The Kutta-Joukowski Theorem

Total Page:16

File Type:pdf, Size:1020Kb

The Kutta-Joukowski Theorem Continuum Mechanics Lecture 7 Theory of 2D potential flows Prof. Romain Teyssier http://www.itp.uzh.ch/~teyssier Continuum Mechanics 20/05/2013 Romain Teyssier Outline - velocity potential and stream function - complex potential - elementary solutions - flow past a cylinder - lift force: Blasius formulae - Joukowsky transform: flow past a wing - Kutta condition - Kutta-Joukowski theorem Continuum Mechanics 20/05/2013 Romain Teyssier 2D potential flows From the Helmholtz decomposition, we have v = −→ φ + −→ −→A ∇ ∇× 2D flows are defined by ∂ ( )=0 and v =0 . z · z We have therefore −→A = ψez We consider in this chapter incompressible and irrotational flows. −→ v =0 ∆φ =0 ∇ · + B. C. −→ v =0 ∆ψ =0 v n =0 ∇× · We have two alternative but equivalent approaches. vx = ∂xφ vy = ∂yφ where the velocity potential satisfies the Laplace equation. vx = ∂yψ vy = ∂xψ where the stream function satisfies the Laplace equation. − In the potential case, the irrotational condition is satisfied automatically. In the stream function approach, this is the divergence free condition. Since both conditions are satisfied, both velocity fields are equal. Continuum Mechanics 20/05/2013 Romain Teyssier Isopotential curves and stream lines The velocity field is defined equivalently by two scalar fields vx = ∂xφ = ∂yψ v = ∂ φ = ∂ ψ y y − x They are conjugate functions that satisfy the Cauchy-Riemann relations. They are also harmonic functions (Laplace equation), with however different B. C. ∆ φ =0 in S with −→ φ n =0 on the boundary L ∇ · ∆ ψ =0 in S with −→ ψ t =0 on the boundary L or ψ = constant along L ∇ · dy vx Isopotential curves are defined by d φ =d x ∂ x φ +d y ∂ y φ =0 or = dx − vy dy vy Stream lines are defined by d ψ =d x ∂ x ψ +d y ∂ y ψ =0 or = dx vx Isopotential curves and stream lines are orthogonal to each other. ∂ ψ∂ φ + ∂ ψ∂ φ =( v )v +(+v )v =0 x x y y − y x x y Continuum Mechanics 20/05/2013 Romain Teyssier Complex potential and complex derivative We define the complex potential F (z)=φ(x, y)+iψ(x, y) where z = x + iy and i 2 = 1 . − From complex derivation theory, we know that any complex function F is differentiable if and only if the two functions Φ and ψ satisfy the Cauchy-Riemann relations. Such complex functions are called analytic. Luckily, since the velocity potential and the stream function are conjugate, the complex velocity potential is differentiable. dF We define the complex velocity w(z)= dz dF ∂F 1 ∂F where the complex derivative is defined as = = dz ∂x i ∂y We obtain w(z)=∂ φ + i∂ ψ = ∂ ψ i∂ φ = v iv x x y − y x − y 1 1 In cylindrical coordinates, we have v = ∂ φ = ∂ ψ v = ∂ φ = ∂ ψ r r r θ θ r θ − r and the complex velocity writes w(z)=v iv =(v iv )exp iθ x − y r − θ − Continuum Mechanics 20/05/2013 Romain Teyssier Uniform flow Complex potential Velocity field iα F (z)=U exp− z vx = U cos(α) Complex velocity vy = U sin(α) iα w(z)=U exp− Potential lines Streamlines Velocity potential φ = U cos(α)x + U sin(α)y Stream function ψ = U cos(α)y U sin(α)x − Continuum Mechanics 20/05/2013 Romain Teyssier Stagnation flow F (z)=Cz2 Streamlines are hyperbolae. φ = C(x2 y2) vx =2Cx − ψ =2Cxy vy = 2Cy − In polar coordinates 2 φ = Cr cos(2θ) This potential can also be used ψ = Cr2 sin(2θ) to describe a flow past a corner. Continuum Mechanics 20/05/2013 Romain Teyssier Flow past an edge Complex potential F (z)=c√z = cr1/2 expiθ/2 Velocity potential θ φ = c√r cos 2 Stream function θ ψ = c√r sin 2 Velocity field c 1 θ v = cos r 2 √r 2 c 1 θ v = sin θ 2 √r 2 The velocity field becomes infinite at the tip of the edge. Continuum Mechanics 20/05/2013 Romain Teyssier Flow around a source or a sink Complex potential Velocity field m m x x0 F (z)= log (z z0) v = − 2π − x 2π r2 Complex velocity m y y0 m 1 vy = − w(z)= 2π r2 2π z z0 − In polar coordinates m mθ m φ = log r ψ = v = 2π 2π r 2πr v The velocity divergence is zero everywhere −→ v = ∂ v + r =0 for r>0. ∇ · r r r We apply the divergence theorem to a circle centered on the singularity: v ndl = vr2πr = m L · 1 Rmax m2 dr m2 R The kinetic energy in the flow is v2dxdy = = log max 2 4π r 4π R S Rmin min In a real flow, the singularity is usually embedded inside the boundary condition. Continuum Mechanics 20/05/2013 Romain Teyssier Flow around a point vortex Complex potential Velocity field Ω Ω y y F (z)= i log (z z0) v = − 0 − 2π − x −2π r2 Complex velocity Ω x x0 Ω 1 vy = −2 w(z)= i 2π r − 2π z z0 − In polar coordinates Ωθ Ω Ω φ = ψ = log r vθ = 2π −2π 2πr v The velocity curl is zero everywhere −→ v = ∂ v + θ e =0 for r>0. ∇× r θ r z We apply the curl theorem on a circle centered on the singularity: v tdl = vθ2πr = Ω L · 1 Rmax m2 dr m2 R The kinetic energy in the flow is v2dxdy = = log max 2 4π r 4π R S Rmin min There is a direct analogy with the energy of dislocations in a solid. Continuum Mechanics 20/05/2013 Romain Teyssier Superposition principle and boundary conditions Like for the Navier equation for thermoelastic equilibrium problems, the Laplace equation for the potential and/or the stream function is a linear boundary value problem. When proper boundary conditions are imposed (no vorticity), the solution always exists and is unique.Two different solutions can be added linearly and the sum represent also a solution with the corresponding boundary conditions. The previous elementary solutions form a library that you can combine to build up more complex curl-free and divergence-free flows. Streamlines are perpendicular to potential curves. The velocity component normal to a streamline is always zero. Therefore, each streamline can be used to define a posteriori the boundary condition. You can therefore add up randomly complex potential to get any kind of analytical complex function. Then, you compute the streamlines. Then, you define the embedded body by picking any streamline. You finally get yourself a valid potential flow ! Continuum Mechanics 20/05/2013 Romain Teyssier Flow around a doublet We superpose a source and a sink m F (z)= (log (z z ) log (z + z )) 2π − 0 − 0 iα very close to each other z0 = exp Taylor expanding, we find m expiα µ expiα F (z) = − π z − z Parameter µ is called the doublet strength. For α =0 , we find µx µ cos θ φ = = − r2 − r µy µ sin θ Potential and streamlines are circles. ψ = = r2 r µ cos θ 1 µ sin θ The velocity field is given by v = ∂ φ = and v = ∂ φ = r r r2 θ r θ r2 r It is a dipole field v = µ r3 expiα The general form around an arbitrary center z0 is: F (z)= µ − z z − 0 Continuum Mechanics 20/05/2013 Romain Teyssier Flow past a cylinder We superpose a uniform flow and a doublet. µ F (z)=U z + ∞ x z y We find φ = U x + µ ψ = U y µ ∞ r2 ∞ − r2 µ The streamline ψ =0 is the circle r = U S S’ ∞ We reverse engineer the process. For a cylinder a radius a, if we define µ = U a2 ∞ then the potential flow around the cylinder is a2 F (z)=U z + ∞ z a2 a2 The velocity field is given by vr = U 1 cos θ vθ = U 1+ sin θ ∞ − r2 − ∞ r2 The flow has 2 stagnation points S and S’ given by r=a and θ=0 and π. The doublet is inside the embedded body, so there is no singularity in the flow. Continuum Mechanics 20/05/2013 Romain Teyssier Force acting on the cylinder Using the second Bernoulli theorem (curl-free, incompressible, no gravity), P 1 we know that the quantity H = + v 2 is uniform. 1 ρ 1 2 We thus have p + ρv2 = p + ρU 2 2 ∞ 2 ∞ The force acting on the cylinder is given by −→F = pndl − L On the cylinder, we have v r =0 and vθ = 2U sin θ − ∞ 1 The pressure field on the cylinder is thus p = p + ρU 2 1 4 sin2 θ ∞ 2 ∞ − Using n = (cos θ , sin θ ) we find: 2π 2π 1 2 2 4 3 Fx = ρU a 1 4 sin θ cos θdθ sin θ sin θ =0 −2 ∞ − ∝ − 3 0 0 2π 2π 1 2 2 4 3 Fy = ρU a 1 4 sin θ sin θdθ 3 cos θ cos θ =0 −2 ∞ − ∝ − 3 0 0 Exercise: compute the torque on the cylinder (use the cylinder axis). It is also zero ! Continuum Mechanics 20/05/2013 Romain Teyssier Flow past a cylinder with vorticity We superpose a uniform flow, a doublet and a vortex. a2 iΩ z F (z)=U z + log ∞ z − 2π a Streamlines are given by a2 Ω r ψ = U 1 y log ∞ − r2 − 2π a The cylinder r=a is still a proper boundary condition. a2 vr = U 1 cos θ ∞ − r2 a2 Ω vθ = U 1+ sin θ + − ∞ r2 2πr Ω On the cylinder, we have to stagnation point given by sin θ = s 4πU a or one stagnation point away from the cylinder if Ω < 4πU a ∞ − ∞ At the boundary, we have vθ = 2U (sin θ sin θs) − ∞ − Using the Bernoulli theorem and integrating the pressure field on the boundary, we can compute the force on the cylinder (exercise) Fx =0 Fy = ρU Ω − ∞ Continuum Mechanics 20/05/2013 Romain Teyssier The Magnus effect Topspin tennis ball trajectory curves down.
