Expanding Molecular Tools for the Metabolic Engineering of Ralstonia Eutropha H16 Abayomi Oluwanbe Johnson

Total Page:16

File Type:pdf, Size:1020Kb

Expanding Molecular Tools for the Metabolic Engineering of Ralstonia Eutropha H16 Abayomi Oluwanbe Johnson EXPANDING MOLECULAR TOOLS FOR THE METABOLIC ENGINEERING OF RALSTONIA EUTROPHA H16 By: ABAYOMI OLUWANBE JOHNSON A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Faculty of Engineering Department of Chemical and Biological Engineering July 2018 (This page has been left blank intentionally) i DECLARATION This thesis is a product of original research conducted by me as a PhD student at the Department of Chemical and Biological Engineering, University of Sheffield. All sources of information herein have been duly referenced. This thesis, in its entirety, has never been previously submitted at this University or any other institution. This thesis is written in conformance to the rules of Alternative Format Thesis (Code Of Practice For Research Degree Program 2017-18) of the University of Sheffield. Some parts of this thesis have been previously published/submitted as peer-reviewed scientific publications. i ASSOCIATED PUBLICATIONS Johnson, A. O., Gonzalez Villanueva, M., & Wong, T. S. (2015). Engineering Ralstonia eutropha for chemical production. In Industrial Processes and Nanotechnology (Vol. 10). USA: Studium Press LLC. • Johnson, A.O., Gonzalez, V.M., Wong, L., Steinbüchel, A., Tee, K.L., Xu, P., Wong, T.S., 2017. Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories. Metab. Eng. Johnson, A. O., Gonzalez-Villanueva, M., Tee, K. L. & Wong, T. S. 2018. An Engineered Constitutive Promoter Set with Broad Activity Range for Cupriavidus necator H16. ACS Synthetic Biology. ii ACKNOWLEDGEMENTS I would like to thank my esteemed supervisor – Dr. Tuck Seng Wong for his invaluable supervision, support and tutelage during the course of my PhD degree. My gratitude extends to the Faculty of Engineering for the funding opportunity to undertake my studies at the Department of Chemical and Biological Engineering, University of Sheffield. Additionally, I would like to express gratitude to Dr. Kang Lan Tee for her treasured support which was really influential in shaping my experiment methods and critiquing my results. I also thank Dr. David Gonzalez, Dr. Pawel Jajeniak, Dr. Amir Zaki Abdullah Zubir for their mentorship. I would like to thanks my friends, lab mates, colleagues – Abdulrahman Alessa, Miriam Gonzalez-Villanuva, Inas Al-nuaemi, Jose Avalos, Valeriane Keita, Melvin Mikuzi, Robert Berchtold for a cherished time spent together in the lab, and in social settings. My appreciation also goes out to my family and friends for their encouragement and support all through my studies. iii SUMMARY Ralstonia eutropha H16 (also known as Cupriavidus necator H16) is a non-pathogenic chemolithoautotrophic soil bacterium. It has increasingly gained biotechnological interest for its use as a microbial cell factory for the production of several valuable bio-based chemicals. However the absence of a large repertoire of molecular tools to engineer this organism remains a critical limiting factor to exploiting its full biotechnological potential. Also, adopting established molecular tools applicable to the more notable microbial hosts such as E. coli and Saccharomyces cerevesiae is severely hampered by chassis- incompatibility and functional variability of essential biological parts. The work detailed in this thesis focuses on the development of key molecular tools crucial to improving the biosynthesis of malonyl-CoA - a precursor metabolite required for the biosynthesis of fatty acids and potentially