital of human organs for transplantation, in vitro toxicology testing and to understand basic St. Gallen, Switzerland mechanisms of organ function. A variety of different approaches have been utilized to repli- Reviewed by: cate the microenvironments found in lymph nodes including the use of a variety of different Joern Dengjel, Albert-Ludwigs-Universität Freiburg, bio-materials, culture systems, and the application of different cell types to replicate stro- Germany mal networks found in vivo. Although no system engineered so far can fully replicate lymph Henrique Veiga-Fernandes, Instituto node function, progress has been made in the development of microenvironments that can de Medicina Molecular, Portugal promote the initiation of protective immune responses. In this review we will explore the *Correspondence: different approaches utilized to recreate lymph node microenvironments and the technical Mark Coles, Centre for Immunology and Infection, Department of Biology challenges required to recreate a fully functional immune system in vitro. and Hull York Medical School, Keywords: lymph node, tissue engineering, stroma, bio-materials, extracellular matrix University of York,YorkYO10 5DD, UK.
    [Show full text]
  • Intrinsic Defects in Lymph Node Stromal Cells Underpin Poor Germinal
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.082255; this version posted May 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Intrinsic defects in lymph node stromal cells underpin poor germinal center responses during aging Alice E Denton1,7,9*, Alyssa Silva-Cayetano1, James Dooley1,2, Danika L Hill1, 3, Edward J Carr1,4, Philippe Robert5,8, Michael Meyer-Hermann5,6, Adrian Liston1,2 and Michelle A Linterman1* 1 Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT UK 2 Adaptive Immunology Laboratory, VIB and University of Leuven, Leuven 3000 Belgium 3 Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Victoria 3004, Australia 4 Department of Medicine, University of Cambridge, Cambridge CB2 0QQ UK 5 Systems Immunology and Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig 38124 Germany 6 Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig 38124 Germany and Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany 7 Current address: Department of Immunology and Inflammation, Imperial College London, London W12 0NN UK 8 Current address: Department of Clinical Immunology, Oslo University, Oslo, Norway 9 Lead contact *Correspondence: [email protected] or [email protected] Highlights - The stromal cell response to immunization is impaired in aged mice - Immunization induces remodeling of marginal reticular cells - Age impairs MRC activation and proliferation - Heterochronic parabiosis identifies that age-associated defects in the microenvironment underpin poor GC responses Summary The failure to generate enduring humoral immunity after vaccination is a hallmark of advancing age.
    [Show full text]
  • Postnatal Lymph Node Expansion of Stromal Progenitors Towards Reticular and CD34+ Stromal Cell Subsets Is Determined by Distinct Transcriptional Programs
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.06.447189; this version posted June 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Postnatal lymph node expansion of stromal progenitors towards reticular and CD34+ stromal cell subsets is determined by distinct transcriptional programs Joern Pezoldt1,2, Carolin Wiechers1, Maria Litovchenko2, Marjan Biocanin2, Mangge Zou1, Katarzyna Sitnik3, Michael Beckstette1,4, Wanze Chen2, Vincent Gardeux2, Stefan Floess1, Maria Ebel1, Julie Russeil2, Panagiota Arampatzi5, Ehsan Vafardanejad6, Antoine-Emmanuel Saliba6, Bart Deplancke2,#, Jochen Huehn1,7*,# 1Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany 2Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland 3Department of Vaccinology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany 4Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany 5Core Unit Systems Medicine, University of Wuerzburg, 97080 Wuerzburg, Germany 6Helmholtz Institute for RNA-based Infection Research, 97080 Wuerzburg, Germany 7Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany #Equally contributing senior authors *Corresponding author: Jochen Huehn ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.06.447189; this version posted June 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Gut-draining mesenteric lymph nodes (mLN) provide the framework and microenvironment to shape intestinal adaptive immune responses.