Recommended publications
  • Clearing Certain Misconception in the Common Explanations of the Aerodynamic Lift
    Clearing certain misconception in the common explanations of the aerodynamic lift Clearing certain misconception in the common explanations of the aerodynamic lift Navinder Singh,∗ K. Sasikumar Raja, P. Janardhan Physical Research Laboratory, Ahmedabad, India. [email protected] October 30, 2018 Abstract Air travel has become one of the most common means of transportation. The most common question which is generally asked is: How does an airplane gain lift? And the most common answer is via the Bernoulli principle. It turns out that it is wrongly applied in common explanations, and there are certain misconceptions. In an alternative explanation the push of air from below the wing is argued to be the lift generating force via Newton’s law. There are problems with this explanation too. In this paper we try to clear these misconceptions, and the correct explanation, using the Lancaster-Prandtl circulation theory, is discussed. We argue that even the Lancaster-Prandtl theory at the zero angle of attack needs further insights. To this end, we put forward a theory which is applicable at zero angle of attack. A new length scale perpendicular to the lower surface of the wing is introduced and it turns out that the ratio of this length scale to the cord length of a wing is roughly 0.4930 ± 0.09498 for typical NACA airfoils that we analyzed. This invariance points to something fundamental. The idea of our theory is simple. The "squeezing" effect of the flow above the wing due to camber leads to an effective Venturi tube formation and leads to higher velocity over the upper surface of the wing and thereby reducing pressure according the Bernoulli theorem and generating lift.
    [Show full text]
  • Joukowski Theorem for Multi-Vortex and Multi-Airfoil Flow (A
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Chinese Journal of Aeronautics, (2014),27(1): 34–39 Chinese Society of Aeronautics and Astronautics & Beihang University Chinese Journal of Aeronautics [email protected] www.sciencedirect.com Generalized Kutta–Joukowski theorem for multi-vortex and multi-airfoil flow (a lumped vortex model) Bai Chenyuan, Wu Ziniu * School of Aerospace, Tsinghua University, Beijing 100084, China Received 5 January 2013; revised 20 February 2013; accepted 25 February 2013 Available online 31 July 2013 KEYWORDS Abstract For purpose of easy identification of the role of free vortices on the lift and drag and for Incompressible flow; purpose of fast or engineering evaluation of forces for each individual body, we will extend in this Induced drag; paper the Kutta–Joukowski (KJ) theorem to the case of inviscid flow with multiple free vortices and Induced lift; multiple airfoils. The major simplification used in this paper is that each airfoil is represented by a Multi-airfoils; lumped vortex, which may hold true when the distances between vortices and bodies are large Vortex enough. It is found that the Kutta–Joukowski theorem still holds provided that the local freestream velocity and the circulation of the bound vortex are modified by the induced velocity due to the out- side vortices and airfoils. We will demonstrate how to use the present result to identify the role of vortices on the forces according to their position, strength and rotation direction. Moreover, we will apply the present results to a two-cylinder example of Crowdy and the Wagner example to demon- strate how to perform fast force approximation for multi-body and multi-vortex problems.
