Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site

* Email: France. Sete,34200 laDaurade, Littoral,1Quaide l’Environnement de del’Evolution 2 InstitutdesSciences France. 17137 L’Houmeau, Li Ecosystemes surles Recherche 1 Centrede The originalpublicationisavailableat 2007Springer © http://dx.doi.org/10.10 Volume 152, Number 4/septembre 2007: 803-814 Marine Biology associatedsubstantial with ecosystems are also heavily exploitedbythe shellfish farming industry. Intensive bivalve culture is juveniles of numerous , includi The French Atlanticcoast contains largehighlypro Abstract: maximum at 2 mgEPSl bucco-branchial cavitymorphometrics. Theventilatory workload of soleincreased withviscosity toa species with high metabolic rates ( andplaice). Thesedifferences maydepend upon gilland mg l− which water was nolonger abletoflowthrough thebranchial basket ranged from almostniltoover30 withEPS directly More concentration. increases flatfish,whereby t ventilatory activityofjuvenile rheological properties ofwater,particularly viscosity. Increased water viscosityhadconsequences for column and seabed. EPS arelong-chain molecules organised into colloids, which influence contributes to increaseexopolys Keywords: can reach 15 mg l theintertidal colonise mudflats,

Effects of waterviscosity upon ventila Christine Couturier 1, depending on species andsize. [EPS]critwaslower in small individuals andindividuals from [email protected] solea;Biodeposition; Water viscosity; Metabolism; Hypoxia;EPS − 1. Aselective effectisconceivable remains but tobeestimated inthefield. 07/s00227-007-0731-z 07/s00227-007-0731-z − 1* 1. Viscosity might, therefore, be alimiti , AliceRouault the common Soleasolea (L.) Lucette Joassard http://www.springerlink.com biodeposition (1–6 t-dwha depending upontheir size accharide (EPS) concentrationsat Montpellier, Station Mediterraneenne de Mediterraneenne Station Montpellier, ; Tel. +3354650 0648,fax+3354650 00 1 ttoraux Anthropises, Place du Seminaire, Seminaire, Placedu ttoraux Anthropises, , DavidMcKenzie he minimal pressure required to ventilatethe medium 1 and Claireaux Guy ng thecommon sole (Solea solea, L.). These over, the critical EPS concentration ([EPS]crit) at EPSconcentration ([EPS]crit) over, thecritical

ductive intertidal mudflats that arecolonised by tion and metabolism ofaflatfish,

Archimer, archiveinstitutionnelle del’Ifremer and species. EPS concentrations inthefield and EPS species. concentrations − 1 day 2 , Robert Galois ng factor for flatfish post larvae, which − 1), which directly orindirectly theinterfacebetweenwater 2

http://www.ifremer.fr/docelec/ 1 , Serge Robert , Serge

1 , 1

List of abbreviations

1 1 &OM 2 OxygenconsumptioninmgO2perunitoftime(h )andunitofmass(kg ) γ& Shearrate % Percent °C Celsiusdegree cm Centimetre d Day dw Dryweight e Exponential g Gram H Differenceinwaterheight

H0 Initialdifferenceinwaterheight ha Hectare Hz Hertz km² Squarekilometre l Litre L. Linnaeus ml Millilitre mm Millimetre Pa Pascal T Time t Tonnes y,k Parameterstoestimate,kistheradiusofcurvature,ytheasymptotevalue,i.e.yieldstress P Differenceinpressure m Micron

3 Introduction

TheFrenchAtlanticcoastcomprisesaseriesofintertidalmudflatsthesizeofwhichrangesfrom about 10 (Aiguillon Cove) up to about 100 km² (MarennesOléron or Arcachon Bays) (Verger 1968; Guarini et al. 1998). Specific physical and chemical conditions (sediment fineness, depth, light, salinity, temperature, emersion, mixing and river runoff) lead to high microphytobenthic productivity(Guarinietal.,1998).Onthatbasis,itisbelievedthatmudflatssignificantlyinfluence thefluxofmatterandenergyacrosscoastalfoodwebs(Leguerrieretal.2003).Moreover,intertidal mudflatsarecrucialnurseryfornumerousfishspecies,particularlyfor(Gibson 1997). Besides,alongtheWesterncoastofFrance,atotalbiomassof150000tofoystersand60000tof musselsiscurrentlybeingcultivated(GoulletquerandLeMoine2002).Largevolumesofseawater arefilteredbybivalvesforfeedingandrespiration(Bougrieretal.1995;Petersenetal.2004).The mostvisibleconsequenceofwaterfiltrationbyculturedbivalvesistheaccumulationoffaecesand pseudofaeces on seabed around farming facilities. For instance, shellfish culture in Marennes Oléronbaywascalculatedtogenerateupto600tdryweight(dw)ofbiodepositpersquarekmper day during periods of intense filtration (Sornin et al. 1986). Biodeposition promotes the development of microphytobenthos, primarily diatoms and bacteria (Barillé and Cognie 2000). Thesecellsenhancethephenomenonoforganicmatteraccumulation.Theyexudeamucilagelayer tostabilisetheirmicroenvironmentagainstphysicalandchemicaldisturbances(Decho1990).This layerischemicallycomplexbutcomprisesmicrobialextracellularpolymericsubstancesincluding exopolysaccharides(EPS).EPSarelongchainmoleculesorganisedintocolloidswhichareknown toinfluencewaterrheologicalproperties,specificallyviscosity(JenkinsonandBiddanda1995). Small fish are faced withviscosityrelatedfrictionforcesuntiltheirsizeallowsinertialforcesto prevailoverviscousones(OsseandVandenBoogaart1999).Theinfluenceofviscousforceson theabilityofyoungfishtomovethroughwateriswelldocumented(Webb1988;FuimanandBatty 1997; Massel 1999). On the other hand, the influence of viscous forces on the ability of fish to ventilate water through their gill basket is poorly described. The mechanism of ventilation was illustratedbytheactionoftwopumpsfunctioningoneithersideofthegillresistance(Hughes,and Shelton1958,Hughes1960).First,theexpansionofmouthentailsadepressioninthecavity.The waterisdrawnintothemouth,overthegillsandintotheopercularcavity.Then,thebuccalcavity compressedwhilethegillonecontinuestoexpand.Oncemaximalcompressionisreachedinbuccal 4 cavity,aunidirectionalexitflowismaintainedthroughopercularvalveswhilegillcavitystartsto compress. The gill curtain morphology appears determinant to minimize the work of ventilation conserving oxygen extraction efficiency. Recently, Jenkinson et al. (2007) demonstrated the profoundeffectoftherheologicalpropertiesofwaterontheflowthroughbranchialbasketofsole (Solea solea).Particulateorganicmatterincreaseswaterviscosity(gelling)displayingmoreinternal resistance to flow. The resistance induced was shown to interfere significantly with flow rate, depressingtheflowuntilitstopscompletely.Thisimpactseemstobefishmassdependantbuthas notbeentestedinvivo. Our primary objective was to investigate the relationship between water EPS content, fish ventilatory activity and metabolic demand. First, we investigated the influence of water EPS contentonyieldstress.Theyieldstressistheminimumheadpressure(Pa=kgm1s2)toapplytoa fluidtomakeitbegintoflow(Blair,1933).Yieldstressdependsuponresistancedisplayedby(1) the system in which water flows (dimensions and characteristics) and (2) the intrinsic characteristicsofthefluid(viscosity).Thus,tomeasuretheyieldstressallowsassessingresistance displayedbythefluidintherespiratorycavityduringventilation(JenkinsonandArzul,1998).This thresholdpressureistheminimumpressurefishhavetoproducetomakewaterflowacrosstheir gills.Theinfluenceoffishsizeandspeciesuponyieldstresswasassessedcomparingsolewith (Buglossidium luteum,R),(Pleuronectes platessa,L.)andturbot(Psetta maxima, L.).Thesespeciesexhibitabroadrangeofactivemetabolicrates(AMR).Forinstance,AMRof 1 1 100gturbot,plaiceandsoleweremeasuredrespectivelytobe305,230and160mgO2h kg at 20°C (Mallekh and Lagardère 2002; Fonds et al. 1992; Lefrançois and Claireaux 2003). We hypothesisedthatspecieswithlowoxygendemandand,therefore,reducedgillarea(Hughes1972), would be less susceptible to water EPS load than species with high oxygen demand. To assess morphologicaldifferences,turbotandsolegillapparatusweredissected. In a second set of experiments we examined the influence of water EPS content on ventilatory activity of sole, measuring frequency and amplitude of pressure changes in the opercular cavity during the ventilatory cycle. In order to quantify potential metabolic consequences of water viscosityonventilatoryworkload,thestandardmetabolicrate(SMR)ofyoungsolewasmeasured in water containing various levels of EPS. The consequence upon tolerance to hypoxia wasalso examinedbysubmittingthesetoanepisodeofprogressivehypoxia.