several valuable bio-products in Ralstonia eutropha H16. All molecular tools developed were based on the broad host range (BHR) plasmid vector backbone of pBBR1MCS1 – a R. eutropha H16-compatible vector. Firstly, to facilitate heterologous pathway optimization, a combination of pre-existing and novel methods of genetic modifications were applied to engineer a collection of 42 promoters. Promoter strengths were characterized using a fluorescence-based assay and benchmarked to the dose-dependent activity of an L-arabinose-inducible PBAD promoter. Next, to detect intracellular accumulation of malonyl-CoA, transcriptional factor-based malonyl-CoA- sensing genetic circuits were developed via careful selection from the promoter collection. Thirdly, BHR L-arabinose-inducible -Red plasmid vectors were developed for mediating -Red-based genome editing. These were first tested in E. coli BW25113 to confirm their functionality and then subsequently tested in R. eutropha H16. Overall, the collection of engineered promoters yielded a 137-fold range of promoter activity and the malonyl-CoA biosensors responded to changing malonyl-CoA concentrations. The BHR -Red plasmids showed high recombination efficiency in E. coli BW25113. The molecular tools developed from this work will further facilitate rapid control and regulation of gene expression in R. eutropha, particularly for malonyl-CoA engineering. iv TABLE OF CONTENT DECLARATION ................................................................................................................... I ASSOCIATED PUBLICATIONS ..................................................................................... II ACKNOWLEDGEMENTS ............................................................................................... III SUMMARY ........................................................................................................................ IV TABLE OF CONTENT ....................................................................................................... V TABLE OF FIGURES ......................................................................................................... X TABLE OF TABLES ...................................................................................................... XIV LIST OF ABBREVIATIONS ....................................................................................... XVII CHAPTER ONE .................................................................................................................. 1 LITERATURE REVIEW .................................................................................................... 1 1 LITERATURE REVIEW .............................................................................................. 2 1.1 ENGINEERING MICROBIAL CELL FACTORIES FOR BIO-MANUFACTURING .............. ERROR! BOOKMARK NOT DEFINED. 1.2 R. EUTROPHA H16 – AN INDUSTRIAL WORK-HORSE FOR CHEMICAL PRODUCTION ERROR! BOOKMARK NOT DEFINED. 1.3 ENGINEERING STRATEGIES FOR CHEMICAL PRODUCTION IN R. EUTROPHA ........... ERROR! BOOKMARK NOT DEFINED. 1.4 METABOLIC ENGINEERING IN R. EUTROPHA .............ERROR! BOOKMARK NOT DEFINED. 1.4.1 EVOLUTIONARY ENGINEERING OR ADAPTIVE EVOLUTIONERROR! BOOKMARK NOT DEFINED. 1.4.2 RECOMBINANT STRAIN ENGINEERING ..................ERROR! BOOKMARK NOT DEFINED. 1.4.3 GENOME EDITING .................................................ERROR! BOOKMARK NOT DEFINED. 1.5 EXPANDING CARBON SUBSTRATE RANGE OF R. EUTROPHA ...... ERROR! BOOKMARK NOT DEFINED. 1.5.1 GLUCOSE..............................................................ERROR! BOOKMARK NOT DEFINED. 1.5.2 GLYCEROL ...........................................................ERROR! BOOKMARK NOT DEFINED. 