Proteomic Analysis of Porcine Oocytes During in Vitro Maturation Reveals Essential Role for the Ubiquitin C-Terminal Hydrolase-L1

Total Page:16

File Type:pdf, Size:1020Kb

Proteomic Analysis of Porcine Oocytes During in Vitro Maturation Reveals Essential Role for the Ubiquitin C-Terminal Hydrolase-L1 REPRODUCTIONRESEARCH Proteomic analysis of porcine oocytes during in vitro maturation reveals essential role for the ubiquitin C-terminal hydrolase-L1 Andrej Susor, Zdenka Ellederova, Lucie Jelinkova, Petr Halada1, Daniel Kavan1, Michal Kubelka and Hana Kovarova Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska str. 89, 277 21 Libechov, Czech Republic and 1Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic Correspondence should be addressed to H Kovarova; Email: [email protected] Abstract In this study, we performed proteomic analysis of porcine oocytes during in vitro maturation. Comparison of oocytes at the initial and final stages of meiotic division characterized candidate proteins that were differentially synthesized during in vitro maturation. While the biosynthesis of many of these proteins was significantly decreased, we found four proteins with increased biosynthetic rate, which are supposed to play an essential role in meiosis. Among them, the ubiquitin C-terminal hydrolase-L1 (UCH-L1) was identified by mass spectrometry. To study the regulatory role of UCH-L1 in the process of meiosis in pig model, we used a specific inhibitor of this enzyme, marked C30, belonging to the class of isatin O-acyl oximes. When germinal vesicle (GV) stage cumulus-enclosed oocytes were treated with C30, GV breakdown was inhibited after 28 h of culture, and most of the oocytes were arrested at the first meiosis after 44 h. The block of metaphase I–anaphase transition was not completely reversible. In addition, the inhibition of UCH-L1 resulted in elevated histone H1 kinase activity, corresponding to cyclin–dependent kinase(CDK1)–cyclin B1 complex, and a low level of monoubiquitin. These results supported the hypothesis that UCH-L1 might play a role in metaphase I–anaphase transition by regulating ubiquitin- dependent proteasome mechanisms. In summary, a proteomic approach coupled with protein verification study revealed an essential role of UCH-L1 in the completion of the first meiosis and its transition to anaphase. Reproduction (2007) 134 559–568 Introduction is expected that the important information necessary for full meiotic and developmental competence of oocytes The mammalian oocyte is the cornerstone of reproductive could be retained at the protein level. Recent findings biology. Recent advantages in technologies such as suggest that the coordination of a large number of events assisted reproduction, nuclear transfer, and embryonic is controlled by a network of protein interactions and/or or adult stem cell derivation have been significant, and development in this field is enormous. In spite of this posttranslational modifications, such as phosphorylation progress, our knowledge of molecular networks under- (Dai et al. 2003, Kraft et al. 2003). The M-phase lying fine mechanisms of the reproductive processes promoting factor (MPF) is one of the main regulators of remains elusive. Deeper understanding of these meiosis. The CDK1 kinase, the catalytic subunit of MPF, is mechanisms should help to improve poor developmental stored in oocytes as an inactive protein and its activation potential of in vitro-produced embryos, their successful needs, at the first level, the association with cyclin B1 implantation, and maintenance of pregnancy. which is known as the regulatory subunit of MPF and Fully grown mammalian oocytes are arrested at the whose synthesis and degradation oscillates during the cell dictyate stage of meiosis I (M I) and can be induced to cycle (Pines & Hunter 1990, Jackman et al. 2003). Other resume the meiotic cell cycle by a surge of luteinizing reports demonstrated, however, that mitogen-activated hormone or after the release from their follicles in vitro. protein (MAP) kinases have an important role during Although several in vitro culture