Ionization Induced Plasma Grating and Its Applications in Strong-Field Ionization Measurements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Excitation Temperature, Degree of Ionization of Added Iron Species, and Electron Density in an Exploding Thin Film Plasma
SpectmchimiccrACIO. Vol. MB. No. II. Pp.10814096. 1981. 0584-8547/81/111081-16SIZ.CNI/O Printedin Great Britain. PerpmonPress Ltd. Excitation temperature, degree of ionization of added iron species, and electron density in an exploding thin film plasma S. Y. SUH* and R. D. SACKS Department of Chemistry, University of Michigan, Ann Arbor, Ml 48109, U.S.A. (Received 7 April 1981) Abstract-Time and spatially resolved spectra of a cylindrically symmetric exploding thin film plasma were obtained with a rotating mirror camera and astigmatic imaging. These spectra were deconvoluted to obtain relative spectral emissivity profiles for nine Fe(H) and two Fe(I) lines. The effective (electronic) excitation temperature at various positions in the plasma and at various times during the first current halfcycle was computed from the Fe(H) emissivity values using the Boltzmann graphical method. The Fe(II)/Fe(I) emissivity ratios together with the temperature were used to determine the degree of ionization of Fe. Finally, the electron density was estimated from the Saha equilibrium. Electronic excitation temperatures range from lO,OOO-15,OOOKnear the electrode surface at peak discharge current to 700&10.000K at 6-10 mm above the electrode surface at the first current zero. Corresponding electron densities range from 10’7-10u cm-’ at peak current to 10’~-10’6cm-3 near zero current. Error propagation and criteria for thermodynamic equilibrium are discussed. 1. IN-~R~DU~~ION THE HIGH-TEMPERATURE plasmas produced by the rapid electrical vaporization of Ag thin films recently have been used as atomization cells and excitation sources for the direct determination of selected elements in micro-size powder samples [ 11. -
Physical Mechanism of Superconductivity
Physical Mechanism of Superconductivity Part 1 – High Tc Superconductors Xue-Shu Zhao, Yu-Ru Ge, Xin Zhao, Hong Zhao ABSTRACT The physical mechanism of superconductivity is proposed on the basis of carrier-induced dynamic strain effect. By this new model, superconducting state consists of the dynamic bound state of superconducting electrons, which is formed by the high-energy nonbonding electrons through dynamic interaction with their surrounding lattice to trap themselves into the three - dimensional potential wells lying in energy at above the Fermi level of the material. The binding energy of superconducting electrons dominates the superconducting transition temperature in the corresponding material. Under an electric field, superconducting electrons move coherently with lattice distortion wave and periodically exchange their excitation energy with chain lattice, that is, the superconducting electrons transfer periodically between their dynamic bound state and conducting state, so the superconducting electrons cannot be scattered by the chain lattice, and supercurrent persists in time. Thus, the intrinsic feature of superconductivity is to generate an oscillating current under a dc voltage. The wave length of an oscillating current equals the coherence length of superconducting electrons. The coherence lengths in cuprates must have the value equal to an even number times the lattice constant. A superconducting material must simultaneously satisfy the following three criteria required by superconductivity. First, the superconducting materials must possess high – energy nonbonding electrons with the certain concentrations required by their coherence lengths. Second, there must exist three – dimensional potential wells lying in energy at above the Fermi level of the material. Finally, the band structure of a superconducting material should have a widely dispersive antibonding band, which crosses the Fermi level and runs over the height of the potential wells to ensure the normal state of the material being metallic. -
Ionization Balance in EBIT and Tokamak Plasmas N
Ionization balance in EBIT and tokamak plasmas N. J. Peacock, R. Barnsley, M. G. O’Mullane, M. R. Tarbutt, D. Crosby et al. Citation: Rev. Sci. Instrum. 72, 1250 (2001); doi: 10.1063/1.1324755 View online: http://dx.doi.org/10.1063/1.1324755 View Table of Contents: http://rsi.aip.org/resource/1/RSINAK/v72/i1 Published by the American Institute of Physics. Related Articles Bragg x-ray survey spectrometer for ITER Rev. Sci. Instrum. 83, 10E126 (2012) Novel energy resolving x-ray pinhole camera on Alcator C-Mod Rev. Sci. Instrum. 83, 10E526 (2012) Measurement of electron temperature of imploded capsules at the National Ignition Facility Rev. Sci. Instrum. 83, 10E121 (2012) South pole bang-time diagnostic on the National Ignition Facility (invited) Rev. Sci. Instrum. 83, 10E119 (2012) Temperature diagnostics of ECR plasma by measurement of electron bremsstrahlung Rev. Sci. Instrum. 83, 073111 (2012) Additional information on Rev. Sci. Instrum. Journal Homepage: http://rsi.aip.org Journal Information: http://rsi.aip.org/about/about_the_journal Top downloads: http://rsi.aip.org/features/most_downloaded Information for Authors: http://rsi.aip.org/authors Downloaded 08 Aug 2012 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 72, NUMBER 1 JANUARY 2001 Ionization balance in EBIT and tokamak plasmas N. J. Peacock,a) R. Barnsley,b) and M. G. O’Mullane Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom M. R. Tarbutt, D. Crosby, and J. D. Silver The Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom J. -