1.5.3 SUGARS DERIVED FROM LIGNOCELLULOSIC BIOMASSERROR! BOOKMARK NOT DEFINED. 1.5.4 CARBON DIOXIDE .................................................ERROR! BOOKMARK NOT DEFINED. 1.6 ENGINEERING STRATEGIES FOR BIOPRODUCT SYNTHESIS IN R. EUTROPHA ........... ERROR! BOOKMARK NOT DEFINED. 1.6.1 PHA PRODUCTION................................................ERROR! BOOKMARK NOT DEFINED. 1.6.2 BIOFUEL PRODUCTION ..........................................ERROR! BOOKMARK NOT DEFINED. 1.6.3 METHYL CITRATE .................................................ERROR! BOOKMARK NOT DEFINED. 1.6.4 FERULIC ACID.......................................................ERROR! BOOKMARK NOT DEFINED. 1.6.5 CHIRAL SYNTHONS ...............................................ERROR! BOOKMARK NOT DEFINED. 1.6.6 BIOHYDROCARBONS ............................................ERROR! BOOKMARK NOT DEFINED. v 1.6.7 OTHER BIOPOLYMERS ..........................................ERROR! BOOKMARK NOT DEFINED. 1.7 EMERGING STRATEGIES TO EXPAND CHEMICAL RANGE ........... ERROR! BOOKMARK NOT DEFINED. 1.7.1 IN SILICO METABOLIC PATHWAY ANALYSIS AND DESIGNERROR! BOOKMARK NOT DEFINED. 1.7.2 PROTEIN ENGINEERING .........................................ERROR! BOOKMARK NOT DEFINED. 1.7.3 SYNTHETIC BIOLOGY ............................................ERROR! BOOKMARK NOT DEFINED. 1.8 BIOPROCESS ENGINEERING STRATEGIES FOR INDUSTRIAL APPLICATIONS OF R. EUTROPHA ERROR! BOOKMARK NOT DEFINED. 1.8.1 FEEDSTOCK ..........................................................ERROR! BOOKMARK NOT DEFINED. 1.8.2 BIOREACTOR AND FERMENTATION STRATEGY......ERROR! BOOKMARK NOT DEFINED. 1.9 FUTURE OUTLOOK ...................................................ERROR! BOOKMARK NOT DEFINED. 1.10 SCOPE OF RESEARCH .................................................................................................. 39 1.11 WHY MALONYL-COA? .............................................................................................. 40 1.12 STRATEGIES FOR MALONYL-COA ENGINEERING IN MODEL MICROBIAL FACTORIES ... 41 1.13 DEVELOPMENT OF CHASSIS-COMPATIBLE EXPRESSION VECTORS ............................... 48 1.14 PROMOTER ENGINEERING ........................................................................................... 49 1.15 METABOLITE SENSING GENETIC
Recommended publications
  • Metabolic Engineering of Cupriavidus Necator for Heterotrophic and Autotrophic Alka(E)Ne Production Lucie Crepin, Eric Lombard, Stéphane Guillouet
    Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production Lucie Crepin, Eric Lombard, Stéphane Guillouet To cite this version: Lucie Crepin, Eric Lombard, Stéphane Guillouet. Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production. Metabolic Engineering, Elsevier, 2016, 37, pp.92- 101. 10.1016/j.ymben.2016.05.002. hal-01886395 HAL Id: hal-01886395 https://hal.archives-ouvertes.fr/hal-01886395 Submitted on 14 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Metabolic Engineering 37 (2016) 92–101 Contents lists available at ScienceDirect Metabolic Engineering journal homepage: www.elsevier.com/locate/ymben Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production Lucie Crépin, Eric Lombard, Stéphane E Guillouet n LISBP, Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, 31077 Toulouse CEDEX 04, France article info abstract Article history: Alkanes of defined carbon chain lengths can serve as alternatives to petroleum-based fuels. Recently, Received 18 March 2016 microbial pathways of alkane biosynthesis have been identified and enabled the production of alkanes in Received in revised form non-native producing microorganisms using metabolic engineering strategies.
