Interaction Design for Remote Control of Military Unmanned Ground Vehicles

Total Page:16

File Type:pdf, Size:1020Kb

Interaction Design for Remote Control of Military Unmanned Ground Vehicles Linköping University | Department of Computer and Information Science Master’s thesis, 30 ECTS | Design and Product Development 2021 | LIU-IDA/LITH-EX-A--2021/005--SE Interaction Design for Remote Control of Military Unmanned Ground Vehicles Diana Saleh Supervisor : Mattias Arvola Examiner : Stefan Holmlid Linköpings universitet SE–581 83 Linköping +46 13 28 10 00 , www.liu.se Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a period of 25 years starting from the date of publication barring exceptional circumstances. The online availability of the document implies permanent permission for anyone to read, to down- load, or to print out single copies for his/hers own use and to use it unchanged for non-commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional upon the consent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility. According to intellectual property law the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement. For additional information about the Linköping University Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its www home page: http://www.ep.liu.se/. © Diana Saleh Abstract The fast technology development for military unmanned ground vehicles (UGVs) has led to a considerable demand to explore the soldier’s role in an interactive UGV system. This thesis explores how to design interactive systems for UGVs for infantry soldiers in the Swedish Armed Force. This was done through a user-centered design approach in three steps; (1) identifying the design drivers of the targeted military context through qualitative observations and user interviews, (2) using the design drivers to investigate concepts for controlling the UGV, and (3) create and evaluate a prototype of an interactive UGV system design. Results from interviews indicated that design drivers depend on the physical and psy- chological context of the intended soldiers. In addition, exploring the different concepts showed that early conceptual designs helped the user express their needs of a non-existing system. Furthermore, the results indicate that an interactive UGV system does not neces- sarily need to be at the highest level of autonomy in order to be useful for the soldiers on the field. The final prototype of an interactive UGV system was evaluated using a demonstra- tion video, a Technology Acceptance Model (TAM), and semi-structured user interviews. Results from this evaluation suggested that the soldiers see the potential usefulness of an interactive UGV system but are not entirely convinced. In conclusion, this thesis argues that in order to design an interactive UGV system, the most critical aspect is the soldiers’ acceptance of the new system. Moreover, for soldiers to accept the concept of military UGVs, it is necessary to understand the context of use and the needs of the soldiers. This is done by involving the soldiers already in the conceptual design process and then throughout the development phases. Acknowledgments Firstly, I would like to thank all of my supervisors at FOI, Anna Häägg, Kristofer Bengtsson, and Björn Johnsson. It has been a pleasure to write my thesis at FOI, and I am grateful for your genuine support. This includes everything from being actors in my demo videos and contributing to my user testings to providing me with knowledge about the military context and reading my reports. Furthermore, I wish to express my sincere appreciation to my supervisor, Mattias Arvola, who has offered me invaluable guidance on the topic of Interaction Design. His persistent help and his words of encouragement have been of the highest value, especially when the roads got rough. Finally, I would like to thank Stefan Holmlid, my examiner at Linköping University. His support and feedback during the examiner seminars have been helpful in my work. iv Contents Abstract iii Acknowledgments iv Contents v List of Figures vii List of Tables viii Terminology and Abbreviations 1 1 Introduction 2 1.1 Background and motivation . 2 1.2 Aim............................................ 2 1.3 Research questions . 3 1.4 Delimitations . 3 2 Theory 4 2.1 Human-Robot Interaction . 4 2.2 Teleoperation . 5 2.3 Unmanned Ground Vehicle Teleoperation in Complex Environments . 6 2.4 Interactive System Design in Telerobotics . 7 3 Methods 9 3.1 Research Through Design Case Study . 9 3.2 User-Centered Design Approach . 10 3.3 Exploration Phase . 10 3.4 Concept Phase . 12 3.5 Prototyping Phase . 12 3.6 User Evaluation Phase . 13 3.7 Research Ethics . 14 4 Results 15 4.1 Exploration Phase . 15 4.2 Concept Phase . 