Duvernay Formation – What Have We Learned So Far?
Total Page:16
File Type:pdf, Size:1020Kb
Integrated Reservoir Solutions DUVERNAY FORMATION – WHAT HAVE WE LEARNED SO FAR? 1 OUTLINE 1. Introduction 2. Reservoir Properties 3. Where next? 2 REGIONAL DEPOSITIONAL SETTING Modified from Geological Atlas of the Western Canada Sedimentary Basin 3 UPPER DEVONIAN STRATIGRAPHY Modified from Geological Atlas of the Western Canada Sedimentary Basin 4 DUVERNAY JIP - LOCATION MAP 5 DUVERNAY JIP – DATABASE Analyses completed or in-progress as of March 26, 2015 1431 Core Description (m) 604 Thin Section & Whole Thin Section 65 Scanning Electron Microscopy (FIB-SEM) 545 X-Ray Diffraction (XRD) 528 Basic Rock Properties (481 GRI, 41 CMS, 6 Nanopermeameter) 545 Total Organic Carbon/Rock Eval Pyrolysis (TOC/RE) 115 Vitrinite Reflectance (% Ro) 18 Oil Fingerprinting 26 Mercury Injection & Pore Size Distribution 172 Desorbed Gas Content 72 Desorbed Gas Composition 63 Adsorption Isotherm (Methane) 16 Mud Gas Isotopes 7 Chloride Determination 64 Geomechanics (45 Single-Stage, 19 Multi-Stage Mohr-Coulomb) 58 Capillary Suction Time (CST) & Roller Oven (RO) Fluid Sensitivity Analysis 29 Unpropped Fracture Conductivity 6 11 SARA Analysis (Saturates, Aromatics, Resins, and Asphaltenes) DUVERNAY CORE 7 RESERVOIR GEOLOGY • Shale basin – fine grained sediments, mostly variations on a silty mudstone • Variations of this rock type and the mineralogy are largely controlled by proximity to the reef complexes. *PROXIMAL TO REEF COMPLEX *DISTAL TO REEF COMPLEX Increase in carbonates Little or no carbonates More internal stratification (well Mostly massive to faintly laminated laminated) Increase in skeletal material Very minor skeletal material Moderate to intense bioturbation Minor to no bioturbation evident Decrease in organic content Organic-rich *Distal and proximal are used here as relative terms.8 DEPOSITIONAL ENVIRONMENTS Depositional Carbonate Bioturbation Oxic/Dysoxic/ Formation Rock Types TOC Environment Content Intensity Anoxic Siliceous calcareous shales, Distal Deep Moderate to Minor to Very carbonate mudstone, minor Oxic Ireton Basin High Moderate Low calcareous silty shales Calcareous and non-calcareous silty Fore Reef to mudstones, limestones (wackestones, Proximal Deep Oxic to Dysoxic packstones, minor grainstones), Basin limestone breccias (Floatstone) Abundant calcareous silty mudstones, Proximal to Mid Dysoxic to minor silty mudstones, limestones Deep Basin Anoxic (wackestones, minor packstones) Duvernay Calcareous and non-calcareous silty Mid to Distal Dysoxic to mudstones, very minor limestones Deep Basin Anoxic (wackestones) Abundant silty mudstones, minor Distal Deep calcareous silty mudstones and Anoxic Basin limestones (wackestones - carbonate mound facies) Majeau Distal Deep Moderate to Very 