5 Additionally,wewantedtodocumentEPSlevelsonmudflathabitats.Weperformedaseasonaland spatialfieldsurveyofEPSinthebottomwaterofthePertuisCharentais,togaininsightintothe ecologicalrelevanceofthelimitingeffectsofEPSonflatfishventilatoryperformance.Thisfield surveywasassociatedwithacharacterisationoftheeffectsofEPSontherheophysicalproperties ofwater.

Materials and methods

Experimental fish

Sole(1.122.3g)andplaice(3.4to7.6g)werecaughtintheAiguillonCoveandalongthesouth coast of Ile de Ré using shrimping nets. Solenette (1.417.1 g) were trawled from the Pertuis Charentais(Y.Desaunay,RVGwenDrez).Turbot(3.530.3g)wereobtainedfromalocalhatchery (FranceTurbot,NoirmoutierIsland).Uponarrivalinthelaboratory,fishweretransferredinto500l indoortankssuppliedwithrecirculatedandbiofilterednaturalseawateratatemperatureof17°C. Fishwerekeptundernaturalphotoperiodandtemperatureconditionsforatleast3weekspriorto anyexperimentation.Threetimesaweek,wildfish(sole,solenetteandplaice)werefedtosatiation withpiecesoffreshmusselsoroysters,whereasturbotwereprovidedwithcommercialdrypellets. Oneweekbeforeexperimentation,fishweretransferredtoathermoregulatedroomat15°C,with artificiallightingthatmatchedthenaturalphotoperiod.

Fluff sampling protocol

Mud was collected weekly at low tide in the immediate vicinity of an oyster rearing facility (Pampin beach, l’Houmeau France). Only the first centimetre of the sediment was collected, comprisingthesubstratethatflatfishspecieswouldinhabit,composedoflightviscousmudknown as “fluff”. After homogenisation, samples were allowed to settle 2 h in order to separate the heaviestparticles(sand)fromthefluff.Thesuperficialwaterwasthenremovedandthefluffwas gently retrieved and kept at 4°C to limit EPS degradation. According to Carlson (1987) no significantmodificationofviscosityoccursduringthefirst5daysfollowingcollection.

6 Biorheological effects of mud

Yield stress

Experimentalsetupandprotocol

TheexperimentalsetupwasbuiltaccordingtoJenkinsonetal.(2007).Briefly,itconsistedofa small aquarium divided into two compartments (A and B) connected by a tube. Continuity was established between that tubing and fish gill cavity via the mouth. An initial difference in water heightbetweenthecompartments(typically2.7cm)allowedthefluidtoflowbygravityfromAto Bviathegillchamber.Thechangesinhydrostaticpressureaswaterflowedthroughbuccalandgill cavitieswererecordedcontinuouslyusingadifferentialpressuretransducer(ValidyneEngineering Corp.,Northridge,CA,USA),withthesignalamplified(GouldCarrierAmplifier,Ballainvilliers, France)andacquiredonaPCwithcustomdesignedsoftware(G.Guillou,CrelaL’Houmeau). Fish were killed by submersion into seawater containing a lethal dose of anaesthetic (2 phenoxyethanol,2mll1).Astandardpipettetipwasfixedhermeticallytothefishmouthandthen inserted in the tube connecting the two compartments of the experimental device. At that time, waterlevelinbothcompartmentswasallowedtoequilibrateinordertoverifythecalibrationofthe pressure sensor (P = 0). The valve between compartments was closed and 70 ml of seawater addedinA,generatingadifferentialpressurecorrespondingto290Pa.Thevalvewasthenopened andthechangesinpressuredifferencebetweenAandBwasrecorded(40Hz).Toobtainvarious EPSconcentrations,theoriginalfluffwasdilutedwithseawaterasfollowing0,5,10,20,30and 50%offluffinseawater.Solutionsweretestedsequentially.Attheendofeachexperiment,EPS concentration was determined in the original fluff as well as in the 20 % diluted fluff. These measurements were used to calculate EPS concentrations in the other solutions using a linear regression.Thisexperimentwasconductedonsole(1.122.3g),turbot(3.530.3g),plaice(3.47.6 g)andsolenette(1.417.1g).