    [Show full text]
  • Thesis Reference
    Thesis Tolerogenic functions of plasmacytoid dendritic cells in T cell-medaited CNS autoimmunity LIPPENS, Carla Abstract T cell lymphocytes play an essential role in the adaptive immunity. They arise from the hematopoietic compartment and reach the thymus, where they achieve their development through specialized maturation and selection steps. Immune system comprises specific and complex mechanisms in the thymus and the periphery aiming at preventing the generation and the survival of self-reactive T cells that could lead to autoimmune disorders. These mechanisms are known as central and peripheral tolerance and rely on different cellular actors such as medullary thymic epithelial cells (mTECs), dendritic cells (DCs), lymph node stromal cells (LNSCs) and regulatory T and B cells. Self-reactive T cells escaping thymic central tolerance are kept in check in the periphery through specific mechanisms that include T cell anergy, T cell deletion and Treg induction. Although conventional DCs (cDCs) have been first in line in mediating peripheral tolerance, increasing evidence demonstrates the contribution of other actors such as plasmacytoid dendritic cells (pDCs) in this process. pDCs are important linkers of the innate and adaptive immunity. [...] Reference LIPPENS, Carla. Tolerogenic functions of plasmacytoid dendritic cells in T cell-medaited CNS autoimmunity. Thèse de doctorat : Univ. Genève, 2016, no. Sc. 4981 DOI : 10.13097/archive-ouverte/unige:98230 URN : urn:nbn:ch:unige-982303 Available at: http://archive-ouverte.unige.ch/unige:98230
    [Show full text]
  • Fibroblastic Reticular Cell Response to Dendritic Cells Requires Coordinated Activity of Podoplanin, CD44 and CD9 Journal Of
    © 2021. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by /4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. Fibroblastic Reticular Cell Response to Dendritic Cells Requires Coordinated Activity of Podoplanin, CD44 and CD9 Charlotte M de Winde1,2, Spyridon Makris1,*, Lindsey Millward1,*, Jesús Cantoral Rebordinos1, Agnesska C Benjamin1, Víctor G Martínez1,3, and Sophie E Acton1 1Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom 2Current: Department for Molecular Cell Biology and Immunology, Amsterdam UMC location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands 3Current: Molecular Oncology Unit, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain *Authors contributed equally Corresponding author: Sophie E Acton, [email protected] Abstract In adaptive immunity, CLEC-2+ dendritic cells (DCs) contact fibroblastic reticular cells (FRCs) inhibiting podoplanin-dependent actomyosin contractility, permitting FRC spreading and lymph node (LN) expansion. The molecular mechanisms controlling LN remodelling are incompletely understood. We asked how podoplanin is regulated on FRCs in the early phase of LN expansion, and which other proteins are required for the FRC response to DCs. We find that podoplanin and its partner proteins CD44 and CD9 are differentially expressed by specific LN stromal populations in vivo, and their expression in FRCs is coregulated by CLEC- 2. Both CD44 and CD9 suppress podoplanin-dependent contractility. We find that beyond contractility, podoplanin is required for FRC polarity and alignment.
    [Show full text]
  • A Distinct Subset of Fibroblastic Stromal Cells Constitutes the Cortex-Medulla Boundary Subcompartment of the Lymph Node
    ORIGINAL RESEARCH published: 02 October 2018 doi: 10.3389/fimmu.2018.02196 A Distinct Subset of Fibroblastic Stromal Cells Constitutes the Cortex-Medulla Boundary Subcompartment of the Lymph Node Arata Takeuchi 1†, Madoka Ozawa 1†, Yasuhiro Kanda 1, Mina Kozai 2, Izumi Ohigashi 2, Yoichi Kurosawa 1, Md Azizur Rahman 1, Toshihiko Kawamura 1,3, Yuto Shichida 4, Eiji Umemoto 5, Masayuki Miyasaka 6,7,8, Burkhard Ludewig 9, Yousuke Takahama 2,10, Takashi Nagasawa 11 and Tomoya Katakai 1*† 1 Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan, 2 Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan, 3 Department of Immunology, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan, 4 School of Medicine, Niigata University, Niigata, Japan, 5 Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan, 6 MediCity Research Laboratory, University of Turku, Turku, Finland, 7 8 Edited by: WPI Immunology Frontier Research Center, Osaka University, Suita, Japan, Interdisciplinary Program for Biomedical 9 Kenji Kabashima, Sciences, Institute for Academic Initiatives, Osaka University, Suita, Japan, Institute of Immunobiology, Kantonal Hospital St. 10 Kyoto University, Japan Gallen, St. Gallen, Switzerland, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States, 11 Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Reviewed by: Frontier Biosciences, Osaka University, Suita, Japan Michio Tomura, Osaka Ohtani University, Japan Takaharu Okada, The spatiotemporal regulation of immune responses in the lymph node (LN) depends on RIKEN Center for Integrative Medical its sophisticated tissue architecture, consisting of several subcompartments supported Sciences (IMS), Japan by distinct fibroblastic stromal cells (FSCs).