    [Show full text]
  • Kutta Condition
    SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) COIMBATORE–35 DEPARTMENT OF AERONAUTICAL ENGINEERING KUTTA CONDITION: The Kutta condition is a principle in steady-flow fluid dynamics, especially aerodynamics, that is applicable to solid bodies with sharp corners, such as the trailing edges of airfoils. A body with a sharp trailing edge which is moving through a fluid will create about itself a circulation of sufficient strength to hold the rear stagnation point at the trailing edge. In fluid flow around a body with a sharp corner, the Kutta condition refers to the flow pattern in which fluid approaches the corner from both directions, meets at the corner, and then flows away from the body. None of the fluid flows around the sharp corner. Prepared by Ms.X.Bernadette Evangeline AP/AERO 16AE208 AERODYNAMICS-I SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) COIMBATORE–35 DEPARTMENT OF AERONAUTICAL ENGINEERING The Kutta condition is significant when using the Kutta–Joukowski theorem to calculate the lift created by an airfoil with a sharp trailing edge. The value of circulation of the flow around the airfoil must be that value which would cause the Kutta condition to exist. In 2-D potential flow, if an airfoil with a sharp trailing edge begins to move with an angle of attack through air, the two stagnation points are initially located on the underside near the leading edge and on the topside near the trailing edge, just as with the cylinder. As the air passing the underside of the airfoil reaches the trailing edge it must flow around the trailing edge and along the topside of the airfoil toward the stagnation point on the topside of the airfoil.
    [Show full text]
  • Complex Analysis in Fluid Mechanics
    MATH 566: FINAL PROJECT December 2, 2010 JAN E.M. FEYS Complex analysis is a standard part of any math curriculum. Less known is the intense connection between the pure complex analysis and fluid dynamics. In this project we try to give an insight into some of the interesting applications that exist. 1. THE JOUKOWSKY AIRFOIL 1.1. Introduction. The theory of complex variables comes in naturally in the study of fluid phenomena. Let us define w = f + iy with f the velocity potential and y the Lagrange stream function. Then w turns out to be analytic because the Cauchy-Riemann conditions ¶f ¶y ¶f ¶y v = = ; v = = − x ¶x ¶y y ¶y ¶x are exactly the natural flow conditions that have to be satisfied. The function w is called the complex velocity potential. Also note that dw = v − iv : dz x y Basic examples of velocity potentials are the uniform stream w = Uz¯ where U represents flow speed and the vortex w = (−iG=2p)ln(z) where G represents rotation speed counted counterclockwise. An important role is dedicated to transformations F that are angle- preserving or conformal. Because compositions of analytic functions are analytic, we can use transforms to map simple cases onto harder ones. 1.2. Flow past a cylinder. Let us include circulation and look at the circular cylindrical case. We omit viscosity and other effects. One can write a2 iG z w = zU¯ + U + ln z 2p a for the velocity potential of a flow past a circular cylinder. Here a is the diameter of the cylinder, U the flow speed and G a vortex related parameter as discussed earlier.