16 4.3 Prototyping Phase . 22 4.4 User Evaluation Phase . 24 5 Discussion 28 5.1 Implication of the results . 28 5.2 Limitations with the method . 30 5.3 The work in a wider context . 30 v 6 Conclusion 32 Bibliography 33 vi List of Figures 2.1 The THeMIS UGV 5th generation. By Milrem Robotics(This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license. ........... 7 3.1 The modified Research through Design used in this thesis . 9 3.2 A process picture that gives an overview of the user-centered research approach. 10 3.3 The participants watching the monitor of the remote control of the UAV on big screen . 11 3.4 The Design Drivers. Context, Function and Qualities . 12 3.5 Example of a concept generated using the design drivers . 12 4.1 Concept 1 with main function to guard . 17 4.2 Concept 2 with main function to transport . 18 4.3 Concept 3 with main function to carry . 19 4.4 Concept 4 with main function to carry . 20 4.5 Concept 5 with main function to spy . 21 4.6 Dashboard top bar design proposal 1 . 22 4.7 Dashboard top bar design proposal 2 . 22 4.8 Dashboard bottom bar design proposal 1 . 22 4.9 Dashboard bottom bar design proposal 2 . 22 4.10 Scenario 1: Identify subjects on map . 23 4.11 Scenario 2: Plan a route . 23 4.12 Dashboard design outcome . 23 4.13 Latest dashboard design outcome from the Design Detailing phase . 23 4.14 Final prototype of UI Design for remote control . 24 4.15 Results from the Scenario Questions. 26 vii List of Tables 2.1 HRI definitions based on Goodrich and Schultz definition. 5 2.2 Levels of Automation of decision and action selection . 6 2.3 Five design elements when developing a military UGV . 7 4.1 Context Identification of Military UGVs . 15 4.2 Design Drivers of Military UGVs . 16 4.3 PMI on Concept 1 . 17 4.4 PMI for Concept 2 . 18 4.5 PMI for Concept 3 . 19 4.6 PMI for Concept 4 . 20 4.7 PMI for Concept 5 . 21 4.8 The main functions of the UGV and the specified functions of the user interface. 22 4.9 Desired, Interesting and Necessary aspects of the prototype. 23 4.10 The average answers to the six questions that revolved around usefulness. 25 4.11 Perceived Usefulness of the Average Participant . 25 4.12 Opportunities and limitations with military UGVs . 27 4.13 Potential use cases with military UGVs . 27 viii Terminology and Abbreviations FOI The Swedish Defence Research Agency HRI Human-Robot Interaction UAV Unmanned Aerial Vehicle UGV Unmanned Ground Vehicle 1 1 Introduction The following chapter presents the basis of the work carried out in collaboration with FOI, the Swedish Defence Research Agency. It contains the background and motivation for the research study followed by the aim, the research questions, and the delimitations. 1.1 Background and motivation Today, a soldier in the field carries about 30-40 kg of packing, which in the long run affects the soldiers’ endurance and performance. To make it easier for the soldiers, and preserve their strength and energy, research is conducted on how to use Unmanned Ground Vehicles (UGVs) as a carrying aid. These UGVs for carrying, are not used in the Swedish Armed Forces today but are becoming more of interest as the technology of autonomous vehicles is developing at a rapid pace. Currently, the intended UGVs are not entirely autonomous and need some form of remote control from an operator. Therefore the remote control must be designed in a way that allows the operator to use and maneuver the UGV under the complex conditions prevailing. This applies to both the graphical interface, the selection of information that appears on the screen, and the physical design of the remote control. The research is performed in collaboration with FOI, the Swedish Defence Research Agency, which is a government authority under the Ministry of Defence and one of Europe’s leading research institutes in defense and security. In this thesis, the end-users are infantry soldiers at the Swedish Armed Forces. 1.2 Aim The aim of this thesis is to explore the usefulness of interactive UGV systems design for infantry soldiers on the field. The goal is to investigate, prototype and test interfaces for interaction between humans and unmanned systems. 2 1.3. Research questions 1.3 Research questions Based on the aim of this thesis, the main research question is: "How do we design interactive unmanned ground vehicle systems for infantry soldiers on the field?" In order to answer the main research question, the question is broken down into three re- search questions that further represent the phases of the project. 1. What characterizes the context of use for infantry soldiers on the field and what is im- portant to consider in the design of an interactive UGV system for this context? 2.