    [Show full text]
  • Scope of the Thesis
    Unraveling predatory-prey interactions between bacteria Dissertation To Fulfill the Requirements for the Degree of „Doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty of Biology and Pharmacy of the Friedrich Schiller University Jena By Ivana Seccareccia (M.Sc. in Biology) born on 8th April 1986 in Rijeka, Croatia Die Forschungsarbeit im Rahmen dieser Dissertation wurde am Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e.V. – Hans-Knöll–Institut in der Nachwuchsgruppe Sekundärmetabolismus räuberischer Bakterien unter der Betreuung von Dr. habil. Markus Nett von Oktober 2011 bis Oktober 2015 in Jena durchgeführt. Gutachter: ……………………………………………. ………………………………………….… ……………………………………………. Tag der öffentlichen Verteidigung: We make our world significant by the courage of our questions and by the depth of our answers. Carl Sagan Table of Contents 1 Introduction ......................................................................................................................... 6 1.1 Predation in the microbial community ........................................................................... 6 1.2 Bacterial predators .......................................................................................................... 7 1.3 Phases of predation ......................................................................................................... 8 1.3.1 Seeking prey ......................................................................................................... 9 1.3.2 Prey recognition
    [Show full text]
  • Data Driven Modelling of a Chemically Defined Growth Medium For
    bioRxiv preprint doi: https://doi.org/10.1101/548891; this version posted February 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Data Driven Modelling of a Chemically Defined Growth Medium for Cupriavidus necator H16 Christopher C. Azubuike, Martin G. Edwards, Angharad M. R. Gatehouse and Thomas P. Howard School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle-upon-Tyne, United Kingdom Cupriavidus necator is a Gram-negative soil bacterium of ma- as a chassis capable of exploiting renewable feedstock for jor biotechnological interest. It is a producer of the bioplas- the biosynthesis of valuable products (7). More widely, the tic 3-polyhydroxybutyrate, has been exploited in bioremedia- genus is known to encode genes facilitating metabolism of tion processes, and it’s lithoautotrophic capabilities suggest it environmental pollutants such as aromatics and heavy metals may function as a microbial cell factory upgrading renewable making it a potential microbial remediator (8, 9, 17–19). resources to fuels and chemicals. It remains necessary however to develop appropriate experimental resources to permit con- As with any bacterium, the development of C. necator as trolled bioengineering and system optimisation of this micro- an industrial chassis requires appropriate tools for studying bial chassis. A key resource for physiological, biochemical and and engineering the organism. One of these resources is metabolic studies of any microorganism is a chemically defined the availability of a characterised, chemically defined growth growth medium.
    [Show full text]
  • Draft Genome of a Heavy-Metal-Resistant Bacterium, Cupriavidus Sp
    Korean Journal of Microbiology (2020) Vol. 56, No. 3, pp. 343-346 pISSN 0440-2413 DOI https://doi.org/10.7845/kjm.2020.0061 eISSN 2383-9902 Copyright ⓒ 2020, The Microbiological Society of Korea Draft genome of a heavy-metal-resistant bacterium, Cupriavidus sp. strain SW-Y-13, isolated from river water in Korea Kiwoon Baek , Young Ho Nam , Eu Jin Chung , and Ahyoung Choi* Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Republic of Korea 강물에서 분리한 중금속 내성 세균 Cupriavidus sp. SW-Y-13 균주의 유전체 해독 백기운 ・ 남영호 ・ 정유진 ・ 최아영* 국립낙동강생물자원관 담수생물연구본부 (Received July 6, 2020; Revised September 18, 2020; Accepted September 18, 2020) Cupriavidus sp. strain SW-Y-13 is an aerobic, Gram-negative, found to survive in close association with pollution-causing rod-shaped bacterium isolated from river water in South Korea, heavy metals, for example, Cupriavidus metallidurans, which in 2019. Its draft genome was produced using the PacBio RS II successfully grows in the presence of Cu, Hg, Ni, Ag, Cd, Co, platform and is thought to consist of five circular chromosomes Zn, and As (Goris et al., 2001; Vandamme and Coenye, 2004; with a total of 7,307,793 bp. The genome has a G + C content Janssen et al., 2010). Several bacteria found in polluted of 63.1%. Based on 16S rRNA sequence similarity, strain SW-Y-13 is most closely related to Cupriavidus metallidurans environments have been shown to adapt to the presence of toxic (98.4%). Genome annotation revealed that the genome is heavy metals. Identification of novel bacterial mechanisms comprised of 6,613 genes, 6,536 CDSs, 12 rRNAs, 61 tRNAs, facilitating growth in heavy-metal-polluted environments and 4 ncRNAs.