9 Siliceous calcareous shales Minor Oxic Lake Basin high low DEPOSITIONAL FRAMEWORK IRETON U. DUV M.CARB L. DUV COOKING LAKE MAJEAU LAKE 10 OUTLINE 1. Introduction 2. Reservoir Properties 3. Where next? 11 What Makes a Good Shale Reservoir? • Key attributes for successful shale plays: – Reservoir Thickness – Pressure Gradient – Lithology – Quartz + Carbonate content – Clay types/content – hydrated vs. desiccated, fluid compatibility – Porosity (Effective and Hydrocarbon-Filled) and Permeability – TOC/Thermal Maturity 12 RESERVOIR THICKNESS AND PRESSURE GRADIENTS 13 LITHOLOGY: QUARTZ+CARBONATE 14 LITHOLOGY: CLAY MINERALOGY AND WATER SATURATION BASICBASIC ROCKROCK PROPERTIESPROPERTIES (Bulk(CBW Volume Prediction) Water) 2014 Bulk Volume Salinity,Water (BVW) g/l Qv Assessment from XRD, meq/ml 2.64% BVW φ ρ φ φ φ φ ( CEC * (1 - ) * Grain ) / ( 100 * ) 18 Effective = Total - CBW 12 φ = φ * ( 0.6425 * S -0.5 + 0.22 ) * Q 16 CBW Total v 30,000 ppm Salinity ), percent ), T Clay Species Min CEC Max CEC Avg CEC φ 1410 Smectites 80 150 115 Assumes 30% mica in illite/mica * * Illites 10 40 25 (Mica CEC = 9 meq/100g) w 12 Kaolinites 1 10 5.5 y = 0.9707y =x 0 +.6561 2.6369x 8 Chlorites < 10 3 10 NA Shale Reservoirs, GRI 6 y = 1.007x + 0.7501 8 All JIP Wells, GRI 64 4 Filled Porosity (S Porosity Filled Marcellus, GRI y = 0.1996x - 2 2 All JIP Wells, GRI 0.75% BVW Water 0 Total (Interconnected) Porosity, percent Porosity, (Interconnected) Total 0 2 2 4 46 8 6 10 812 1410 16 1218 2014 HydrocarbonClay-Bound-Filled Water Porosity, (XRD), percent percent 15 POROSITY AND PERMEABILITY • Porosity types include: Classification of matrix pores in mudrocks 1. Interparticle micro-porosity between silt grains and clays Loucks et al. (2010) 2. Intraparticle micro-porosity Duvernay within skeletal grains in tighter limestones 3. Intercrystalline porosity and micro-porosity in limestones and mineralized fractures 4. Organic nano-porosity in bituminous mud matrix 16 PORE TYPES – ORGANIC NANO-PORES ONP 17 POROSITY AND PERMEABILITY BASIC ROCK PROPERTIES (Permeability vs Total Porosity) 1E+01 Matrix permeability (Km) supressed by oil saturation 1E+00 1E-01 1E-02 y = 1E-07x3.997 1E-03 1E-04 y = 6E-10x4.1213 1E-05 1E-06 1E-07 1E-08 Permeability, md Permeability, 1E-09 1E-10 1E-11 All JIP Wells, Km, GRI 1E-12 Plug: Absolute, Reservoir Stress All JIP Wells, Km(abs), GRI 1E-13 GRI: Crushed (20/35 mesh) All JIP Wells, Ka(abs), Plug 1E-14 0 2 4 6 8 10 12 14 16 Total (Interconnected) Porosity, percent 18 ORGANIC RICHNESS AND MATURITY GEOCHEMICAL PROPERTIES (Kerogen Quality) ], 30 2 700 25 Duvernay (U. & L.) 350 20 200 15 10 Organic Lean 5 50 mg hydrocarbon per gram rock gram per hydrocarbon mg Remaining Hydrocarbon Potential [S Potential Hydrocarbon Remaining 0 0 2 4 6 8 10 Total Organic Carbon, wt % 19 ORGANIC RICHNESS AND MATURITY GEOCHEMICAL PROPERTIES (Kerogen Type (only immature) and Maturity) 1000 Tmax used when the following conditions are met: 900 Oil Window S2> 0.5 mg/g Immature Type I 400C < Tmax < 580C 700 - 1200 800 Hydrogen Index (HI) is the normalized hydrogen content of the rock derived from the kerogen type. HI decreazses with rock maturity 700 and may be lowered by weathering or mineral matrix interaction. 