How the Saha Ionization Equation Was Discovered
How the Saha Ionization Equation Was Discovered Arnab Rai Choudhuri Department of Physics, Indian Institute of Science, Bangalore – 560012 Introduction Most youngsters aspiring for a career in physics research would be learning the basic research tools under the guidance of a supervisor at the age of 26. It was at this tender age of 26 that Meghnad Saha, who was working at Calcutta University far away from the world’s major centres of physics research and who never had a formal training from any research supervisor, formulated the celebrated Saha ionization equation and revolutionized astrophysics by applying it to solve some long-standing astrophysical problems. The Saha ionization equation is a standard topic in statistical mechanics and is covered in many well-known textbooks of thermodynamics and statistical mechanics [1–3]. Professional physicists are expected to be familiar with it and to know how it can be derived from the fundamental principles of statistical mechanics. But most professional physicists probably would not know the exact nature of Saha’s contributions in the field. Was he the first person who derived and arrived at this equation? It may come as a surprise to many to know that Saha did not derive the equation named after him! He was not even the first person to write down this equation! The equation now called the Saha ionization equation appeared in at least two papers (by J. Eggert [4] and by F.A. Lindemann [5]) published before the first paper by Saha on this subject. The story of how the theory of thermal ionization came into being is full of many dramatic twists and turns. -
Superconductivity
Superconductivity • Superconductivity is a phenomenon in which the resistance of the material to the electric current flow is zero. • Kamerlingh Onnes made the first discovery of the phenomenon in 1911 in mercury (Hg). • Superconductivity is not relatable to periodic table, such as atomic number, atomic weight, electro-negativity, ionization potential etc. • In fact, superconductivity does not even correlate with normal conductivity. In some cases, a superconducting compound may be formed from non- superconducting elements. 2 1 Critical Temperature • The quest for a near-roomtemperature superconductor goes on, with many scientists around the world trying different materials, or synthesizing them, to raise Tc even higher. • Silver, gold and copper do not show conductivity at low temperature, resistivity is limited by scattering and crystal defects. 3 Critical Temperature 4 2 Meissner Effect • A superconductor below Tc expels all the magnetic field from the bulk of the sample perfectly diamagnetic substance Meissner effect. • Below Tc a superconductor is a perfectly diamagnetic substance (χm = −1). • A superconductor with little or no magnetic field within it is in the Meissner state. 5 Levitating Magnet • The “no magnetic field inside a superconductor” levitates a magnet over a superconductor. • A magnet levitating above a superconductor immersed in liquid nitrogen (77 K). 6 3 Critical Field vs. Temperature 7 Penetration Depth • The field at a distance x from the surface: = − : Penetration depth • At the critical temperature, the penetration length is infinite and any magnetic field can penetrate the sample and destroy the superconducting state. • Near absolute zero of temperature, however, typical penetration depths are 10–100 nm. 8 4 Type I Superconductors • Meissner state breaks down abruptly. -
1 Introduction
i i Karl-Heinz Spatschek: High Temperature Plasmas — Chap. spatscheck0415c01 — 2011/9/1 — page 1 — le-tex i i 1 1 Introduction A plasma is a many body system consisting of a huge number of interacting (charged and neutral) particles. More precisely, one defines a plasma as a quasineu- tral gas of charged and neutral particles which exhibits collective behavior. In many cases, one considers quasineutral gases consisting of charged particles, namely electrons and positively charged ions of one species. Plasmas may contain neutral atoms. In this case, the plasma is called partially or incompletely ionized. Other- wise the plasma is said to be completely or fully ionized. The term plasma is not limited to the most common electron–ion case. One may have electron–positron plasmas, quark-gluon plasmas, and so on. Semiconductors contain plasma con- sisting of electrons and holes. Most of the matter in the universe occurs in the plasma state. It is often said that 99% of the matter in the universe is in the plasma state. However, this estimate may not be very accurate. Remember the discussion on dark matter. Nevertheless, the plasma state is certainly dominating the universe. Modern plasma physics emerged in 1950s, when the idea of thermonuclear re- actor was introduced. Fortunately, modern plasma physics completely dissociated from weapons development. The progression of modern plasma physics can be retraced from many monographs, for example, [1–15]. In simple terms, plasmas can be characterized by two parameters, namely, charged particle density n and temperature T. The density varies over roughly 28 6 34 3 orders of magnitude, for example, from 10 to 10 m . -