systems for mammalian M-phase. They can be involved not only in spindle oocyte maturation, fertilization, and embryo develop- assembly but also in regulation of cap-dependent ment have been established, the final outcome is still not translation initiation and its contribution to the changes satisfactory (Prather & Day 1998, Nagai 2001, Pavlok in overall protein synthesis during in vitro meiotic et al. 2005). Transcriptional activity of the mammalian maturation of mammalian oocytes (Sun & Nagai 2003, oocyte rapidly decreases during maturation; therefore, it Ellederova et al. 2006, 2007). The precise timing of q 2007 Society for Reproduction and Fertility DOI: 10.1530/REP-07-0079 ISSN 1470–1626 (paper) 1741–7899 (online) Online version via www.reproduction-online.org Downloaded from Bioscientifica.com at 10/03/2021 04:10:57AM via free access 560 A Susor and others protein synthesis and degradation plays an important role of biosynthetically labeled oocyte proteins was per- in controlling oocyte maturation (Moor & Dai 2001, formed. Four gels for each type of cell population were Coenen et al. 2004). In this context, the involvement of used for comparative analysis of protein profiles of GV, the ubiquitin–proteasome complex, an essential M I, and M II stages of oocyte maturation. Using component of the proteolytic pathway in eukaryotic PDQuest analysis software version 7.1 (Bio-Rad), an cells, has been demonstrated in the regulation of pig average of 220G44 (nZ4) and 201G38 (nZ4) protein oocyte meiotic maturation and fertilization; however, spots was mapped for GV and M I oocytes respectively, the major regulatory molecular events are unknown (Sun while 120G23 (nZ4) were detected from M II oocytes et al. 2004, Pines & Lindon 2005). (Fig. 1). A statistical comparison between the initial GV Until recently, there have been relatively few studies and final M II groups of gels using Student’s t-test examining genomes and proteomes of germ cells as well as implemented in PDQuest software identified 16 protein embryos at a global level (Colonna et al. 1989, Latham spots that were significantly (P!0.05) attenuated or et al. 1991, Sasaki et al. 1999). Molecular investigations of amplified during in vitro maturation. Most of the 16 gene expression or protein composition of germ cells or significantly altered protein spots were down-regulated embryos have been sparse due to the paucity of sample during oocyte meiotic division, but four were up-regu- cells and sufficiently sensitive procedures to analyze and lated. Among these four spots, the protein in one spot identify them. With the progress of technologies, including (SSP 1108) from the Coomassie-stained gel was ident- linear amplification of cDNA populations, it has been ified by mass spectrometry. Attempts to identify other possible to consider gene profiling in this biological model selected proteins failed due to their low abundance or of extremely limited availability (Robert et al. 2001, Goto the incomplete knowledge of the pig genome. Repre- et al. 2002, Dalbies-Tran & Mermillod 2003, Zeng & sentative protein features are presented in Fig. 2. Schultz 2003). In addition, the number of functional Among the spots whose biosynthesis was apparently proteomic analyses identifying biologically relevant up-regulated in M II stage of oocyte matured in vitro, candidate proteins which may be involved in the SSP 1108 corresponded to UCH-L1. The protein spot regulation of oocyte maturation, embryo development, was unambiguously identified by peptide mass or oviductal proteome is gradually increasing in spite of the mapping approach (for details see Materials and limited availability of human germ cells and lack of Methods). Briefly, the protein was digested directly in complete genome sequences of other mammalian species the gel by trypsin and the generated peptide mixture (Georgiou et al. 2005, Horiguchi et al. 2006, Massicotte was analyzed by MALDI mass spectrometry. Seven et al. 2006, Vitale et al. 2007). peptide fragments covering 35% of UCH-L1 sequence In this study, we used a proteomics approach to were found