600 Duvernay (U. & L.) Immature Type II 350 - 700 500 HI Averaged over 10C Tmax 400 Condensate - Wet Gas Window 300 Immature Mixed II - III Hydrogen Index, Hydrogen 200 - 350 200 Immature Type III Dry Gas Window 50-200 mg hydrocarbon per gram TOC gram per hydrocarbon mg 100 Immature Type IV <50 0 330 380 430 480 530 580 Maturity [based on TMax ], degrees C 20 OUTLINE 1. Introduction 2. Reservoir Properties 3. Where next? 21 FRACTURES: Mineralized Fractures 22 FRACTURES: Natural Fracture System Natural Natural Fracture Fracture Mineralized Fracturing Slickensides 23 OIL WINDOW AND EAST SHALE BASIN AVE. Ro: 0.78; Av. Tmax: 443 - OIL TOC: 4.77 wt.% TOC: 10.20 wt.% TOC: 6.11 wt.% TOC: 2.29 wt.% TOC: 8.97 wt.% TOC: 7.43 wt.% TOC: 2.79 wt.% EAST SHALE BASIN CORE 24 NORTH OF KAYBOB DUVERNAY + MAJEAU LAKE LONGVIEW SUNSET 13-25-69-20 ENERMAX PANTHER STURLS 14-2-69-21 25 NORTH OF KAYBOB DUVERNAY + MAJEAU LAKE Measured Total Zone Zone Effective Total Average Average Sample Sample Zone Tmax Formation Core Organic Average Avg Tmax ø ø Effective Total GR I.D. Type # o o ACOUSTILOGtop (m) % % C SP C (%) (%) ZoneINDUCTION ø (%) Zone ø B104 canister 1 2713.00 3.02 447 AB104 plug 1 2713.30 3.49 441 3.38 6.66 B106 canister 1 2715.00 2.92 444 AB106 plug 1 2715.30 2.81 442 2.33 4.24 AB109 plug 1 2717.00 2.69 443 3.69 6.97 B109 canister 1 2717.10 2.61 446 B113 canister 1 2719.00 2.99 446 AB113 plug 1 2719.33 3.23 447 3.47 5.78 B115 canister 1 2721.00 2.36 448 AB115 plug 1 2721.34 1.59 441 0.93 2.21 Duvernay B116 canister 2 2723.00 0.87 2.53 447 445 3.17 5.49 AB116 plug 2 2723.35 1.53 444 2.99 4.39 AB117 plug 2 2725.00 0.54 449 3.49 4.88 B117 canister 2 2725.19 1.19 448 AB129 plug 2 2727.00 0.90 443 4.96 7.24 B129 canister 2 2727.19 1.61 447 B130 canister 2 2729.00 4.01 448 AB130 plug 2 2729.30 3.68 446 2.24 5.58 B131 canister 2 2730.97 4.07 449 AB131 plug 2 2731.27 4.41 446 4.20 6.94 B132 canister 3 2732.97 1.14 446 AB132 plug 3 2733.27 1.07 439 5.33 8.39 B133 canister 3 2734.97 1.65 449 AB133 plug 3 2735.27 1.66 445 2.86 6.14 B134 canister 3 2736.97 1.94 450 AB134 plug 3 2737.32 1.64 446 3.03 7.42 Majeau LK B137 canister 3 2738.97 2.42 2.32 447 445 3.51 6.89 AB137 plug 3 2739.27 2.64 441 2.90 7.31 B138 canister 3 2741.00 2.78 448 AB138 plug 3 2741.30 3.42 439 1.97 4.97 B140 canister 3 2743.00 3.73 446 AB140 plug 3 2743.30 3.73 445 4.94 7.14 26 Core Laboratories Integrated Reservoir Solutions Division 27.