Recommended publications
  • Rebecca Farden Information Technology 101 Term Paper the US Military Uses Some of the Most Advanced Technologies Known to Man, O
    Rebecca Farden Information Technology 101 Term Paper Use of Robotics in the US Military The US military uses some of the most advanced technologies known to man, one main segment being robotics. As this growing field of research is being developed, militaries around the world are beginning to use technologies that may change the way wars are fought. The trend we are currently seeing is an increase in unmanned weaponry, and decrease in actual human involvement in combat. Spending on research in this area is growing drastically and it is expected to continue. Thus far, robotics have been viewed as a positive development in their militaristic function, but as this field advances, growing concerns about their use and implications are arising. Currently, robotics in the military are used in a variety of ways, and new developments are constantly surfacing. For example, the military uses pilotless planes to do surveillance, and unmanned aerial attacks called “drone” strikes (Hodge). These attacks have been frequently used in Iraq in Pakistan in the past several years. Robotics have already proved to be very useful in other roles as well. Deputy commanding general of the Army Maneuver Support Center Rebecca Johnson said “robots are useful for chemical detection and destruction; mine clearing, military police applications and intelligence” (Farrell). Robots that are controlled by soldiers allow for human control without risking a human life. BomBots are robots that are have been used in the middle east to detonate IEDs (improvised explosive devices), keeping soldiers out of this very dangerous situation (Atwater). These uses of robots have been significant advances in the way warfare is carried out, but we are only scratching the surface of the possibilities of robotics in military operations.
    [Show full text]
  • AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
    AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies.
    [Show full text]
  • Review of Advanced Medical Telerobots
    applied sciences Review Review of Advanced Medical Telerobots Sarmad Mehrdad 1,†, Fei Liu 2,† , Minh Tu Pham 3 , Arnaud Lelevé 3,* and S. Farokh Atashzar 1,4,5 1 Department of Electrical and Computer Engineering, New York University (NYU), Brooklyn, NY 11201, USA; [email protected] (S.M.); [email protected] (S.F.A.) 2 Advanced Robotics and Controls Lab, University of San Diego, San Diego, CA 92110, USA; [email protected] 3 Ampère, INSA Lyon, CNRS (UMR5005), F69621 Villeurbanne, France; [email protected] 4 Department of Mechanical and Aerospace Engineering, New York University (NYU), Brooklyn, NY 11201, USA 5 NYU WIRELESS, Brooklyn, NY 11201, USA * Correspondence: [email protected]; Tel.: +33-0472-436035 † Mehrdad and Liu contributed equally to this work and share the first authorship. Abstract: The advent of telerobotic systems has revolutionized various aspects of the industry and human life. This technology is designed to augment human sensorimotor capabilities to extend them beyond natural competence. Classic examples are space and underwater applications when distance and access are the two major physical barriers to be combated with this technology. In modern examples, telerobotic systems have been used in several clinical applications, including teleoperated surgery and telerehabilitation. In this regard, there has been a significant amount of research and development due to the major benefits in terms of medical outcomes. Recently telerobotic systems are combined with advanced artificial intelligence modules to better share the agency with the operator and open new doors of medical automation. In this review paper, we have provided a comprehensive analysis of the literature considering various topologies of telerobotic systems in the medical domain while shedding light on different levels of autonomy for this technology, starting from direct control, going up to command-tracking autonomous telerobots.
    [Show full text]
  • Panospheric Video for Robotic Telexploration
    Panospheric Video for Robotic Telexploration John R. Murphy CMU-RI-TR-98-10 Submined in partial fulfiient of the requirements for the degree of Doctor of Philosophy in Robotics The Robotics Institute Cknegie Mellon University Pittsburgh, Pennsylvania 15213 May 1998 0 1998 by John R. Murphy. All rights reserved. This research was supported in part by NASA grant NAGW-117.5. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of NASA or the U.S. Government. Robotics Thesis Panospheric Video for Robotic Telexploration John Murphy Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the field of Robotics ACC-. William L. Whittaka TheEis Cormittee Chair Date Matthew T. Mason- - Program Chir Y Date APPROVED: fL-4 36 JiiIff+? Pa Christian0 Rowst Date - Abstract Teleoperation using cameras and monitors fails to achieve the rich and natural perceptions available during direct hands-on operation. Optimally. a reniote telepresence reproduces visual sensations that enable equivalent understanding and interaction as direct operation. Through irnrnersive video acquisition and display. the situational awareness ola remote operator is brought closer lo that of direct operation. Early teleoperation research considered the value of wide tields of view. Howe~er. utilization of wide fields of view meant sacrificing resolution and presenting distorted imagery to the viewer. With recent advances in technology. these problems are no longer barriers to hyper-wide field of view video. Acquisition and display of video conveying the entire surroundings of a tclcoperated mobile robot requires innolwtion of hardware and software.