in the obtained MALDI spectrum (Fig. 3). analyze changes in protein synthesis of porcine oocytes In addition, steady-state level of UCH-L1 revealed by during in vitro maturation. Comparative analysis of the specific immunodetection was high and it increased oocytes at the initial and final stages of meiotic division slightly in the course of meiotic division. More detailed characterized candidate proteins that are differentially 2-DE followed by immunoblot revealed the presence synthesized during in vitro maturation. While the of three spots corresponding to UCH-L1 protein with biosynthesis of many of these proteins was significantly the most acidic form increased at the final stage of decreased, we found four proteins with increase in oocyte maturation when compared with the initial biosynthetic rate, which are supposed to play a critical stage (Fig. 4). role during oocyte meiotic maturation. Among them, the ubiquitin C-terminal hydrolase-L1 (UCH-L1) was ident- ified by mass spectrometry. In addition, two-dimensional Inhibition of meiotic progression by UCH-L1 inhibition gel electrophoresis (2-DE) followed by immunoblot When COCs were cultured in maturation medium revealed the presence of three spots corresponding to (MM) containing 10, 50, or 100 mM C30 for 28 h, UCH-L1 protein with the most acidic form increased at meiosis resumption and GV breakdown (GVBD) were the final stage of oocyte maturation compared with the inhibited in oocytes treated with 50 and 100 mM C30, initial stage. An essential requirement of this oocyte while 10 mM C30 did not affected these steps. In protein for the process of meiosis in pig model was comparison, most oocytes underwent GVBD and verified using a specific inhibitor of UCH-L1. progressed to M I in control group treated in inhibitor-free medium (Table 1). The oocytes treated with 10, 50, or 100 mM C30 for Results 44 h were not capable to reach successfully M II stage in the presence of either 10 or 50 mM concentrations of C30 Protein patterns of biosynthesis during in vitro maturation and approximately half of the oocytes remained in M I of porcine oocytes and identification of UCH-L1 stage.
Recommended publications
  • Stage of the Meiotic Prophase (Dictyate Stage) from Embryonic Life
    In vivo change in the germinal vesicle of the sow oocyte during the follicular phase before the ovulatory LH surge Marie-Christine DAGUET Université Pierre et Marie Curie (Paris VI) and 1. N. R. A. 78350 Jouy-en-Josas, France. Summary. This study describes a morphological change in the germinal vesicle (GV) of the sow oocyte during the follicular phase preceding the ovulatory LH surge. Estrus synchronization obtained with methallibure treatment provided a reference point for dating the onset of the follicular phase of each sow in the experiment. The oocyte GV’s of preovula- tory follicles having a diameter of less than 2 mm (during the first 2 to 3 days of the follicular phase) showed uniformly dispersed chromatin with no condensation, while the GV’s of oocytes from preovulatory follicles of more than 2 mm diameter (from days 2 and 3 of the follicular phase to day 5) presented condensed chromatin in the shape of a crown or horse- shoe surrounding the nucleolus, and irregular chromatin clusters in the nucleoplasm ; these clusters were usually found lying against the nuclear membrane. Introduction. The oocyte nucleus, called the germinal vesicle (GV), remains at the diplotene stage of the meiotic prophase (dictyate stage) from embryonic life to the time of the ovulatory LH surge, permitting resumption of meiosis at each cycle in oocytes within suitable follicles. The literature contains many references to GV breakdown and change resulting from the ovulatory LH surge, i. e. the first stages of the resumption of meiosis (rats : Odor, 1955 ; Mandl, 1963 ; mice : Edwards and Gates, 1959 ; Donahue, 1968 ; sows : Spalding et at., 1955 ; Hunter and Polge, 1966 ; McGaughey and Polge, 1971 ; Motlik and Fulka, 1976), but little has been published on the development of the GV of oocytes from preovulatory follicles before the ovulatory LH surge.