Thermodynamics Guide Definitions, Guides, and Tips Definitions What Each Thermodynamic Value Means Enthalpy of Formation
Thermodynamics Guide Definitions, guides, and tips Definitions What each thermodynamic value means Enthalpy of Formation Definition The enthalpy required or released during formation of a molecule from its elements. H2(g) + ½O2(g) → H2O(g) ∆Hºf(H2O) Sign: ∆Hºf can be positive or negative. Direction: From elements to product. Phase: The phase of the product being formed can be anything, but the elemental starting materials must be in their elemental standard phase. Notes: • RC&O Appendix 1 collects these values. • Limited by what values are experimentally available. • Knowing the elemental form of each atom is helpful. Ionization Enthalpy (IE) Definition The enthalpy required to remove one electron from an atom or ion. Li(g) → Li+(g) + e– IE(Li) Sign: IE is always positive — removing electrons from proximity of nucleus requires enthalpy input Direction: IE goes from atom to ion/electron pair. Phase: IE is a gas phase property. Reactants and products must be gas phase. Notes: • Phase descriptors are not generally given to an electron. • Ionization energy is taken to be identical to ionization enthalpy. • The first IE of Li(g) is shown above. A second, third, or higher IE can also be determined. Removing each additional electron costs even more enthalpy. Electron Affinity (EA) Definition How much enthalpy is gained when an electron is added to an atom or ion. (How much an atom “wants” an electron). Cl(g) + e– → Cl–(g) EA(Cl) Sign: EA is always positive, but the enthalpy is negative: ∆Hºrxn < 0. This is because of how we describe the property as an “affinity”. -
Thermodynamic State, Specific Heat, and Enthalpy Function 01 Saturated UO Z Vapor Between 3000 Kand 5000 K
Februar 1977 KFK 2390 Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter Thermodynamic State, Specific Heat, and Enthalpy Function 01 Saturated UO z Vapor between 3000 Kand 5000 K H. U. Karow Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor GESELLSCHAFT FÜR KERNFORSCHUNG M. B. H. KARLSRUHE KERNFORSCHUNGS ZENTRUM KARLSRUHE KFK 2390 Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter Thermodynamic State, Specific Heat, and Enthalpy Function of Saturated U0 Vapor between 3000 K 2 and 5000 K H. U. Karow Gesellschaft für Kernforschung mbH., Karlsruhe A summarized version of s will be at '7th Symposium on Thermophysical Properties', held the NBS at Gaithe , 1977 Thermodynamic State, Specific Heat, and Enthalpy Function of Saturated U0 2 Vapor between 3000 K and 5000 K Abstract Reactor safety analysis requires knowledge of the thermophysical properties of molten oxide fuel and of the thermal equation-of state of oxide fuel in thermodynamic liquid-vapor equilibrium far above 3000 K. In this context, the thermodynamic state of satu rated U0 2 fuel vapor, its internal energy U(T), specific heats Cv(T) and C (T), and enthalpy functions HO(T) and HO(T)-Ho have p 0 been determined by means of statistical mechanics in the tempera- ture range 3000 K .•• 5000 K. The discussion of the thermodynamic state includes the evaluation of the plasma state and its contri bution to the caloric variables-of-state of saturated oxide fuel vapor. Because of the extremely high ion and electron density due to thermal ionization, the ionized component of the fuel vapor does no more represent a perfect kinetic plasma - different from the nonionized neutral vapor component with perfect gas kinetic behavior up to about 5000 K. -
2016 SPRING Semester Midterm Examination for General Chemistry I
2016 SPRING Semester Midterm Examination For General Chemistry I Date: April 20 (Wed), Time Limit: 19:00 ~ 21:00 Write down your information neatly in the space provided below; print your Student ID in the upper right corner of every page. Professor Class Student I.D. Number Name Name Problem points Problem points TOTAL pts 1 /8 6 /12 2 /9 7 /8 3 /6 8 /15 /100 4 /8 9 /16 5 /8 10 /10 ** This paper consists of 15 sheets with 10 problems (page 13 - 14: constants & periodic table, page 15: claim form). Please check all page numbers before taking the exam. Write down your work and answers in the Answer sheet. Please write down the unit of your answer when applicable. You will get 30% deduction for a missing unit. NOTICE: SCHEDULES on RETURN and CLAIM of the MARKED EXAM PAPER. (채점답안지 분배 및 이의신청 일정) 1. Period, Location, and Procedure 1) Return and Claim Period: May 2 (Mon, 19: 00 ~ 20:00 p.m.) 2) Location: Room for quiz session 3) Procedure: Rule 1: Students cannot bring their own writing tools into the room. (Use a pen only provided by TA) Rule 2: With or without claim, you must submit the paper back to TA. (Do not go out of the room with it) If you have any claims on it, you can submit the claim paper with your opinion. After writing your opinions on the claim form, attach it to your mid-term paper with a stapler. Give them to TA. (The claim is permitted only on the period. -