Modellingandanalyses

Waterflowthroughthegillcavitywasmodelled(NLREG™Software,Ph.Sherrod,Nashville,TN, USA)usingthefollowingequation: (T/k) H=(H0–y)*e +y (1) whereHisthedifferenceofwaterheightbetweenbothcompartments(Pascal),Tthetime(s),H0 theinitialdifferenceinwaterheight(Pascal),yandkparameterstoestimate(Jenkinsonetal.2007).

7 The parameter y corresponds to the value of the asymptote reached by the attenuation curve (consideredasequilibrium),i.e.theyieldstressandktheradiusofthecurvature. For each fish, yield stress (y) was expressed as a function of EPS concentration. At low EPS concentrations, yield stress is close to zero because water flow is largely independent of head pressure.However,aboveacriticalEPSconcentration,yieldstressispositivelyandlinearlyrelated toEPSconcentration.ThiscriticalEPSthresholdwasestimatedforeachfishascorrespondingto the intersection point between two linear relationships (Fig. 1). Fish were categorized in three classesaccordingtotheirmass:small(<6g),medium(612g)andlarge(>12g).

Ventilatory activity

Theexperimentalsetupessentiallyconsistedofa3lplasticcontainerandadifferentialpressure sensor interfaced with a computer. Pressure data were recorded continuously using custom designed software (Rheosol, G. Guillou, CrelaL’Houmeau). Fish were anaesthetized (2 phenoxyethanol, 0.67 ml l1), weighed and their length measured. A flared polyethylene catheter (PE50Intramedic)waspassedthroughaholedrilledintheoperculum,andsecuredwithacuffand sutures. Fish were then transferred to a small plastic chamber containing aerated seawater and allowed 1 h to recover. The waterfilled catheter was then connected to the differential pressure transducer.OpercularpressureduringtheventilatorycyclewasrecordedasdescribedbyShingles etal.(2005).Experimentalfluffsolutionwasaddedsequentiallytotheholdingcontainerand10 minaftereachadditionthechangesinopercularpressureamplitudeandventilatoryfrequencywere measuredduring1min(Shinglesetal.2005).Thefollowingfluffdilutionsweretested:0,5,10, 15,20and30%offluffinseawater.AwatersamplewascollectedaftereachdilutionandEPS concentrationwasassayed. In order to discriminate the effects of the mineral and organic fractions of the fluff, the same protocol was applied using mud samples treated beforehand with hydrogen peroxide (H2O2) in ordertodestroytheorganicfractionoftheexperimentalfluid(Parker1983).Inbothcases6soles weretested(11.8±2.7cmand15.9±5.7g).

Oxygen consumption

SolewereusedtotesttheimpactoffluffuponSMRandcriticaloxygenconcentration(O2crit).The experimentalsetupwassimilartothatdescribedinLefrançoisandClaireaux(2003).Briefly,two respirometers(1.16l)wereusedinparallel.Theserespirometerswereplacedinalargertankwhich

8 containedthermoregulatedwater(15°C).Wateroxygenationwasregulatedviaacountercurrent gasequilibrationcolumnplacedupstreamfromtherespirometerandbubbledwithair,incontrol condition,ornitrogentoinducehypoxia.Respirometersweresuppliedwithwaterfromtheouter tank at a flow rate of 23 l min–1 via a pump connected to a timer. Oxygen concentration in respirometers was measured using oxygenprobes(OrbisphereLaboratories27141,Houston,TX, USA)connectedtoamultichanneloxygenmeasuringsystem(OrbisphereLaboratories2610)anda computer. Two pumps ensured water homogenisation inside the respirometers. Oxygen probes werecalibrateddaily.Determinationofoxygenconsumptionwascarriedoutafterturningoffthe pumpcontrollingwatersupplytotherespirometers.Thispumpwasturnedoffautomaticallyfor15 min and the water oxygen concentration CwO2 was continuously recorded. In order to ensure an appropriateequilibriumbetweenfishoxygendemandandthelagtimeoftheexperimentalsetup, only the last 7 min of each 15min oxygen monitoring periods was used to calculate oxygen consumption.

Standardmetabolicrate

SoleSMRwasdetermined2daysafterfishwereplacedintherespirometers.Threesituationswere tested.Inthefirstcase(n=8;w=12.85±1.00g),athinlayerofsandwasspreadonthebottomof therespirometerandthiswasconsideredasanEPSfreecontrolcondition.Thesecondsituation(n =6;w=13.25±1.52g)allowedtestingtheeffectsofEPSonbasalmetabolicdemandwhenfluff isaddedtothewater(1.13mgEPS.l1).Thethirdsituation(n=6;w=13.67±1.10g)testedthe effectoffluffpreviouslytreatedwithH2O2toremoveorganicmatter(Parker1983).Attheendof eachexperiment,fishwereremovedfromtheexperimentalsetup,therespirometerchamberswere closed and background bacterial oxygen consumption was assessed. Fish oxygen consumption

1 1 ( &OM 2 inmgO2h kg )wascalculatedfromthenetslopeofdecreaseinoxygenconcentrationin therespirometerandadjustedaccordingtoamassof25gasdescribedinLefrançoisandClaireaux (2003).Soleoxygenconsumptionfollowedadailypatternofvariation,withhighervaluesobserved duringthenightandlowervaluesduringdaytime.InordertodetermineSMR,thefirstdecilewas usedtocutthecumulativedistributioncurveofeachfish &OM 2 dataset(SokalandRohlf1995). Thislevelavoidedmeasurementerrorsandcorrectedfortheeffectsofactivity.Thefirstdecilewas calculatedforeachsetofexperimentaldataandaveragedpertypeofsubstratum.

9 Hypoxia

Following SMR determination, nitrogen was bubbled in the gas equilibration column placed upstream from the respirometer chambers and a stepwise decrease (step: 1 mg l1) in the water oxygenation was initiated (down to 1 mg l1). At each step, fish oxygen consumption was determined. The relationship between routine metabolic rate and ambient oxygenation level was modelledusingthefollowingequation:

&OM 2 =a*ln[O2]+b (2)

1 1 where &OM 2 isthemetabolicratecorrectedforabodymassof25g(mgO2l kg )and[O2]the 1 concentration of oxygen in water (mg l ). The confidence interval (CI95%) of the estimated parameterswascalculated.