    [Show full text]
  • Simulation of Starting/Stopping Vortices for a Lifting Aerofoil
    19th Australasian Fluid Mechanics Conference Melbourne, Australia 8-11 December 2014 Simulation of starting/stopping vortices for a lifting aerofoil M. Vincent and H. M. Blackburn Department of Mechanical and Aerospace Engineering Monash University, Victoria 3800, Australia Abstract More recently, Lei, Feng and Can (2013) found that at a low Reynolds number, laminar separation occurred in the flow field In order to recreate Prandtl’s flow visualisation films dealing around a symmetrical aerofoil and when the angle of attack with starting and stopping vortices produced by a lifting aerofoil reached a certain level, primary and secondary vortices were and expand on that research, direct numerical simulation was produced.[4] Jones and Babinsky (2011) found that leading edge used to perform numerical experiments on the starting and vortices were shed from the flat plates at Re=10000-60000.[5] stopping of lifting aerofoil by solving the two-dimensional Sun and Daichin (2011) looked at wing tip vortices and found incompressible Navier–Stokes equations. The simulation used a that the vorticity decreased with decreasing ground height.[6] NACA 0012 aerofoil at angle of attack , the chord Reynolds number based on peak translation speed was In the present work, Prandtl’s experiment was numerically , and was conducted using a spectral element simulation recreated by solving the two-dimensional incompressible Navier- code. Trailing edge starting and stopping vortices and also a Stokes equations in an accelerating reference frame stopping leading edge vortex pair were produced. Net circulation was calculated and was found to have a small positive value, which fell as domain size was increased.
    [Show full text]
  • Vortex Methods for Separated Flows Philippe R
    a. - NASA Technical Meiorandlrn 100068 Vortex Methods for Separated Flows Philippe R. Spalart [WASA-TH-100068) VORTEX METADDS Pol? ma- 263 42 SE€?83ATED FLOWS (NASA) 66 p CSCL 318 Unclas G3/02 0 154827 June 1988 . National Aeronautics and Space Administration NASA Technical Memorandum 100068 Vortex Methods for Separated Flows Philippe R. Spalart, Ames Research Center, Moffett Field, California June 1988 National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035 TABLE OF CONTENTS SUMMARY 1. INTRODUCTION 3 1.1. Example: Flow Past a Multi- Element Airfoil 1.2. Governing Equations 1.3. Invariants of the Motion 1.4. Constraints on Vector Fields' 2. POINT-VORTEX METHODS 9 2.1. Basics 2.2. Dificulties with Vortex Sheets* 2.3. Application to Smooth Euler Solutions' 3. VORTEX-BLOB METHODS 13 3.1. Motivation and Basics 3.2. Convergence in Theory 3.3. Convergence in Practice 4. THREE-DIMENSIONAL FLOWS* 17 4.1. Essential Diflereiices with Two-Dimensional Flows' 4.2. Filament Methods* 4.3. Scgment Methods* 4.4. Monopole Met hods* 5. EXTENSION TO VISCOUS AND COMPRESSIBLE FLOWS 21 5.1. Viscous Flows 5.2. Compressible Flows* 6. INVISCID BOUNDARIES 25 6.1. Use of Boundary Elements 6.2. Remark on the Choice of Two Numerical Parameters" 6.3. Example: A Curved Mixing Layer 7. VISCOUS BOUNDARIES 31 7.1. Application of the Biot-Savart Law Inside a Solid Body 7.2. Creation of Vorticity 7.3. Choice of Numerical Parameters’ 7.4. h’utfa Condition 7.5. Eramylr: Starting Vortex on an Airfoil 7.6. Pressure and Force Eztraction’ 8.
    [Show full text]
  • Fluid Flow Lecture 1: Information and Introduction
    Chapter 2: Vorticity Circulation and vorticity v C C v Aerodynamics 2 Chapter 2: Vorticity Circulation and vorticity Aerodynamics 3 Chapter 2: Vorticity Circulation and vorticity Stokes’ theorem v v C i.e. if = 0 = 0 Flows for which = 0 are irrotational. Aerodynamics 4 Chapter 2: Vorticity Stream tubes and vortex tubes v v Aerodynamics 5 Chapter 2: Vorticity Stream filament and vortex filament If A1 0 we have, respectively, a stream filament and a vortex filament. Biot Savart law Aerodynamics 6 Chapter 2: Vorticity Kinematics of vortex lines Since the divergence of the curl of a vector is zero (by definition, show it!) it is: This means that there are no sources or sinks of vorticity in the fluid the vortex lines must either form closed loops or terminate on the boundaries (solid surface or free surface) of the fluid. Aerodynamics 7 Chapter 2: Vorticity Correspondence velocity-vorticity v v Aerodynamics 8 Chapter 2: Vorticity Correspondence velocity-vorticity Incompressible flow: v Let’s integrate over the total volumeV of a stream tube (whose total outer surface is s): v v Gauss theorem ሶ v v 푉1ሶ = 푉2ሶ Aerodynamics 9 Chapter 2: Vorticity Correspondence velocity-vorticity Vorticity is divergence-free: Let’s integrate over the total volumeV of a vortex tube (including the ends): Gauss theorem 1 = 2 Aerodynamics 10 Chapter 2: Vorticity Helmholtz’s theorems (1858) The circulation at each cross-section of a vortex tube (or filament) is the same; alternatively, the average vorticity increases as the cross-section of the vortex tube decreases: Helmholtz’s first theorem the strength of a vortex filament is constant along its length, i.e.