    [Show full text]
  • Cupriavidus Cauae Sp. Nov., Isolated from Blood of an Immunocompromised Patient
    TAXONOMIC DESCRIPTION Kweon et al., Int. J. Syst. Evol. Microbiol. 2021;71:004759 DOI 10.1099/ijsem.0.004759 Cupriavidus cauae sp. nov., isolated from blood of an immunocompromised patient Oh Joo Kweon1†, Wenting Ruan2†, Shehzad Abid Khan2, Yong Kwan Lim1, Hye Ryoun Kim1, Che Ok Jeon2,* and Mi- Kyung Lee1,* Abstract A novel Gram- stain- negative, facultative aerobic and rod- shaped bacterium, designated as MKL-01T and isolated from the blood of immunocompromised patient, was genotypically and phenotypically characterized. The colonies were found to be creamy yellow and convex. Phylogenetic analysis based on 16S rRNA gene and whole-genome sequences revealed that strain MKL-01T was most closely related to Cupriavidus gilardii LMG 5886T, present within a large cluster in the genus Cupriavidus. The genome sequence of strain MKL-01T showed the highest average nucleotide identity value of 92.1 % and digital DNA–DNA hybridization value of 44.8 % with the closely related species C. gilardii LMG 5886T. The genome size of the isolate was 5 750 268 bp, with a G+C content of 67.87 mol%. The strain could grow at 10–45 °C (optimum, 37–40 °C), in the presence of 0–10 % (w/v) NaCl (optimum, 0.5%) and at pH 6.0–10.0 (optimum, pH 7.0). Strain MKL-01T was positive for catalase and negative for oxidase. The major fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c and/or C16 : 1 ω6c/C16 : 1 ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c).
    [Show full text]
  • Phosphoglycolate Salvage in a Chemolithoautotroph Using the Calvin Cycle
    Phosphoglycolate salvage in a chemolithoautotroph using the Calvin cycle Nico J. Claassensa,1, Giovanni Scarincia,1, Axel Fischera, Avi I. Flamholzb, William Newella, Stefan Frielingsdorfc, Oliver Lenzc, and Arren Bar-Evena,2 aSystems and Synthetic Metabolism Lab, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; bDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; and cInstitut für Chemie, Physikalische Chemie, Technische Universität Berlin, 10623 Berlin, Germany Edited by Donald R. Ort, University of Illinois at Urbana–Champaign, Urbana, IL, and approved July 24, 2020 (received for review June 14, 2020) Carbon fixation via the Calvin cycle is constrained by the side In the cyanobacterium Synechocystis sp. PCC6803, gene dele- activity of Rubisco with dioxygen, generating 2-phosphoglycolate. tion studies were used to demonstrate the activity of two pho- The metabolic recycling of phosphoglycolate was extensively torespiratory routes in addition to the C2 cycle (5, 8). In the studied in photoautotrophic organisms, including plants, algae, glycerate pathway, two glyoxylate molecules are condensed to and cyanobacteria, where it is referred to as photorespiration. tartronate semialdehyde, which is subsequently reduced to glyc- While receiving little attention so far, aerobic chemolithoautotro- erate and phosphorylated to 3PG (Fig. 1). Alternatively, in the phic bacteria that operate the Calvin cycle independent of light oxalate decarboxylation pathway, glyoxylate is oxidized
    [Show full text]
  • Transcriptome Differences Between Cupriavidus Necator NH9 Grown with 3-Chlorobenzoate and That Grown with Benzoate
    Transcriptome differences between Cupriavidus necator NH9 grown with 3-chlorobenzoate and that grown with benzoate Ryota Moriuchi Shizuoka Daigaku Hideo Dohra Shizuoka Daigaku Yu Kanesaki Shizuoka Daigaku Naoto Ogawa ( [email protected] ) Shizuoka Daigaku Research article Keywords: 3-chlorobenzoate, Aromatic degradation, Benzoate, Chemotaxis, Cupriavidus, RNA-seq, Stress response, Transcriptome, Transporter Posted Date: November 10th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-50641/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Bioscience, Biotechnology, and Biochemistry on March 15th, 2021. See the published version at https://doi.org/10.1093/bbb/zbab044. Page 1/22 Abstract Background Aromatic compounds derived from human activities are often released into the environment. Many of them, especially halogenated aromatics, are persistent in nature and pose threats to organisms. Therefore, the microbial degradation of these compounds has been studied intensively. Our laboratory has studied the expression of genes in Cupriavidus necator NH9 involved in the degradation of 3-chlorobenzoate (3-CB), a model compound for studies on bacterial degradation of chlorinated aromatic compounds. In this study aimed at exploring how this bacterium has adapted to the utilization of chlorinated aromatic compounds, we performed RNA-seq analysis of NH9 cells cultured with 3-CB, benzoate (BA), or citric acid (CA). The