    [Show full text]
  • Responsibility Practices in Robotic Warfare Deborah G
    Responsibility Practices in Robotic Warfare Deborah G. Johnson, Ph.D., and Merel E. Noorman, Ph.D. NMANNED AERIAL VEHICLES (UAVs), also known as drones, are commonplace in U.S. military operations. Many predict increased military use of more sophisti- Ucated and more autonomous robots.1 Increased use of robots has the potential to transform how those directly involved in warfare, as well as the public, perceive and experience war. Military robots allow operators and commanders to be miles away from the battle, engag- ing in conflicts virtually through computer screens and controls. Video cameras and sen- sors operated by robots provide technologically mediated renderings of what is happening on the ground, affecting the actions and attitudes of all involved. Central to the ethical concerns raised by robotic warfare, especially the use of autonomous military robots, are issues of responsibility and accountability. Who will be responsible when robots decide for themselves and behave in unpredictable ways or in ways that their human partners do not understand? For example, who will be responsible if an autonomously operating unmanned aircraft crosses a border without authorization or erroneously identifies a friendly aircraft as a target and shoots it down?2 Will a day come when robots themselves are considered responsible for their actions?3 Deborah G. Johnson is the Anne Shirley Carter Olsson Professor of Applied Ethics in the Science, Technology, and Society Program at the University of Virginia. She holds a Ph.D., M.A., and M.Phil. from the University of Kansas and a B.Ph. from Wayne State University. The author/editor of seven books, she writes and teaches about the ethical issues in science and engineering, especially those involving computers and information technology.
    [Show full text]
  • Geting (Parakilas and Bryce, 2018; ICRC, 2019; Abaimov and Martellini, 2020)
    Journal of Future Robot Life -1 (2021) 1–24 1 DOI 10.3233/FRL-200019 IOS Press Algorithmic fog of war: When lack of transparency violates the law of armed conflict Jonathan Kwik ∗ and Tom Van Engers Faculty of Law, University of Amsterdam, Amsterdam 1001NA, Netherlands Abstract. Underinternationallaw,weapon capabilitiesand theiruse areregulated by legalrequirementsset by International Humanitarian Law (IHL).Currently,there arestrong military incentivestoequip capabilitieswith increasinglyadvanced artificial intelligence (AI), whichinclude opaque (lesstransparent)models.As opaque models sacrifice transparency for performance, it is necessary toexaminewhether theiruse remainsinconformity with IHL obligations.First,wedemon- strate that theincentivesfor automationdriveAI toward complextaskareas and dynamicand unstructuredenvironments, whichinturnnecessitatesresorttomore opaque solutions.Wesubsequently discussthe ramifications of opaque models for foreseeability andexplainability.Then, we analysetheir impact on IHLrequirements froma development, pre-deployment and post-deployment perspective.We findthatwhile IHL does not regulate opaqueAI directly,the lack of foreseeability and explainability frustratesthe fulfilmentofkey IHLrequirementstotheextent that theuse of fully opaqueAI couldviolate internationallaw.Statesare urgedtoimplement interpretability duringdevelopmentand seriously consider thechallenging complicationofdetermining theappropriate balancebetween transparency andperformance in their capabilities. Keywords:Transparency, interpretability,foreseeability,weapon,
    [Show full text]
  • Variety of Research Work Has Already Been Done to Develop an Effective Navigation Systems for Unmanned Ground Vehicle
    Design of a Smart Unmanned Ground Vehicle for Hazardous Environments Saurav Chakraborty Subhadip Basu Tyfone Communications Development (I) Pvt. Ltd. Computer Science & Engineering. Dept. ITPL, White Field, Jadavpur University Bangalore 560092, INDIA. Kolkata – 700032, INDIA Abstract. A smart Unmanned Ground Vehicle needs some organizing principle, based on the (UGV) is designed and developed for some characteristics of each system such as: application specific missions to operate predominantly in hazardous environments. In The purpose of the development effort our work, we have developed a small and (often the performance of some application- lightweight vehicle to operate in general cross- specific mission); country terrains in or without daylight. The The specific reasons for choosing a UGV UGV can send visual feedbacks to the operator solution for the application (e.g., hazardous at a remote location. Onboard infrared sensors environment, strength or endurance can detect the obstacles around the UGV and requirements, size limitation etc.); sends signals to the operator. the technological challenges, in terms of functionality, performance, or cost, posed by Key Words. Unmanned Ground Vehicle, the application; Navigation Control, Onboard Sensor. The system's intended operating area (e.g., indoor environments, anywhere indoors, 1. Introduction outdoors on roads, general cross-country Robotics is an important field of interest in terrain, the deep seafloor, etc.); modern age of automation. Unlike human being the vehicle's mode of locomotion (e.g., a computer controlled robot can work with speed wheels, tracks, or legs); and accuracy without feeling exhausted. A robot How the vehicle's path is determined (i.e., can also perform preassigned tasks in a control and navigation techniques hazardous environment, reducing the risks and employed).