    [Show full text]
  • AA200 Ch 11 Two-Dimensional Airfoil Theory Cantwell.Pdf
    CHAPTER 11 TWO-DIMENSIONAL AIRFOIL THEORY ___________________________________________________________________________________________________________ 11.1 THE CREATION OF CIRCULATION OVER AN AIRFOIL In Chapter 10 we worked out the force that acts on a solid body moving in an inviscid fluid. In two dimensions the force is F d = Φndlˆ − U (t) × Γ(t)kˆ (11.1) ρ oneunitofspan dt ∫ ∞ ( ) Aw where Γ(t) = !∫ UicˆdC is the circulation about the body integrated counter-clockwise Cw about a path that encloses the body. It should be stated at the outset that the creation of circulation about a body is fundamentally a viscous process. The figure below from Van Dyke’s Album of Fluid Motion depicts what happens when a viscous fluid is moved impulsively past a wedge. Figure 11.1 Starting vortex formation about a corner in an impulsively started incompressible fluid. 1 A purely potential flow solution would negotiate the corner giving rise to an infinite velocity at the corner. In a viscous fluid the no slip condition prevails at the wall and viscous dissipation of kinetic energy prevents the singularity from occurring. Instead two layers of fluid with oppositely signed vorticity separate from the two faces of the corner to form a starting vortex. The vorticity from the upstream facing side is considerably stronger than that from the downstream side and this determines the net sense of rotation of the rolled up vortex sheet. During the vortex formation process, there is a large difference in flow velocity across the sheet as indicated by the arrows in Figure 11.1. Vortex formation is complete when the velocity difference becomes small and the starting vortex drifts away carried by the free stream.
    [Show full text]
  • Gomezberdugo Umd 0117N 2
    1 ABSTRACT Title of thesis: Flowfield Estimation and Vortex Stabilization near an Actuated Airfoil Daniel Fernando Gomez Berdugo Master of Science, 2019 Thesis directed by: Professor Derek A. Paley Department of Aerospace Engineering and Institute for Systems Research Feedback control of unsteady flow structures is a challenging problem that is of interest for the creation of agile bio-inspired micro aerial vehicles. This thesis presents two separate results in the estimation and control of unsteady flow struc- tures: the application of a principled estimation method that generates full flowfield estimates using data obtained from a limited number of pressure sensors, and the analysis of a nonlinear control system consisting of a single vortex in a freestream near an actuated cylinder and an airfoil. The estimation method is based on Dy- namic Mode Decompositions (DMD), a data-driven algorithm that approximates a time series of data as a sum of modes that evolve linearly. DMD is used here to create a linear system that approximates the flow dynamics and pressure sensor output from Particle Image Velocimetry (PIV) and pressure measurements of the flowfield around the airfoil. A DMD Kalman Filter (DMD-KF) uses the pressure measurements to estimate the evolution of this linear system, and thus produce an approximation of the flowfield from the pressure data alone. The DMD-KF is imple- mented for experimental data from two different setups: a pitching cambered ellipse airfoil and a surging NACA 0012 airfoil. Filter performance is evaluated using the original flowfield PIV data, and compared with a DMD reconstruction. For control analysis, heaving and/or surging are used as input to stabilize the vortex position relative to the body.