    [Show full text]
  • Heterologous Hydrogenase Overproduction Systems for Biotechnology—An Overview
    International Journal of Molecular Sciences Review Heterologous Hydrogenase Overproduction Systems for Biotechnology—An Overview Qin Fan 1 , Peter Neubauer 1 , Oliver Lenz 2 and Matthias Gimpel 1,* 1 Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; [email protected] (Q.F.); [email protected] (P.N.) 2 Department of Chemistry, Technical University of Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; [email protected] * Correspondence: [email protected] Received: 14 July 2020; Accepted: 14 August 2020; Published: 16 August 2020 Abstract: Hydrogenases are complex metalloenzymes, showing tremendous potential as H2-converting redox catalysts for application in light-driven H2 production, enzymatic fuel cells and H2-driven cofactor regeneration. They catalyze the reversible oxidation of hydrogen into protons and electrons. The apo-enzymes are not active unless they are modified by a complicated post-translational maturation process that is responsible for the assembly and incorporation of the complex metal center. The catalytic center is usually easily inactivated by oxidation, and the separation and purification of the active protein is challenging. The understanding of the catalytic mechanisms progresses slowly, since the purification of the enzymes from their native hosts is often difficult, and in some case impossible. Over the past decades, only a limited number of studies report the homologous or heterologous production of high yields of hydrogenase. In this review, we emphasize recent discoveries that have greatly improved our understanding of microbial hydrogenases. We compare various heterologous hydrogenase production systems as well as in vitro hydrogenase maturation systems and discuss their perspectives for enhanced biohydrogen production.
    [Show full text]
  • The Manufacturing Abilities of Hydrogen-Oxidizing Bacteria
    water research 68 (2015) 467e478 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/watres Review Resource recovery from used water: The manufacturing abilities of hydrogen-oxidizing bacteria * Silvio Matassa a,b, , Nico Boon a, Willy Verstraete a,b a Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium b Avecom NV, Industrieweg 122P, 9032 Wondelgem, Belgium article info abstract Article history: Resources in used water are at present mainly destroyed rather than reused. Recovered Received 18 July 2014 nutrients can serve as raw material for the sustainable production of high value bio- Received in revised form products. The concept of using hydrogen and oxygen, produced by green or off-peak en- 10 October 2014 ergy by electrolysis, as well as the unique capability of autotrophic hydrogen oxidizing Accepted 11 October 2014 bacteria to upgrade nitrogen and minerals into valuable microbial biomass, is proposed. Available online 22 October 2014 Both axenic and mixed microbial cultures can thus be of value to implement re-synthesis of recovered nutrients in biomolecules. This process can become a major line in the sus- Keywords: tainable “water factory” of the future. Hydrogen-oxidizing bacteria © 2014 Elsevier Ltd. All rights reserved. Single cell protein Polyhydroxybutyrate Resource recovery Wastewater treatment Contents 1. Introduction . 468 2. Hydrogen-oxidizing bacteria . 468 2.1. Bio-products from hydrogen-oxidizing bacteria . 469 2.2. Stoichiometry of hydrogen-oxidizing bacteria . 469 2.3. PHB: from bio-polymers to prebiotic . 469 2.4. Stoichiometry of PHB formation in hydrogen-oxidizing bacteria . 469 2.5.