    [Show full text]
  • The Role of Cyclin B3 in Mammalian Meiosis
    THE ROLE OF CYCLIN B3 IN MAMMALIAN MEIOSIS by Mehmet Erman Karasu A Dissertation Presented to the Faculty of the Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy New York, NY November, 2018 Scott Keeney, PhD Date Dissertation Mentor Copyright © Mehmet Erman Karasu 2018 DEDICATION I would like to dedicate this thesis to my parents, Mukaddes and Mustafa Karasu. I have been so lucky to have their support and unconditional love in this life. ii ABSTRACT Cyclins and cyclin dependent kinases (CDKs) lie at the center of the regulation of the cell cycle. Cyclins as regulatory partners of CDKs control the switch-like cell cycle transitions that orchestrate orderly duplication and segregation of genomes. Similar to somatic cell division, temporal regulation of cyclin-CDK activity is also important in meiosis, which is the specialized cell division that generates gametes for sexual production by halving the genome. Meiosis does so by carrying out one round of DNA replication followed by two successive divisions without another intervening phase of DNA replication. In budding yeast, cyclin-CDK activity has been shown to have a crucial role in meiotic events such as formation of meiotic double-strand breaks that initiate homologous recombination. Mammalian cells express numerous cyclins and CDKs, but how these proteins control meiosis remains poorly understood. Cyclin B3 was previously identified as germ cell specific, and its restricted expression pattern at the beginning of meiosis made it an interesting candidate to regulate meiotic events.
    [Show full text]
  • Aspects of Sexual Dimorphism in Mammalian Meiosis
    REPRODUCTIONREVIEW Focus on Meiosis Not all germ cells are created equal: Aspects of sexual dimorphism in mammalian meiosis Meisha A Morelli and Paula E Cohen Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA Correspondence should be addressed to P E Cohen; Email: [email protected] Abstract The study of mammalian meiosis is complicated by the timing of meiotic events in females and by the intermingling of meiotic sub-stages with somatic cells in the gonad of both sexes. In addition, studies of mouse mutants for different meiotic regulators have revealed significant differences in the stringency of meiotic events in males versus females. This sexual dimorphism implies that the processes of recombination and homologous chromosome pairing, while being controlled by similar genetic pathways, are subject to different levels of checkpoint control in males and females. This review is focused on the emerging picture of sexual dimorphism exhibited by mammalian germ cells using evidence from the broad range of meiotic mutants now available in the mouse. Many of these mouse mutants display distinct differences in meiotic progression and/or dysfunc- tion in males versus females, and their continued study will allow us to understand the molecular basis for the sex-specific differences observed during prophase I progression. Reproduction (2005) 130 761–781 Introduction most of the defining events that differentiate meiosis from mitosis. This includes homolog pairing as well as double Meiosis is a specialized cell division process that is essen- stranded break (DSB) formation and resolution leading to tial for the propagation of all sexually reproducing organ- crossover/recombination between homologus chromo- isms.
    [Show full text]
  • Direct Effects of Heat Stress During Meiotic Maturation on Bovine Oocyte and Cumulus RNA
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2009 Direct Effects of Heat Stress During Meiotic Maturation on Bovine Oocyte and Cumulus RNA Rebecca R. Payton University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Animal Sciences Commons Recommended Citation Payton, Rebecca R., "Direct Effects of Heat Stress During Meiotic Maturation on Bovine Oocyte and Cumulus RNA. " PhD diss., University of Tennessee, 2009. https://trace.tennessee.edu/utk_graddiss/628 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Rebecca R. Payton entitled "Direct Effects of Heat Stress During Meiotic Maturation on Bovine Oocyte and Cumulus RNA." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Animal Science. J. Lannett Edwards, Major Professor We have read this dissertation and recommend its acceptance: Cheryl Kojima, Arnold Saxton, F. Neal Schrick, Neal Stewart Accepted for the Council: Carolyn
    [Show full text]
  • TBP2 Is Essential for Germ Cell Development by Regulating Transcription and Chromatin Condensation in the Oocyte
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press TBP2 is essential for germ cell development by regulating transcription and chromatin condensation in the oocyte Emese Gazdag,1,4 Ange`le Santenard,1,2,4 Ce´line Ziegler-Birling,1,2 Gioia Altobelli,1,3 Olivier Poch,3 La`szlo` Tora,1,5 and Maria-Elena Torres-Padilla1,2,6 1Department of Functional Genomics, Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France; 2Department of Developmental and Cell Biology, Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France; 3Bioinformatics and Integrative Biology Laboratory, Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France Development of the germline requires consecutive differentiation events. Regulation of these has been associated with germ cell-specific and pluripotency-associated transcription factors, but the role of general transcription factors (GTFs) remains elusive. TATA-binding protein (TBP) is a GTF involved in transcription by all RNA polymerases. During ovarian folliculogenesis in mice the vertebrate-specific member of the TBP family, TBP2/ TRF3, is expressed exclusively in oocytes. To determine TBP2 function in vivo, we generated TBP2-deficient mice. We found that Tbp2À/À mice are viable with no apparent phenotype. However, females lacking TBP2 are sterile due to defective folliculogenesis, altered chromatin organization, and transcriptional misregulation of key oocyte-specific genes.