Field survey of seasonal and spatial variability in water EPS content

FieldEPSconcentrationwasmonitoredinwatersamplescollectedattheinterfacewiththeseabed. This survey considered three different space scales. At macroscale (100 km), across the Pertuis Charentais,tensampleswerecollectedinfouroysterculturezonespresentingdifferentsiltingup characteristics(Daire,Fouras,Rivedoux,Bellevue(France);Fig.2a).Thesurveywasrepeatedin January, May and September 2005. Samples were collected directly under the metallic frames holdingthebagscontainingoysters.Atmesoscale(1km),tensampleswerecollectedatfoursites alongatransectparalleltothecoast,followingthemaincurrentdirectionandcrossinganoyster culturezone(Rivedoux;Fig.2b).ThissamplingwasalsorepeatedinJanuary,MayandSeptember 2005.Finally,atmicroscale,weexaminedtheextenttowhichEPSexudedandaccumulatedonthe bottom at low tide were stirred up by the tidal wave. Six samples were collected in Fouras in January2005underaframeholdingoysterbags.Inthatcase,sampleswerecollectedevery515 minovera45minperiod.Samplingtookplaceduringarisingneaptide.

Fluff characteristics

Samples used for laboratory experiments were first characterized in terms of their water and organicmattercontent(%).Fluffsamples(20ml)wereweighed,driedat50°Cfor3daysandre weighedtodeterminewatercontent.Asecondsetofsamples(100ml)wasweighed,driedat450 °Cfor12handreweighedtodetermineorganicmattercontent.

10 PriortoEPSdeterminationsampleswerefreezedried,crushedandkeptat–20°Cuntilanalysed. EPS contents were measured (triplicate) using the phenolicsulfuric acid assay developed by Dubois et al. (1956) and modified by Gershakov and Hatcher (1972). Briefly, colloidal carbohydrateswerefirstextractedfromfreezedriedsedimentwithhotdistilledwater(60°C,1h) thenprecipitatedinethanol.Theyweremeasuredbycolorimetricmethodusingaphenolsulphuric acidassaywithDglucosedissolvedinH2Ousedasstandard. Then, to keep only the mineral part of fluff, EPS were removed according to a method adapted fromParker(1983).Avolumeof100mlH2O2waspouredin100gfluffsamples.Attheendofthe reactionmineralparticuleswereallowedtosettleandwaterinexcesswasretrievedandreplacedby thesamevolumeoffreshwater.Thisprotocolwasrepeatedthreetimeswithfreshwaterandtwice withseawater. Viscosity measurements were realised using a Physica MCR 301 rheometer (Anton Paar, Courtaboeuf, France) equipped with a coneplate geometry (PP50/P2SN3444). The sample thickness was set at 0.1 mm and temperature at 15°C. Shear rate applied on samples was first increasing from 106 s1 to 101 s1 (one measurement each 4 s and 30 measurements), then decreasingfrom101s1to106s1(onemeasurementeach10sand30measurements).Valuesof viscositywereobtainedfromdecreasingshearratemeasurementsat4.56×103s1.

Statistics

The effect of size class and species on yield stress was analysed using a two way ANOVA. Maximumpressuresduringtheventilatorycycleofsole,turbotandsolenettewerecomparedusing atwowayANOVA(speciesandsizeclass).Theeffectofthesubstratum(sand,mudandEPSfree mud) on standard metabolism was tested using a one way ANOVA. A two way ANOVA was conductedtotesttheeffectoflocationandtimeoftheyearontheEPScontentinwatersamples collectedacrossthePertuisCharentais.Inordertohomogenizethenumberofsamplesintheinter sitescomparison(Rivedoux,Fouras,BellevueandDaire),onlythetensamplesofthe3rdpoint(R3) weretakenintoaccountinRivedoux.PosthocpairedcomparisonsweremadeusingTukeyHSD testwithPsetat0.05.

11 Results

Whensamplingforwildfish,wewereunabletocollecttheappropriatenumberofplaiceineachof the three size categories. Therefore data on plaice were not included in the statistical analysis. However,sincetheycontributetoourarguments,dataarepresentedonFig.3.

Biorheological effects of mud

Yieldstress

Critical EPS concentration ([EPS]crit), i.e. the inflection point in the relationship between yield stress and water EPS content, was influenced by both body size (P = 0.022) and species (P = 0.014).AsshownonFig.3,flowwassuppressedathigherEPSconcentrationinlargerfishthanin smaller fish. Moreover, critical EPS concentration was significantly lower in turbot than in solenette,soleoccupyinganintermediateposition.

Ventilatoryactivity

IncreasingwaterEPScontentfrom0to2mgl1resultedina1.5foldincreaseinsoleventilatory frequency(from59to85beatsmin1;Fig.4).Atthatpoint,theventilatoryresponselevelledoff.A decreaseinopercularventilationfrequencywaseventuallyobservedforwaterEPScontent>4mg l1.Toavoidventilatorydistress,fishwerethenquicklytransferredtoEPSfreewaterwherethey recovered.Theamplitudeofpressurechangesduringtheventilatorycycledisplayedamirrorimage withaninitialdecreasebetween0and1mgEPSl1(from2.4to1.2Pa)whereitlevelledoff.When thesameexperimentwasconductedwithmudfreeseawaterorEPSfreemud(H2O2treated),no significantchangeinsoleventilatoryactivitywasobserved.

Oxygenconsumption

1 1 Standardmetabolicrateofsolewas37.6±4.42mgO2kg h onasandysubstratumand44.2± 1 1 5.41 mgO2kg h in muddy conditions. When the organic fraction of mud was removed using 1 1 H2O2,theSMRwas33.3±5.41mgO2kg h .Thesevalueswerenotstatisticallydifferent.

Progressive hypoxia led to a parallel decrease in routine metabolic rate (Fig. 5). Critical O2 concentration(O2crit),i.e.thelevelofambientO2atwhichRMRequalsSMR,was2.47and2.15 1 mg O2l in EPSfree conditions (sand and treated mud respectively). In EPS loaded water,

12 responsesdisplayedmuchinterindividualvariabilityinresponses.Forinstanceforfourfish,O2crit 1 1 washigh(~57mgO2l )whilefortheothertwofishO2critwaslow(~2mgO2l ).However,no significantdifferencewasfoundamongthethreetreatments.

Fluff characteristics

Fluffusedinthecurrentexperimentcontained76.95±1.13%ofwater.Oncedry,fluffcontained 87.95±0.61%ofinorganicmatterand12.05±0.61%oforganicmatter.Rheometricalanalyses highlighted the fact that water viscosity increased exponentially with EPS concentration (y = 420.84×e0.17x,r2=0.76,P<0.001;Fig.6).