    [Show full text]
  • The Arms Industry and Increasingly Autonomous Weapons
    Slippery Slope The arms industry and increasingly autonomous weapons www.paxforpeace.nl Reprogramming War This report is part of a PAX research project on the development of lethal autonomous weapons. These weapons, which would be able to kill people without any direct human involvement, are highly controversial. Many experts warn that they would violate fundamental legal and ethical principles and would be a destabilising threat to international peace and security. In a series of four reports, PAX analyses the actors that could potentially be involved in the development of these weapons. Each report looks at a different group of actors, namely states, the tech sector, the arms industry, and universities and research institutes. The present report focuses on the arms industry. Its goal is to inform the ongoing debate with facts about current developments within the defence sector. It is the responsibility of companies to be mindful of the potential applications of certain new technologies and the possible negative effects when applied to weapon systems. They must also clearly articulate where they draw the line to ensure that humans keep control over the use of force by weapon systems. If you have any questions regarding this project, please contact Daan Kayser ([email protected]). Colophon November 2019 ISBN: 978-94-92487-46-9 NUR: 689 PAX/2019/14 Author: Frank Slijper Thanks to: Alice Beck, Maaike Beenes and Daan Kayser Cover illustration: Kran Kanthawong Graphic design: Het IJzeren Gordijn © PAX This work is available under the Creative Commons Attribution 4.0 license (CC BY 4.0) https://creativecommons.org/licenses/ by/4.0/deed.en We encourage people to share this information widely and ask that it be correctly cited when shared.
    [Show full text]
  • Increasing the Trafficability of Unmanned Ground Vehicles Through Intelligent Morphing
    Increasing the Trafficability of Unmanned Ground Vehicles through Intelligent Morphing Siddharth Odedra 1, Dr Stephen Prior 1, Dr Mehmet Karamanoglu 1, Dr Siu-Tsen Shen 2 1Product Design and Engineering, Middlesex University Trent Park Campus, Bramley Road, London N14 4YZ, U.K. [email protected] [email protected] [email protected] 2Department of Multimedia Design, National Formosa University 64 Wen-Hua Road, Hu-Wei 63208, YunLin County, Taiwan R.O.C. [email protected] Abstract Unmanned systems are used where humans are either 2. UNMANNED GROUND VEHICLES unable or unwilling to operate, but only if they can perform as Unmanned Ground Vehicles can be defined as good as, if not better than us. Systems must become more mechanised systems that operate on ground surfaces and autonomous so that they can operate without assistance, relieving the burden of controlling and monitoring them, and to do that they serve as an extension of human capabilities in unreachable need to be more intelligent and highly capable. In terms of ground or unsafe areas. They are used for many things such as vehicles, their primary objective is to be able to travel from A to B cleaning, transportation, security, exploration, rescue and where the systems success or failure is determined by its mobility, bomb disposal. UGV’s come in many different for which terrain is the key element. This paper explores the configurations usually defined by the task at hand and the concept of creating a more autonomous system by making it more environment they must operate in, and are either remotely perceptive about the terrain, and with reconfigurable elements, controlled by the user, pre-programmed to carry out specific making it more capable of traversing it.