    [Show full text]
  • I N P R E S E N T I N G T H E D I S S E R T a T I O N a S a P a R T I a L F U L F I L L M E N T O F the Requirements for an Adva
    In presenting the dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Technology, I agree that the Library of the Institute shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may be granted by the professor under whose direction it was written, or, in his absence, by the Dean of the Graduate Division when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. It is under­ stood that any copying from, or publication of, this dis­ sertation which involves potential financial gain will not be allowed without written permission. s7 MEIOTIC STAGES IN THE FEMALE CHINESE HAMSTER (CRICETULUS GRISEUS MILNE-EDW.) A THESIS Presented to The Faculty of the Graduate Division by Brenda Maxine Waldon In Partial Fulfillment of the Requirements for the Degree ster of Science in The School of Applied Biology Georgia Institute of Technology March, 1969 MEIOTIC STAGES IN THE: FEMALE CHINESE HAMSTER (CRICETULUS GRISEUS MILNE-EDW.) APPROVED: CHAIRMAN DATE APPROVED BY CHAIRMAN: 3 -// ~69 ii ACKNOWLEDGMENTS My warm and sincere gratitude is expressed to Dr. R. H. Fetner for his guidance and assistance during my entire graduate program. I also extend my appreciation to Dr. A. B. Eschenbrenner and to Dr. H. S. Min for their assistance. I am indeed grateful to my friends Corinne Morgan and Ginny Zehr for their encouragement and assistance. This thesis is dedicated to Dr.
    [Show full text]
  • Two Distinct Pathways of Pregranulosa Cell Differentiation Support Follicle Formation in the Mouse Ovary
    Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary Wanbao Niua,b and Allan C. Spradlinga,b,1 aHoward Hughes Medical Institute Research Laboratories, Carnegie Institution for Science, Baltimore, MD 21218; and bDepartment of Embryology, Carnegie Institution for Science, Baltimore, MD 21218 Contributed by Allan C. Spradling, July 2, 2020 (sent for review March 25, 2020; reviewed by Brigid L. M. Hogan and Melissa Pepling) We sequenced more than 52,500 single cells from embryonic day (EPG) cell population begins production at least by E14.5, also 11.5 (E11.5) postembryonic day 5 (P5) gonads and performed from progenitors in the ovarian surface epithelium (22, 23). These lineage tracing to analyze primordial follicles and wave 1 medullar cells express Lgr5 and eventually differentiate as granulosa cells follicles during mouse fetal and perinatal oogenesis. Germ cells on second wave follicles (8, 21–23). The cellular origins, division clustered into six meiotic substages, as well as dying/nurse cells. timing, and gene expression programs underlying both groups of Wnt-expressing bipotential precursors already present at E11.5 are PG cells need to be more precisely defined. Ultimately, the extent followed at each developmental stage by two groups of ovarian to which these cells control the different properties of the two pregranulosa (PG) cells. One PG group, bipotential pregranulosa follicular waves remains of interest. (BPG) cells, derives directly from bipotential precursors, expresses Evolutionary conservation provides another potentially valu- Foxl2 early, and associates with cysts throughout the ovary by able source of insight into ovarian follicle development. In both E12.5.