Spatial and temporal variability of EPS content

Across the Pertuis Charentais, water EPS concentration at the interface with the sediment was comprised between 0.2 and 15 mgl1. At macroscale, in the four oyster culture zones sampled, results showed a significant increase in EPS concentration in spring and late summer (May and September 2005; P = 0.0005) compared to winter (January 2005) and a significant difference betweensites(P=0.0089;Fig.7a). InRivedoux,themesoscalesurveyshowedthesameseasonaltrendwithhighervaluesinMay(p= 0.0028;Fig.7b).EPSloadwassignificantlyhigheratthe3rdstationcomparedtotheotherstations (P=0.04)andasignificantinteractionbetweenstationsandseasonswasfound(P<0.001). Microscalesurvey(Fouras),showedthatEPSconcentrationdecreasedwithtimeastidewasrising (÷ 6 in 40 min; Fig. 7c), suggesting that turbulence was sufficient to stir up a part of the EPS exudedbydiatomsduringlowtide.

Discussion

We demonstrated that increased water EPS load creates biologicallysignificant mechanical constraintsuponventilatoryflow.Moreover,therheologicalimpactofEPSwasmorepronounced upon smaller fish and was speciesdependent. In the field, water EPS concentration displayed spatialandtemporalvariabilityandwasinfluencedbylocalhydrodynamicconditions.Insomeof shellfish farming areas we examined, EPS concentrations reached 15 mg l1 a level we demonstratedtoexertphysiologicallimitations.

13

Biological effects

The relationship between yield stress and water EPS content is biphasic (Fig. 1) with a first segmentwhichisrelativelyflatuntilacriticalEPSconcentrationisreached.Abovethatpoint,yield stress increases regularly with water EPS content. Jenkinson et al. (2007) revealed that this inflectionpointcorrespondstoafunctionalthresholdabovewhichtherespiratorypumpisunableto counterbalancetheviscousforcesgeneratedbytheEPSload.Indeed,duringtheventilatorycycle, themaximumheadpressuregeneratedbyyoungfishinEPSfreeseawaterrangedbetween0.6and

1.5Pa.Thisvalueisrapidelyexceededabove[EPS]crit(Fig.1).Novalueforventilatorypressures hasbeenpreviouslyreportedinliteratureforsuchsmallanimals,toallowustodrawcomparisons withourdata. Flow patterns through fish gill cavity are essentially determined by physical constraints, namely fluidcharacteristics,speedofflowandcharacteristicsofsolidsurfaceincontactwiththemoving fluid(Schlichting1987).Viscosityisanimportantcharacteristicoffluidsbecauseitquantifiesthe amountofinternalfrictionorresistancetoflow.Thehighertheviscosity,thestrongerthepressure thatmustbeappliedtothefluidtoinitiateflow.Accordingly,wefoundthatyieldstressincreased withEPScontentoftheventilatorymedium.Furthermore,walleffectsinbuccalandgillcavitiesof fish are particularly significant. When a fluid flows over a stationary surface such as branchial basket, the fluid molecules in contact with surfaces are brought to rest by the shear stress. As a result,aboundarylayerexistswithinwhichfluidvelocityincreasesfromzeroatthegillsurfaceto a maximum in the free stream. In a gill curtain comprising primary and secondary lamellae, the smaller the distance between adjacent lamellae, the lower the water velocity between them. Accordingly,wefoundthatsmallerindividualsexhibitedahigheryieldstressthanlargerones.As fish grow, the distance between secondary lamellae increases (Hughes 1984), as does the total volume of their buccal and opercular cavity (Kalinin et al. 2000). Thus, the volume available to water flow is larger in larger fish and the mean water velocity in the free stream is potentially higher. The speciesspecific response to increased EPS load may result from morphological differences. Themassofthegillapparatusofturbotis2.1foldthatofasoleofsimilarsizeandmorphometric differences in fish gills of different species were shown to determine resistance to water flow

(HughesandShelton1958).Weshowedthat[EPS]critasafunctionofgillmassishigherinsole

14 thanforturbot(Fig.8).TurbotismoresensitivetoEPSloadthansole.Furthermore,althoughwe didnotmeasureitdirectly,wecansupposethatincreasedgillmassimpliesmoresurfacearea.This wouldbeinaccordancewithpreviousobservationsshowingthatspecieswithhighmetabolicrate arelikelytohavemoredevelopedgillapparatuswithlargergillarea,narrowspacedlamellaeand longer filament making resistance to flow more elevated (Hughes 1966). Indeed, for instance at 20°C,AMRofa100gturbot(MallekhandLagardère2002)is1.9foldhigherthanthatofsole (LefrançoisandClaireaux2003).Accordingly,itcanbenoticedthatAMRofa100gplaiceis1.4 foldthatofsoleatthesamesize(PreideandHolliday1980).Unfortunately,wewereunabletofind publisheddataontherelationshipbetweengillsizeandbodysizeforplaiceorsolenette.Therefore, becauseoftheirlargegillapparatus,smallerspaceisavailabletowaterflowinturbotandplaice. Thus, they show greater impedance to flow of viscous medium and are more likely to be susceptibletochangesinwaterviscosity. Inspiteoftheirrelativetoleranceto[EPS],theventilatoryactivityofsoleisperturbedinaviscous medium. Opercular ventilation frequency increased with increasing water EPS concentration. Typically,increasedventilatoryfrequencyisobservedinsituationsinvolvingincreasedmetabolic demand (e.g., swimming, Roberts 1975; Altamiras et al. 2002; Wilson et al. 2002) or reduced oxygenavailability(e.g.,Maximeetal.2000;MacCormacketal.2003).Undertheseconditions, increased ventilatory frequency is generally associated with an increase in the amplitude of sub opercularpressureexcursionsduringtheventilatorycycle(Maximeetal.,2000;turbot).Together, thesereflexresponsesincreasetheventilatoryvolume,andsoenhancethetransferofoxygeninto theblood(Jensenetal.1993).Inthecurrentstudy,theresponseofjuvenilesoletoincreasedwater viscositycomprisedasharpincreaseinventilatoryfrequencyassociatedwithreducedsubopercular pressurechanges.Presumably,frictionalforcesintheviscousmediuminterferedwiththeabilityof the ventilatory pump to generate pressure, and so fish exhibited a compensatory increase in frequency in order to maintain gill irrigation. This is clear evidence of respiratory distress and, indeed,atEPSconcentrations>4mgl1,ventilationwascompletelyinhibitedandsolehadtobe quicklytransferredtoEPSfreewater.Atthispoint,frictionalforceseitherexceededthepowerof the ventilatory pump and/or resulted in muscular exhaustion (Maxime et al. 2000; Wilson et al. 2002)inrelationwiththesequentialincreasesinfluffconcentration. Althoughexposuretofluffinfluencedventilationpatterns,thiswasnotrelatedtoanysignificant effectsuponSMR.Theabsenceofanyeffectoffluffonbasalmetabolicdemandindicatesthatsole were able to meet their minimum oxygen requirements despite the increased viscosity of their

