Ev3: A Library for Symbolic Computation in C++ using n-ary Trees Leo Liberti LIX, Ecole´ Polytechnique, 91128 Palaiseau, France (
[email protected]) 3 october 2003 Abstract Ev3 is a callable C++ library for performing symbolic computation (calculation of symbolic derivatives and various expression simplification). The purpose of this library is to furnish a fast means to use symbolic derivatives to third-party scientific software (e.g. nonlinear optimization, solution of nonlinear equations). It is small, easy to interface, even reasonably easy to change; it is written in C++ and the source code is available. One feature that makes Ev3 very efficient in algebraic manipulation is that the data structures are based on n-ary trees. 1 Introduction Computer Algebra Systems (CAS) have helped mathematicians, physicists, engineers and other scientists enormously since their appearance. CASes are extremely useful in performing complex symbolic calcu- lations quickly. They do not generally require particular programming skills, yet they manage to carry out numerical analysis, symbolic manipulation and graph plotting in 2 and 3 dimensions. The range of existing CASes is impressive, both commercially available (e.g. Mathematica, Maple, Matlab, Mathcad, Reduce, Mupad etc.) and as free software (e.g. Maxima, GAP, yacas, Singular, GiNaC etc.); however most of them (with the notable exception of GiNaC, see below) fall short on the external Application Programming Interface (API), i.e. it is difficult, or impossible in many cases, to create a program in a compiled language, say in C/C++ or Fortran, which can use the external CAS facilities. This is a serious hindrance for user applications with programming requirements that go beyond those offered by the CAS proprietary language, or for those applications that need to be coded in a compiled language for efficiency, but would still benefit from the CAS facilities.