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Expression and Characterisation of a Novel Poly(A)-Binding Protein, PABP5 Ross C. Anderson PhD The University of Edinburgh 2010 Abstract The poly(A)-binding proteins (PABPs) are a family of eukaryotic RNA-binding proteins with key roles in mRNA translation and stability. The molecular function of PABPs have been largely revealed through study of the prototypical cytoplasmic poly(A)-binding protein, PABP1. Thus, little is known regarding other PABP family members. PABP5 contains four RNA-recognition motifs characteristic of the cytoplasmic PABPs yet is structurally distinct as it lacks a portion of the C-terminus. This region contains a proline-rich section linked to a globular domain that facilitates a number of protein-protein interactions. To date, little information has been presented regarding the expression of PABP5 and there is no data pertaining to the function of this protein, despite being mapped to a region of the X-chromosome associated with human pathological conditions.
    [Show full text]
  • Radiation Damage in the Mouse Female Germ Cell: a Two-Part Study
    V UCRL-52530 ) RADIATION DAMAGE IN THE MOUSE FEMALE GERM CELL: A TWO-PART STUDY Barbara Wuebbles (M.A. Thesis) %/# July 1978 Biomedical Sciences Division This paper was submitted as a Thesis to California State University, Hayward Work performed under the auipices of the U.S Department of Energy by the UCLLL under contract number W-7405-ENG-48. 111 • LAWRENCE IU3 UVERMORE •^LABORATORY MsnummcM at TSIS DOCIT ONT it unumtm m LAWRFNCE LIVERMORE LABORATORY University ot CaHomia/Livermore, Ca/«fomia/94550 UCRL-52S30 RADIATION DAMAGE IN THE MOUSE FEMALE GERM CELL: A TWO-PART STUDY (M.A. Thesis) July 1978 Biomedical Sciences Division This paper was submitted as a Thesis to California State University, Hayward I Thii "NOTICE r Willy « »„»»„, r„ J,, ^ ™™ JJJW ^ DISTKI?!TTTrc:; X" TITTS noCTTItnSNTIE TW>J.MITEI> Abstract This research consists of two parts. In one part irradiation was used to determine the radiosensitivity of prenatal female germ cells. Mice were given 18 rads of 60Co r-radiation (1 rad/min) at various times in utero. The effect of this treatment was measured by light microscopic enumeration of unilaminar follicles remaining in the ovary at U9 days after birth. Greatest sensitivity was seen for irradiation on day 11 post conception. However the germ cells at this period were not as sensitive as are dictyate oocytes of the juvenile mouse. The other part of this study involved y-irradiation of lit-day-old female mice. Electron microscopy was used to examine the ultra- structural changes taking place in the dictyate oocyte as a response to the radiation.
    [Show full text]
  • Heterochromatin Morphodynamics in Late Oogenesis and Early Embryogenesis of Mammals
    cells Review Heterochromatin Morphodynamics in Late Oogenesis and Early Embryogenesis of Mammals Irina Bogolyubova * and Dmitry Bogolyubov Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; [email protected] * Correspondence: [email protected] Received: 13 May 2020; Accepted: 16 June 2020; Published: 19 June 2020 Abstract: During the period of oocyte growth, chromatin undergoes global rearrangements at both morphological and molecular levels. An intriguing feature of oogenesis in some mammalian species is the formation of a heterochromatin ring-shaped structure, called the karyosphere or surrounded “nucleolus”, which is associated with the periphery of the nucleolus-like bodies (NLBs). Morphologically similar heterochromatin structures also form around the nucleolus-precursor bodies (NPBs) in zygotes and persist for several first cleavage divisions in blastomeres. Despite recent progress in our understanding the regulation of gene silencing/expression during early mammalian development, as well as the molecular mechanisms that underlie chromatin condensation and heterochromatin structure, the biological significance of the karyosphere and its counterparts in early embryos is still elusive. We pay attention to both the changes of heterochromatin morphology and to the molecular mechanisms that can affect the configuration and functional activity of chromatin. We briefly discuss how DNA methylation, post-translational histone modifications, alternative histone variants, and some chromatin-associated non-histone proteins may be involved in the formation of peculiar heterochromatin structures intimately associated with NLBs and NPBs, the unique nuclear bodies of oocytes and early embryos. Keywords: mammalian early development; heterochromatin configuration; karyosphere; oocytes; pre-implantation embryos 1. Introduction The development of germ cells, the formation of a zygote and the subsequent cleavage of the embryo are amazing phenomena in nature.