15 respiratory medium. However, results upon [EPS]crit suggested a speciesspecific impact of the constraints imposed by EPS according to the oxygen requirements of the four species studied. Therefore,wemightassumeaspeciesspecificimpactofthelevelofEPSloadinwaterupontheir respectiveSMRandthuscriticaloxygenconcentrationinwater(O2crit). WeinitiallyhypothesizedthatincreasedEPSloadandassociatedincreasedventilatoryworkwould resultinreducedtolerancetohypoxia.Thus,anincreaseinthecriticaloxygenconcentration(O2crit) wasexpectedinsolemaintainedonamuddysubstratum.Ourdatadidnotprovidestrongevidence for this. Animals on both sand and H2O2treated fluff exhibited a similar metabolic response to 1 hypoxia and shared a very similar O2crit of about 2 mgO2 l . On the contrary, animals in fluff exhibitedamorevariablemetabolicresponseand,althoughtheirO2critwasnotstatisticallydifferent fromthatoftheothertwogroups,Fig5showsthatsomeanimalsonthefluffdisplayedimmediate declineinthemetabolicrateinhypoxia.Thiswasneverobservedinsoleexposedtoeithersandor treatedmud.Thisindicatesthatsomeanimalswithinasolepopulationmayexperienceproblems withmaintainingbothroutineactivitiesandalsotheirminimalmetabolicrequirementsifexposed to hypoxia when on fluff, whereas this appears not to be true for the other two substrata. Thus, although our data did not provide a statistically significant effect, there may nonetheless be an ecologicallysignificanteffectwithinapopulationofsolethatattemptstocoloniseanareawhere thesubstratecontainshighconcentrationsofEPS.Clearly,wemighthavefoundasignificanteffect onhypoxiatoleranceifwehadtestedhigherfluffconcentrations(>2mgl1).

Impact of shellfish farming facilities on mudflats characteristics and ecological implications

Fluff organic contentwemeasuredinthevicinityofoysterculturezonesareinaccordancewith values reported in the literature (Ragnarsson and Raffaelli 1999; Hartstein and Rowden 2004). Thesevaluesare~6timeshigherthanthevaluesreportedforoysterfreeareas(Vouvé2000).EPS accumulationwasmoreintensetowardthecentreofshellfishculturezoneandthisisprobablydue toreducedhydrodynamicsintheseareas(HartsteinandRowden2004).Oursurveyalsorevealed thatbiodepositionwasvariableamongsamplingsites,probablyinrelationwithdifferencesinlocal conditions(LeHiretal.2005)andindensitiesofbivalvesbeingcultured.EPSloadalsodisplayed seasonal variations. Oyster filtration activity is closely correlated with seasonal elevations in temperature,doublingbetween5and20°C(Bougrieretal.1995).Likewise,seasonalchangesin microphytobenthic development and EPS production have been documented (Underwood and Paterson 1993; Underwood 1994). These seasonal cycles have an influence on fluff

16 organic/inorganic matter ratio. Sornin et al. (1983) showed that biodeposits contain a high proportionofmineralparticlesinwinter,whereastheorganicfractionwassignificantlyincreased (+37%organiccarboninsediments)inspringandsummer.

Conclusions

This study provided insight into the potential ecological significance of biodeposition and the extenttowhichthismightdeterminethequalitystatusofmudflatsasnurserygroundsforjuveniles ofbenthicfishspecies.WedemonstratedthatEPSlevelsinthevicinityofintensivebivalverearing facilities can have profound sizedependent and speciesspecific effects on gill water flow and ventilationinyoungflatfish.Varioustechnicallimitationspreventedusfromtestingfishlessthan5 cminlengthbutdataalreadyavailable(Jenkinsonetal.2007)indicatesthatconstraintsimposedby waterEPSloadwillbeevenmorepronouncedinsmallerfish,withpotentiallygreaterecological consequences. Our results suggest that flatfish species with large gill areas and high oxygen requirements will be at greater risk of negative effects of EPS. This speciesspecific effect is thereforeliabletoalterthespeciescompositionofyoungfishcommunitiesoccupyingcoastalmud flats.Thiseffectisprobablyreinforcedinsystemsthataresubjecttohypoxicevents,wherethere will be even greater selective pressuresupontheabilityofagivenindividualstoextractoxygen fromseawater.

Acknowledgements

AuthorswouldliketothankY.Desaunay,J.Grison,G.GuillouandM.Bréretfortheirtechnical assistance, C.C. was the recipient of a PhD fellowship from the Conseil Général de Charente Maritime. The financial support by the European Union, Directorate , through contract QLRS200200799,ProjectETHOFISH,isalsoacknowledged.

17 References

Altamiras J, Axelsson M, Claireaux G, Lefrançois C, Mercier C, Farrell AP (2002) Cardiorespiratory status of triploid brown trout during swimming at two acclimation temperatures.J.FishBiol.60:102116 BarilléL,CognieB(2000)Revivalcapacityofdiatomsinbivalvepseudofaecesandfaeces.Diatom Res.15:1117 BlairSGW(1933)OntheNatureof“YieldValue”.J.Appl.Phys.4:113118 BougrierS,GeaironP,DeslouPaoliJM,BacherC,JonquièresG(1995)Allometricrelationships andeffectsoftemperatureonclearanceandoxygenconsumptionratesofCrassostrea gigas (Thunberg).Aquaculture134:143154 CarlsonDJ(1987)Viscosityofseasurfaceslicks.Nature329:823825 Decho AW (1990) Microbial exopolymer secretions inocean environments: their role(s) infood websandmarineprocesses.Oceanogr.Mar.Biol.Annu.Rev.28:73153 Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determinationofsugarsandrelatedsubstances.Anal.Chem.28:350356 FondsM,CronieR,VethaakAD,VanderPuylP(1992)Metabolism,foodconsumptionand growthofplaice(Pleuronectes platessa)and(Platichthys flesus)inrelationtofish sizeandtemperature.NethJSeaRes29:127143 Fuiman LA, Batty RS (1997) What a drag it is getting cold: partitioning the physical and physiologicaleffectsoftemperatureonfishswimming.J.Exp.Biol.200:17451755 GershakovSM,HatcherPG(1972)Improvedtechniqueforanalysisofcarbohydratesinsediments. Limnol.Oceanogr.17:938943 GibsonRN(1997)Behaviourandthedistributionofflatfishes.J.SeaRes.37:241256 Goulletquer P, Le Moine O (2002) Shellfish farming and Coastal Zone Management (CZM) development in the MarennesOleron Bay and Charentais Sounds (Charente Maritime, France):areviewofrecentdevelopments.AquacultureInt10:507525 GuariniJM,BlanchardG,BacherC,GrosP,RieraP,RichardP,GouleauD,GaloisR,ProuJ, Sauriau PG (1998) Dynamics of spatial patterns of microphytobenthic biomass: interferences from geostatistical analysis of two comprehensive surveys in Marennes OléronBay(France).Mar.Ecol.Prog.Ser.166:131141 HartsteinND,RowdenAA(2004)Effectofbiodepositsfrommusselcultureonmacroinvertebrate assemblagesatsitesofdifferenthydrodynamicregime.Mar.Environ.Res.57:339357 Hughes GM (1960) A comparative study of gill ventilation in marine teleosts. Journal of ExperimentalBiology37:2845 HughesGM(1966)Thedimensionsoffishgillsinrelationtotheirfunction.J.Exp.Biol.45:177 195 HughesGM(1972)Morphometricsoffishgills.Respir.Physiol.14:125 HughesGM(1984)Generalanatomyofthegills.In:HoarWS,RandallDJ(eds)Fishphysiology. X, Gills PartA,Anatomy,gastransfertandacidbaseregulation.AcademicPress,New York,pp172