    [Show full text]
  • Lymph Node and Peri-Lymph Node Stroma: Phenotype
    LYMPH NODE AND PERI-LYMPH NODE STROMA: PHENOTYPE AND INTERACTION WITH T-CELLS Nicholas J. Stoffel Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Master of Science in the Department of Microbiology and Immunology, Indiana University December 2013 Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Master of Science. Master’s Thesis Committee ________________________________ Christopher E. Touloukian, M.D., Chair ________________________________ Hal E. Broxmeyer, Ph.D. ________________________________ Edward F. Srour, Ph.D. _______________________________ David A. Ingram Jr., M.D. ii ACKNOWLEDGEMENTS I wish to express my sincere gratitude to everyone who has helped and guided me through my graduate program. Dr. Christopher Touloukian has been an experienced and trusted mentor, advising me in experimental design, data analysis, and professional growth. He has been an excellent teacher of immunology. I also extend my heartfelt appreciation to my former and current lab members for their assistance with experiments and protocols – Emily Sturm, Roy Chen, Ariel Gallanosa, and especially Garrett Kinnebrew. From the flow cytometry core I would like to thank Kimberly Stoner and Susan Rice for their patience, time, and assistance. I would also like to thank Momoko Yoshimoto for her guidance in differentiating T cell progenitors using OP9-DL1 cells. Dr. Robert Bacallao was of extremely helpful in his knowledge and guidance in staining histology slides. LeAnne Baldridge of the Pathology department was also very instrumental in helping with histology slides. I want to acknowledge my committee members – Drs. Hal Broxmeyer, Edward Srour, and David Ingram for their time and valuable input.
    [Show full text]
  • Fibroblastic Reticular Cells Enhance T Cell Metabolism and Survival Via Epigenetic Remodeling
    ARTICLES https://doi.org/10.1038/s41590-019-0515-x Fibroblastic reticular cells enhance T cell metabolism and survival via epigenetic remodeling Flavian D. Brown1,2,3,4,5,13, Debattama R. Sen" "1,2, Martin W. LaFleur" "1,2,3,4, Jernej Godec1,2,3,4, Veronika Lukacs-Kornek5,14, Frank A. Schildberg" "3,4,5,15, Hye-Jung Kim3,5, Kathleen B. Yates2,6, Stéphane J. H. Ricoult7, Kevin Bi2,6, Justin D. Trombley3,4, Varun N. Kapoor8, Illana A. Stanley9,10, Viviana Cremasco5,16, Nika N. Danial9,10, Brendan D. Manning7, Arlene H. Sharpe" "3,4,6,11*, W. Nicholas Haining" "2,6,12,17* and Shannon J. Turley" "5,8* Lymph node fibroblastic reticular cells (FRCs) respond to signals from activated T cells by releasing nitric oxide, which inhibits T cell proliferation and restricts the size of the expanding T cell pool. Whether interactions with FRCs also support the func- tion or differentiation of activated CD8+ T cells is not known. Here we report that encounters with FRCs enhanced cytokine production and remodeled chromatin accessibility in newly activated CD8+ T cells via interleukin-6. These epigenetic changes facilitated metabolic reprogramming and amplified the activity of pro-survival pathways through differential transcription factor activity. Accordingly, FRC conditioning significantly enhanced the persistence of virus-specific CD8+ T cells in vivo and augmented their differentiation into tissue-resident memory T cells. Our study demonstrates that FRCs play a role beyond restricting T cell expansion—they can also shape the fate and function of CD8+ T cells. ymph nodes (LNs) contain hematopoietic cell lineages and curtail proliferation of the expanding T cell pool.
    [Show full text]
  • The First Reconstruction of Intercellular Interaction Network in Mus Musculus Immune System
    bioRxiv preprint doi: https://doi.org/10.1101/820316; this version posted October 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The First Reconstruction of Intercellular Interaction Network in Mus musculus Immune System Somayeh Azadiana, Javad Zahiria*, Seyed Shahriar Arabb, Reza Hassan sajedic a Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of biological sciences, Tarbiat modares University (TMU), P.O.Box: 14115-111, Tehran, Iran b Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University (TMU), P.O.Box: 14115-111, Tehran, Iran. c Department of Biochemistry, Faculty of biological sciences, Tarbiat Modares University (TMU), P.O.Box: 14115-111, Tehran, Iran * Corresponding author: Javad Zahiri, Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat modares University, P.O.Box: 14115-111, Tehran, Iran; E-mail: [email protected] Abstract Intercellular interactions play an important role in regulating communications of cells with each other. So far, many studies have been done with both experimental and computational approaches in this field. Therefore, in order to investigate and analyze the intercellular interactions, use of network reconstruction has attracted the attention of many researchers recently. The intercellular interaction network was reconstructed using receptor and ligand interaction dataset and gene expression data of the first phase of the immunological genome project. In the reconstructed network, there are 9271 communications between 162 cells which were created through 460 receptor-ligand interactions. The results indicate that cells of hematopoietic lineages use fewer communication pathways for interacting with each other and the most network communications belong to non-hematopoietic stromal cells and macrophages.
    [Show full text]