    [Show full text]
  • Two Distinct Pathways of Pregranulosa Cell Differentiation Support Follicle Formation in the Mouse Ovary
    Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary Wanbao Niua,b and Allan C. Spradlinga,b,1 aHoward Hughes Medical Institute Research Laboratories, Carnegie Institution for Science, Baltimore, MD 21218; and bDepartment of Embryology, Carnegie Institution for Science, Baltimore, MD 21218 Contributed by Allan C. Spradling, July 2, 2020 (sent for review March 25, 2020; reviewed by Brigid L. M. Hogan and Melissa Pepling) We sequenced more than 52,500 single cells from embryonic day (EPG) cell population begins production at least by E14.5, also 11.5 (E11.5) postembryonic day 5 (P5) gonads and performed from progenitors in the ovarian surface epithelium (22, 23). These lineage tracing to analyze primordial follicles and wave 1 medullar cells express Lgr5 and eventually differentiate as granulosa cells follicles during mouse fetal and perinatal oogenesis. Germ cells on second wave follicles (8, 21–23). The cellular origins, division clustered into six meiotic substages, as well as dying/nurse cells. timing, and gene expression programs underlying both groups of Wnt-expressing bipotential precursors already present at E11.5 are PG cells need to be more precisely defined. Ultimately, the extent followed at each developmental stage by two groups of ovarian to which these cells control the different properties of the two pregranulosa (PG) cells. One PG group, bipotential pregranulosa follicular waves remains of interest. (BPG) cells, derives directly from bipotential precursors, expresses Evolutionary conservation provides another potentially valu- Foxl2 early, and associates with cysts throughout the ovary by able source of insight into ovarian follicle development. In both E12.5.
    [Show full text]
  • REP-19-0077.Pdf
    158 5 REPRODUCTIONANNIVERSARY REVIEW FERTILITY PRESERVATION Progress and prospects for developing human immature oocytes in vitro Evelyn E Telfer Institute of Cell Biology and Genes and Development Group CDBS, The University of Edinburgh, Edinburgh, UK Correspondence should be addressed to E E Telfer; Email: [email protected] This paper forms part of an anniversary issue on Fertility Preservation. The Guest Editor for this section was Professor Roger Gosden, College of William and Mary, Williamsburg, Virginia, USA Abstract Ovarian cryopreservation rapidly developed from basic science to clinical application and can now be used to preserve the fertility of girls and young women at high risk of sterility. Primordial follicles can be cryopreserved in ovarian cortex for long-term storage and subsequently autografted back at an orthotopic or heterotopic site to restore fertility. However, autografting carries a risk of re-introducing cancer cells in patients with blood-born leukaemias or cancers with a high risk of ovarian metastasis. For these women fertility restoration could only be safely achieved in the laboratory by the complete in vitro growth (IVG) and maturation (IVM) of cryopreserved primordial follicles to fertile metaphase II (MII) oocytes. Culture systems to support the development of human oocytes have provided greater insight into the process of human oocyte development as well as having potential applications within the field of fertility preservation. The technology required to culture human follicles is extremely challenging, but significant advances have been made using animal models and translation to human. This review will detail the progress that has been made in developing human in vitro growth systems and consider the steps required to progress this technology towards clinical application.
    [Show full text]