18 Hughes GM, Shelton G (1958) The mechanism of gill ventilationinthreefreshwaterteleosts.J. Exp.Biol.35:807823 Jenkinson I, Arzul G (1998) Effect of the flagellates Gymnodinium mikimotoi, Heterosigma akashiwo and Pavlova lutheri on flow through fish gills. In: Reguera B, Blanco J, Fernández ML, Wyatt T (eds) Proceedings of 8th International Conference on Harmful Algae.XuntadeGalicia,PontevedroandIntergovernmentalOeanographicCommissionof Unesco,Vigo,Spain,pp425428 JenkinsonI,BiddandaB(1995)Bulkphaseviscoelasticpropertiesofseawater:relationshipwith planktoncomponents.J.PlanktonRes.17:22512274 JenkinsonI,ClaireauxG,GentienP(2007)Biorheologicalpropertiesofintertidalorganicfluffon mudflatsanditsmodificationofgillventilationinburiedsoleSolea solea.Mar.Biol.150: 471485 Jensen FB, Nikinmaa M, Weber RE (1993) Environmental perturbations of oxygen transport in teleost fishes: causes, consequences and compensations. In: Rankin JC, Jensen FB (eds) Fishecophysiology.Chapman&Hall,London,UK,9:pp161179 Kalinin AL, Severi W, Guerra CDR, Costa MJ, Rantin FT (2000) Ventilatory flow relative to intrabuccal and intraopercular volumes in the Serrasalmid fish Piaractus mesopotamicus duringnormoxiaandexposedtogradedhypoxia.Rev.Brasil.Biol.60:249254 Le Hir P, Robert S, Chaumillon E, Walker P (2005) Etude pour la gestion dynamique des sédimentssurlescôtesdubassindeMarennesOléronetlepertuisdeMaumusson.Lot4: MesuresetanalysesConchyliculture/envasements/sables.IFREMERCREOCEAN CLDG,LaRochelle LefrançoisC,ClaireauxG(2003)Influenceofambientoxygenationandtemperatureonmetabolic scopeandscopeforheartrateinthecommonsoleSolea solea.Mar.Ecol.Prog.Ser.259: 273284 Leguerrier D, Niquil N, Boileau N, Rzeznik J, Sauriau PG, Le Moine O, Bacher C (2003) NumericalanalysisofthefoodwebofanintertidalmudflatecosystemontheAtlanticcoast ofFrance.Mar.Ecol.Prog.Ser.273:147162 MacCormack TJ, McKinley RS, Roubach R, AlmeidaVal VMF, Val AL, Driedzic WR (2003) Changes in ventilation, metabolism, and behaviour, but not bradycardia, contribute to hypoxiasurvivalintwospeciesofAmazonianarmouredcatfish.Can.J.Fish.Aqua.Sci.81: 272280 MallekhR,LagardèreJP(2002)Effectoftemperatureanddissolvedoxygenconcentrationonthe metabolicrateofturbotandtherelationshipbetweenmetabolicscopeandfeedingdemand. J.FishBiol.60:11051115 MasselSR(1999)Fluidmechanicsformarineecologists.Springer,Berlin,Germany MaximeV,PichavantK,BoeufG,NonnotteG(2000)Effectsofhypoxiaonrespiratoryphysiology ofturbot,Scophthalmus maximus.FishPhysiol.Biochem.21:5159 Osse JWM, Van den Boogaart JGM (1999) Dynamic morphology of fish larvae, structural implicationsoffrictionforcesinswimming,feedingandventilation.J.SeaRes.55:156 174 ParkerJG(1983)Acomparisonofmethodsusedforthemeasurementoforganicmatterinmarine sediment.Chem.Ecol.1:201210