    [Show full text]
  • Viscous Airfoil Optimization Using Conformal Mapping Coefficients As Design Variables
    Viscous Airfoil Optimization Using Conformal Mapping Coefficients as Design Variables by Thomas Mead Sorensen B.S. University of Rochester (1989) SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science at the Massachusetts Institute of Technology June 1991 @1991, Massachusetts Institute of Technology Signature of Author L gtmnentrP of Aeronautics and Astronautics May 3, 1991 Certified by Professor Mark Drela Thesis Supervisor, Department of Aeronautics and Astronautics Accepted by -.- I ~PYj~H(rL-~L.. ~V .. , . rrgga Y. Wachman Chairman, Department Graduate Committee MASSACriUSErfS iNSTITUTE OF TFIýrtev-.- l JUN 12 1991 LIBRARIES Aetu Viscous Airfoil Optimization Using Conformal Mapping Coefficients as Design Variables by Thomas Mead Sorensen Submitted to the Department of Aeronautics and Astronautics on May 3, 1991 in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics The XFOIL viscous airfoil design code was extended to allow optimization using conformal mapping coefficients as design variables. The optimization technique em- ployed was the Steepest Descent method applied to an Objective/Penalty Function. An important idea of this research is the manner in which gradient information was calculated. The derivatives of the aerodynamic variables with respect to the design variables were cheaply calculated as a by-product of XFOIL's viscous Newton solver. The speed of the optimization process was further increased by updating the Newton system boundary layer variables after each optimization step using the available gradi- ent information. It was determined that no more than 10 of each of the symmetric and anti-symmetric modes should be used during the optimization process due to inaccurate calculations of the higher mode derivatives.
    [Show full text]
  • Wing Trailing Vortex Paths in Formation Flight
    WING TRAILING VORTEX PATHS IN FORMATION FLIGHT William P. Tipping-Woods Supervisor: Prof. C. Redelinghuys A dissertation submitted to the Department of Mechanical Engineering at the University of Cape Town, in partial fulfilment of the requirements for the degree of Master of Science in Mechanical Engineering. University of Cape Town September 2014 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration 1. I know that plagiarism is wrong. Plagiarism is to use another’s work and pretend that it is one’s own. 2. I have used the ISO/690 NumericalReference convention for cita- − tion and referencing. Each significant contribution to, and quotation in, this dissertation from the work(s) of other people has been at- tributed, and has been cited and referenced. 3. This dissertation is my own work. 4. I have not allowed, and will not allow anyone to copy my work with the intention of passing it off as their own work. Signature: ............ Abstract Formation flight has been shown to reduce the induced drag for a formation of aircraft. The mechanism by which this is achieved is caused by the wake velocity field of the aircraft. This field is dominated by wing-tip trailing vortices. The paths of these vortices become too complex for rigid wake models downstream of the second aircraft in the formation.
    [Show full text]
  • SNS COLLEGE of TECHNOLOGY (An Autonomous Institution
    SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) COIMBATORE–35 DEPARTMENT OF AERONAUTICAL ENGINEERING BOUND VORTEX AND HORSESHOE VORTEX 02-04-2020 PREPARED BY MS.X.BERNADETTE EVANGELINE AP/AERO 1 Bound Vortex a vortex that is considered to be tightly associated with the body around which a liquid or gas flows, and equivalent with respect to the magnitude of speed circulation to the real vorticity that forms in the boundary layer owing to viscosity. In calculations of the lift of a wing of infinite span, the wing can be replaced by a bound vortex that has a rectilinear axis and generates in the surrounding medium the same circulation as that generated by the real wing. In the case of a wing of finite span, the bound vortex continues into the surrounding medium in the form of free vortices. Knowledge of the vortex system of a wing permits calculation of the aerodynamic forces acting upon the wing. In particular, the interaction between bound and free vortices gives rise to the induced drag of the wing. The idea of the bound vortex was made use of by N. E. Zhukovskii in the theory of the wing and the screw propeller. 02-04-2020 PREPARED BY MS.X.BERNADETTE EVANGELINE AP/AERO 2 02-04-2020 PREPARED BY MS.X.BERNADETTE EVANGELINE AP/AERO 3 WHAT IS HORSE SHOE VORTEX? The horseshoe vortex model is a simplified representation of the vortex system of a wing. In this model the wing vorticity is modelled by a bound vortex of constant circulation, travelling with the wing, and two trailing wingtip vortices, therefore having a shape vaguely reminiscent
    [Show full text]