    [Show full text]
  • Investigation of Itaconate Metabolism in Cupriavidus Necator H16
    Extended Abstract Journal of Genetics and DNA Research Volume 5:3, 2021 Open Access Investigation of itaconate metabolism in Cupriavidus Necator H16 Samuel Yemofio University of Nottingham, UK, E-mail: [email protected] Abstract Recent challenges of pollution and climate change in our It is, therefore, necessary for the current generation to identify environment stems from the over-dependence on fossil fuel various sustainable and cleaner processes for chemical, fuel through the extraction, processing, and exploitation for and energy production. petrochemical-based products. This has caused severe havoc This study revealed that other genes can be involved in to the environment and its natural habitats, leading to deaths itaconate degradation and therefore further research to and displacements into unfavorable conditions. Researchers investigate the function of these genes is required. in the US Department of Energy (DoE) in 2004 identified In Australia, RLN species Pratylenchus thornei and P. itaconate, one of the twelve attractive platform chemicals, as neglectus are particularly important biotic constraints to wheat a potential chemical suitable for bio-based industrial products production. The most efficient and effective strategy for using biological routes. Previous research has also shown HPLC. that itaconate has the potential to replace petroleumbased Cupriavidus necator H16 (also known as Ralstonia eutropha products such as petrochemical-based acrylic and methacrylic H16) is a Gram-negative bacterium that belongs to the order acid; and detergents, surface active agents and Burkholderiales, class Betaproteobacteria. H16 has been biosynthesized plastics for industrial applications with bio- isolated from a soil near Goettingen, Germany, almost 60 based products. This can be achieved through biological or years ago (Schlegel et al.
    [Show full text]
  • And NAD+-Dependent Formate Dehydrogenase from Cupriavidus Necator
    inorganics Review Structure: Function Studies of the Cytosolic, Mo- and NAD+-Dependent Formate Dehydrogenase from Cupriavidus necator Russ Hille 1,*, Tynan Young 2, Dimitri Niks 1, Sheron Hakopian 3, Timothy K. Tam 2, Xuejun Yu 4, Ashok Mulchandani 5 and Gregor M. Blaha 1,* 1 Department of Biochemistry, University of California, Riverside, CA 92521, USA; [email protected] 2 Department of Biochemistry and the Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, CA 92521, USA; [email protected] (T.Y.); [email protected] (T.K.T.) 3 Department of Biochemistry and the Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA; [email protected] 4 Bioengineering Graduate Program, University of California, Riverside, CA 92521, USA; [email protected] 5 Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; [email protected] * Correspondence: [email protected] (R.H.); [email protected] (G.M.B.); Tel.: +1-951-827-6354 (R.H.); +1-951-827-4294 (G.M.B.) Received: 19 May 2020; Accepted: 28 June 2020; Published: 6 July 2020 Abstract: Here, we report recent progress our laboratories have made in understanding the maturation and reaction mechanism of the cytosolic and NAD+-dependent formate dehydrogenase from Cupriavidus necator. Our recent work has established that the enzyme is fully capable of catalyzing the reverse of the physiological reaction, namely, the reduction of CO2 to formate using NADH as a source of reducing equivalents. The steady-state kinetic parameters in the forward and reverse directions are consistent with the expected Haldane relationship.
    [Show full text]
  • Engineering NADH/NAD+ Ratio in Halomonas Bluephagenesis for Enhanced Production of Polyhydroxyalkanoates (PHA)
    Delft University of Technology Engineering NADH/NAD+ ratio in Halomonas bluephagenesis for enhanced production of polyhydroxyalkanoates (PHA) Ling, Chen; Qiao, Guan Qing; Shuai, Bo Wen; Olavarria, Karel; Yin, Jin; Xiang, Rui Juan; Song, Kun Nan; Shen, Yun Hao; Guo, Yingying; Chen, Guo Qiang DOI 10.1016/j.ymben.2018.09.007 Publication date 2018 Document Version Accepted author manuscript Published in Metabolic Engineering Citation (APA) Ling, C., Qiao, G. Q., Shuai, B. W., Olavarria,+ K., Yin, J., Xiang, R. J., Song, K. N., Shen, Y. H., Guo, Y., & Chen, G. Q. (2018). Engineering NADH/NAD ratio in Halomonas bluephagenesis for enhanced production of polyhydroxyalkanoates (PHA). Metabolic Engineering, 49, 275-286. https://doi.org/10.1016/j.ymben.2018.09.007 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Author’s Accepted Manuscript Engineering NADH/NAD+ Ratio
    [Show full text]