19 Petersen JK, Bougrier S, Smaal AC, Garen P, Robert S, Larsen JEN, Brummelhuis E (2004) IntercalibrationofmusselMytilus edulisclearanceratemeasurements.Mar.Ecol.Prog.Ser. 267:187194 Preide IG, Holliday FGT (1980) The use of new tilting tunnel respirometer to investigate some aspects of metabolism and swimming activity of the plaice (Pleuronectes platessa L.). J. Exp.Biol.85:295309 Ragnarsson SA, Raffaelli D (1999) Effects of the mussel Mytilus edulis L. on the invertebrate faunaofsediments.J.Exp.Mar.Biol.Ecol.241:3143 RobertsJL(1975)Activebranchialandramgillventilationinfishes.Biol.Bull.US148:85105 SchlichtingH(1987)Boundarylayertheory.McGrawHill,Inc.,NewYork,USA ShinglesA,McKenzieDJ,ClaireauxG,DomeniciP(2005)Reflexcardioventilatoryresponsesto hypoxia in the flathead gray mullet (Mugil cephalus) and their behavioral modulation by perceivedthreatofpredationandwaterturbidity.Physiol.Biochem.Zool.78:744755 SokalRR,RohlfFJ(1995)Biometry:theprinciplesandpracticeofstatisticsinbiologicalresearch. W.H.FreemanandCompagny,NewYork,USA SorninJM(1983)Effetdesbiodépôtsdel'hûitreCrassostreagigas(Thunberg)surl'accumulation dematièresorganiquesdanslesparcsdubassindeMarennesOléron.J.Molluscan.Stud. 12A:185197 SorninJM,FeuilletM,HéralM,FardeauJC(1986)Influencedesculturesd'huîtresCrassostrea gigassurlecycleduphosphoreenzoneintertidale:rôledelabiodéposition.Oceanol.Acta 9:313322 Underwood GJC (1994) Seasonnal and spatial variation in epipelic diatom assemblages in the Severnestuary.DiatomRes.9:451472 Underwood GJC, Paterson DM (1993) Seasonnal changes in diatom biomass, sediment stability andbiogenicstabilizationintheSevernestuary.J.Mar.Biol.Assoc.UK73:871887 Verger F (1968) Marais et wadden du littoral français. Etude de géomorphologie. Thèse de Doctorat,BiscayeFrèresimprimeurs VouvéF(2000)RégénérationbenthiquedanslesvasièresintertidalesdeMarennesOléron:nature de la matière organique, son impact sur la production et l'incorporation de l'ammonium. Doctorat.Océanologie,Perpignan Webb PW (1988) Simple physical principles and vertebrate aquatic locomotion. Am. Zool. 28: 709725 Wilson RS, Kuchel LJ, Franklin CE, Davison W (2002) Turning up the heat on subzero fish: thermaldependenceofsustainedswimminginanAntarcticnotothenioid.JThermBiol27: 381386

20 Figure1.ExampleoftherelationshipbetweenY(yieldstress)andEPSconcentrationforfishof equalsize.Thearrowindicatestheinflectionpoint,i.e.the[EPS]crit.

Figure2.(a)MapofthePertuisCharentais.Opencircles(○)representwatersamplinglocationsat the interface with seabed. The sample sites are oyster culture zone (dark grey). R: Rivedoux, F:

Fouras,D:Daire,B:Bellevue.(b)SatellitepicturesoftheRivedouxsite.R1,R2,R3andR4are sitessampledrespectivelybefore,throughandattheendoftheoysterculturearea(darkpatchin thebay)accordingtothestream.

Figure3.EPSconcentration(±SEM)fromwhichthefourfishspeciestested(solenette,sole,plaice andturbot)havetoincreasetheventilatorywork,comparedtoworkrequiredinseawaterwithout

EPS.representssmallfish(1.26g),mediumfish(6.112g)andlargefish(12.130.3g).

Figuresabovebarsindicaten.Thedottedlinerepresentsthemaximalvaluewhenn=2.Different lettersmeansstatisticallysignificantdifferencesofmeans.

Figure4.Percentagevariationinfrequency(blacksymbols;mean±sem)andpressureamplitude

(whitesymbols;mean±sem)ofsoleopercularventilationasafunctionoffluffcontent,undertwo treatments: in EPSfree condition (triangles, fluff H2O2treated) and with fluff containing EPS

(circles;mg.l1);n=6.

Figure 5. Influence of water EPS and O2 concentration on metabolism ofsole.Solidcurve:sole routinemetabolicrate(Eq.2;means±IC95%,dashedcurves)on(a)sand,RMRsand=24.49ln(O2)+

1 15.43,(b)fluffcontaining1.13mgEPSl ,RMRfluff=24.59ln(O2)+27.14and(c)EPSfreefluff,

RMRfree=25.91ln(O2)+13.47.Horizontalsolidlines:standardmetabolicrate(SMR).

21 Figure6.Rheologicalpropertiesofmud.ExponentialrelationshipbetweenEPSconcentration(mg

1 0.165×EPS 2 l )andviscosity(means±SEM,n=32;Viscosity=420.84×e ;r =0.77).

Figure 7. EPS concentrations in water at the interface of seabed (mean ± SEM) measured at 3 differentscales(a)MeasuresrealisedatfoursitesinthePertuisCharentaisinoystercultureareas.

(b)MeasuresrealisedatfoursitesofanoystercultureareaintheBayofRivedoux.(c)Measures realisedatthesamepointofanoysterculturezoneatvarioustimesafterthetidestartedtorise.

January05,May05andSeptember05.For(a)and(b),n=10samplesateachpointandeach month,for(c)n=1sampleateachpoint.

1 Figure8.[EPS]crit(mg.l )asafunctionofgillmassinsole(■)andturbot(□)forthreesizeclasses

(S<6g,6<M<12g,L>12g).Nomeasurementformediumsolewaspossible.

22 300 200 [EPS]crit

Y (Pascal) 100 0 0 50 100 150 EPS (mg.l-1) Figure1.

23 (a)

(b) R4 R2 R1 R3 Figure2.

24

60 Solenettea Large a Sole ab Mediumab 50 Turbot b Small b

- 1 40 6 mg.l 30 6 5

crit 2 5 23 20 14 1

[EPS] 10 3 6 6 0

Solenette Sole Plaice Turbot -10

Figure3.

25

200 180 160 140 120

100 80 60 Frequency and amplitude (%) Frequency andamplitude 40 20 0 0 5 10 15 20 25 30 35 Fluff content (%) 0 1 2 3 4 5 6 7 EPS concentration (mg l-1) Figure4.

26

200 (a) )

1

- 150

kg 1 - 100

(mg l 2 50

MO 0 0 2 4 6 8 10 -1 (b) 200 [O2] mg l ) 1 - 150 kg 1

- 100 (mg l 2 50 MO 0 0 2 4 6 8 10 [O2] mg l-1 (c) 200 ) 1

- 150 kg 1 - 100 (mg l 2 50 MO

0 0 2 4 6 8 10

-1 [O2] mg l Figure5.

27

10000000 1000000

100000 10000

s) (Pa Viscosity 1000 100 0 10 20 30 40 50 -1 [EPS] (mg l ) Figure6.

28 (a) 10

8

1 - 6

4

[EPS] mg[EPS]l

2

0 Bellevue Daire Fouras Rivedoux 10 (b)

8

1 - 6

4 [EPS] mg.l [EPS]

2

0 R1 R2 R3 R4 (c) Sites 2,0

1,5 1 -

1 0 ,

l [EPS]mg 0 5 ,

0,0

0 5 10 15 20 25 30 35 40 45

Time after rising tide (min)

Figure7.

29 0.06 0.04

) L

1 -

l (mg 0.02 L crit S

[EPS] M 0 0 0.1 0.2 0.3 0.4 0.5 0.6 S -0.02 Gill mass (g) Figure8.

30