Design and implementation of a modern algebraic manipulator for Celestial Mechanics Francesco Biscani January 30, 2008 “Design and implementation of a modern algebraic manipulator for Celestial Me- chanics”, by Francesco Biscani (
[email protected]), is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/). Copyright © 2007 by Francesco Biscani. Created with LYX and X TE EX. Dedicata alla memoria di Elisa. Summary¹ e goals of this research are the design and implementation of a modern and efficient algebraic manipulator specialised for Celestial Mechanics. Specialised algebraic manipulators are funda- mental tools both in classical Celestial Mechanics and in modern studies on the behaviour of dynamical systems, and they are routinely employed in such diverse tasks as the elaboration of theories of motion of celestial bodies, geodetical and terrestrial orientation studies, perturbation theories for artificial satellites and studies about the long-term evolution of the Solar System. Specialised manipulators for Celestial Mechanics are usually concerned with mathematical objects known as Poisson series (see Danby et al. [1966]), which are defined as multivariate Fourier series with multivariate Laurent series as coefficients: X ( ) cos P (i1y1 + i2y2 + ... + inyn) , i sin i where the Pi are multivariate polynomials. Poisson series manipulators have been developed continuously since the ’60s and today there are many different packages available (an incomplete list includes Herget and Musen [1959], Broucke and Garthwaite [1969], Jefferys [1970, 1972], Rom [1970], Bourne and Horton [1971], Babaev et al. [1980], Dasenbrock [1982], Richardson [1989], Abad and San-Juan [1994], Ivanova [1996], Chapront [2003b,a] and Gastineau and Laskar [2005]).