    [Show full text]
  • Sensors and Measurements for Unmanned Systems: an Overview
    sensors Review Sensors and Measurements for Unmanned Systems: An Overview Eulalia Balestrieri 1,* , Pasquale Daponte 1, Luca De Vito 1 and Francesco Lamonaca 2 1 Department of Engineering, University of Sannio, 82100 Benevento, Italy; [email protected] (P.D.); [email protected] (L.D.V.) 2 Department of Computer Science, Modeling, Electronics and Systems (DIMES), University of Calabria, 87036 Rende, CS, Italy; [email protected] * Correspondence: [email protected] Abstract: The advance of technology has enabled the development of unmanned systems/vehicles used in the air, on the ground or on/in the water. The application range for these systems is continuously increasing, and unmanned platforms continue to be the subject of numerous studies and research contributions. This paper deals with the role of sensors and measurements in ensuring that unmanned systems work properly, meet the requirements of the target application, provide and increase their navigation capabilities, and suitably monitor and gain information on several physical quantities in the environment around them. Unmanned system types and the critical environmental factors affecting their performance are discussed. The measurements that these kinds of vehicles can carry out are presented and discussed, while also describing the most frequently used on-board sensor technologies, as well as their advantages and limitations. The paper provides some examples of sensor specifications related to some current applications, as well as describing the recent research contributions in the field. Citation: Balestrieri, E.; Daponte, P.; Keywords: unmanned systems; UAV; UGV; USV; UUV; sensors; payload; challenges De Vito, L.; Lamonaca, F. Sensors and Measurements for Unmanned Systems: An Overview.
    [Show full text]
  • Teleoperation of a 7 DOF Humanoid Robot Arm Using Human Arm Accelerations and EMG Signals
    Teleoperation of a 7 DOF Humanoid Robot Arm Using Human Arm Accelerations and EMG Signals J. Leitner, M. Luciw, A. Forster,¨ J. Schmidhuber Dalle Molle Institute for Artificial Intelligence (IDSIA) & Scuola universitaria professionale della Svizzera Italiana (SUPSI) & Universita` della Svizzera italiana (USI), Switzerland e-mail: [email protected] Abstract 2 Background and Related Work We present our work on tele-operating a complex hu- The presented research combines a variety of subsys- manoid robot with the help of bio-signals collected from tems together to allow the safe and robust teleoperation of the operator. The frameworks (for robot vision, collision a complex humanoid robot. For the experiments herein, avoidance and machine learning), developed in our lab, we are using computer vision, together with accelerom- allow for a safe interaction with the environment, when eters and EMG signals collected on the operator’s arm combined. This even works with noisy control signals, to remotely control the 7 degree-of-freedom (DOF) robot such as, the operator’s hand acceleration and their elec- arm – and the 5 fingered end-effector – during reaching tromyography (EMG) signals. These bio-signals are used and grasping tasks. to execute equivalent actions (such as, reaching and grasp- ing of objects) on the 7 DOF arm. 2.1 Robotic Teleoperation Telerobotics usually refers to the remote control of 1 Introduction robotic systems over a (wireless) link. First use of tele- robotics dates back to the first robotic space probes used More and more robots are sent to distant or dangerous during the 20-th century. Remote manipulators are nowa- environments to perform a variety of tasks.
    [Show full text]
  • Boston Dynamics from Wikipedia, the Free Encyclopedia
    Boston Dynamics From Wikipedia, the free encyclopedia Boston Dynamics is an engineering and robotics Boston Dynamics design company that is best Industry Robotics known for the development Headquarters Waltham, Massachusetts, United of BigDog, a quadruped States robot designed for the U.S. military with funding from Owner Google Defense Advanced Research Parent Google Projects Agency Website www.bostondynamics.com [1][2] (DARPA), and DI-Guy, (http://www.bostondynamics.com/) software for realistic human simulation. Early in the company's history, it worked with the American Systems Corporation under a contract from the Naval Air Warfare Center Training Systems Division (NAWCTSD) to replace naval training videos for aircraft launch operations with interactive 3D computer simulations featuring DI-Guy characters.[3] Marc Raibert is the company's president and project manager. He spun the company off from the Massachusetts Institute of Technology in 1992.[4] On 13 December 2013, the company was acquired by Google, where it will be managed by Andy Rubin.[5] Immediately before the acquisition, Boston Dynamics transferred their DI-Guy software product line to VT MÄK, a simulation software vendor based in Cambridge, Massachusetts.[6] Contents 1 Products 1.1 BigDog 1.2 Cheetah 1.3 LittleDog 1.4 RiSE 1.5 SandFlea 1.6 PETMAN 1.7 LS3 1.8 Atlas 1.9 RHex 2 References 3 External links Products BigDog BigDog is a quadrupedal robot created in 2005 by Boston Dynamics, in conjunction with Foster-Miller, the Jet Propulsion Laboratory, and the Harvard University Concord Field Station.[7] It is funded by the DARPA[8] in the hopes that it will be able to serve as a robotic pack mule to accompany soldiers in terrain too rough for vehicles.
    [Show full text]