Phenomenological Review on Quark–Gluon Plasma: Concepts Vs
Review Phenomenological Review on Quark–Gluon Plasma: Concepts vs. Observations Roman Pasechnik 1,* and Michal Šumbera 2 1 Department of Astronomy and Theoretical Physics, Lund University, SE-223 62 Lund, Sweden 2 Nuclear Physics Institute ASCR 250 68 Rez/Prague,ˇ Czech Republic; [email protected] * Correspondence: [email protected] Abstract: In this review, we present an up-to-date phenomenological summary of research developments in the physics of the Quark–Gluon Plasma (QGP). A short historical perspective and theoretical motivation for this rapidly developing field of contemporary particle physics is provided. In addition, we introduce and discuss the role of the quantum chromodynamics (QCD) ground state, non-perturbative and lattice QCD results on the QGP properties, as well as the transport models used to make a connection between theory and experiment. The experimental part presents the selected results on bulk observables, hard and penetrating probes obtained in the ultra-relativistic heavy-ion experiments carried out at the Brookhaven National Laboratory Relativistic Heavy Ion Collider (BNL RHIC) and CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) accelerators. We also give a brief overview of new developments related to the ongoing searches of the QCD critical point and to the collectivity in small (p + p and p + A) systems. Keywords: extreme states of matter; heavy ion collisions; QCD critical point; quark–gluon plasma; saturation phenomena; QCD vacuum PACS: 25.75.-q, 12.38.Mh, 25.75.Nq, 21.65.Qr 1. Introduction Quark–gluon plasma (QGP) is a new state of nuclear matter existing at extremely high temperatures and densities when composite states called hadrons (protons, neutrons, pions, etc.) lose their identity and dissolve into a soup of their constituents—quarks and gluons. -
Lecture 8: Statistical Equilibria, Saha Equation
Statistical Equilibria: Saha Equation We are now going to consider the statistics of equilibrium. Specifically, suppose we let a system stand still for an extremely long time, so that all processes can come into balance. We then measure the fraction of particles that are in each of several states (e.g., if we have a pure hydrogen gas, we might want to know the ionization fraction). How can we compute this fraction? We’ll take a look at this in several different ways. We will then step back and ask ourselves when these equilibrium formulae do not apply. This is important! To paraphrase Clint Eastwood, “An equation’s got to know its limitations”. In virtually all astronomical problems we deal with approximations, so we always need a sense of when those approximations fail. This serves a double purpose: it keeps us from making errors, but it also keeps us from applying too complex an approach to a simple problem. Let’s start out with a simple case. We consider a column of isothermal gas (temperature T ) in a constant gravitational acceleration g. Each molecule has mass m. If we can treat this like an ideal gas, Ask class: how do we figure out how the pressure vary with height h? An ideal gas has pressure P = nkT , where n is the number density. In equilibrium the pressure gradient balances the weight of the gas, so dP/dh = −ρg. Using ρ = nm = P m/kT and the constancy of T , we have dP/dh = −(mg/kT )P , so P = P0 exp(−mgh/kT ), where P0 is defined as the pressure at h = 0. -
Ionization Phenomena in a Gas-Particle Plasma
Reprinted from Printed in V.SA. THE PHYSICS OF FLUIDS VOLUME 9. NUMBER 12 DECEMBER 1966 Ionization Phenomena in a Gas-Particle Plasma EDWARD G. GIBSON* Daniel and Florence Guggenheim Jet Propulsion Center, California Institute of Technology, Pasadena, California (Received 15 December 1965; final manuscript received 1 September 1966) Particles in a plasma can appreciably change the electron density from the value it would assume if the particles were not present. The case of pure particle ionization, in which there is only thermionic emission from the particles and no gas ionization, is first considered. It is established that the potent ial and the charge distributions can be divided into a strong shielding regime, in which most of the free electrons are packed close to the particle surfaces in regions of high potential, and its direct opposite, a weak shielding regime. In both regimes, the free-electron content of the plasma is most readily altered by variations in the particle size, rather than in the work function or particle temper ature. The suppression of one form of ionization by the other when both particle and gas contribution to the electron density are comparable is next investigated. In the case of gaseous ionization enhance ment it is ShOWIl that, if the thermionically emitting particles are hotter than the gas, the electron temperature will also be higher than that of the gas and the gaseous ionization thereby enhanced. Lastly, it is ShOWIl that in some transient situations, the particles are able to control the time rate of change of the electron density. I.