Karatsuba Basic Analytic Number Theory Anatolij A

Total Page:16

File Type:pdf, Size:1020Kb

Karatsuba Basic Analytic Number Theory Anatolij A Karatsuba Basic Analytic Number Theory Anatolij A. Karatsuba Basic Analytic Number Theory Translated from the Russian by Melvyn B. Nathanson Springer-Verlag Berlin Heidelberg GmbH Anatolij A. Karatsuba Steklov Mathematical Institute, uI. Vavilova 42 117966, Moscow, Russia Melvyn B. Nathanson School of Mathematics, Institute for Advanced Study Princeton, NJ 08540, and Department of Mathematics, Lehman College (CUNY) Bronx, NY 10468, USA Title of the Russian edition: Osnovy analiticheskoj teorii chisel, 2nd edition, Publisher Nauka, Moscow 1983 Mathematics Subject Classification (1991): 11-01, 11 M06, 11 N05, l1N13, l1P05, 11P21, l1P32, l1P55 ISBN 978-3-642-63436-9 Library of Congress Cataloging-in-Publication Data Karatsuba, Anatolii Alekseevich. [Osnovy analiticheskoi teorii chisel. English] Basic analytic number theory/Anatolij A. Karatsuba; translated from the Russian by Melvyn B. Nathanson. p. cm. Translation of: Osnovy analiticheskoi teorii chisel. Includes bibliographical references and index. ISBN 978-3-642-63436-9 ISBN 978-3-642-58018-5 (eBook) DOI 10.1007/978-3-642-58018-5 1. Number theory. 1. Title. QA241.K3313 1993 512'.73---<1c20 91-40715 This work is subject to copyright. AII rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law ofSeptember 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1993 Originally published by Springer-Verlag Berlin Heidelberg New York in 1993 Softcover reprinl of the hardcover 1sI edition 1993 Typesetting: Macmillan India Limited, Bangalore 560 025 41/3140-543210-Printed on acid-free paper Contents Translator's Preface . .. viii Introduction to the English Edition . ix Introduction to the Second Russian Edition. x Notation. Xll Chapter I. Integer Points. 1 § 1. Statement of the Problem, Auxiliary Remarks, and the Simplest Results . 1 §2. The Connection Between Problems in the Theory of Integer Points and Trigonometric Sums. 6 §3. Theorems on Trigonometric Sums. 10 §4. Integer Points in a Circle and Under a Hyperbola. 21 Exercises . 25 Chapter II. Entire Functions of Finite Order. 27 §1. Infinite Products. Weierstrass's Formula. 27 §2. Entire Functions of Finite Order . 32 Exercises. 38 Chapter III. The Euler Gamma Function . 41 §1. Definition and Simplest Properties. 41 §2. Stirling's Formula. 44 §3. The Euler Beta Function and Dirichlet's Integral. 45 Exercises . 48 Chapter IV. The Riemann Zeta Function. 51 §1. Definition and Simplest Properties. 51 §2. Simplest Theorems on the Zeros. 56 §3. Approximation by a Finite Sum. 61 Exercises . 62 Chapter V. The Connection Between the Sum of the Coefficients of a Dirichlet Series and the Function Defined by this Series. 64 § 1. A General Theorem . 64 §2. The Prime Number Theorem. 66 vi Contents §3. Representation of the Chebyshev Functions as Sums Over the Zeros of the Zeta Function. 69 Exercises . 70 Chapter VI. The Method of I.M. Vinogradov in the Theory of the Zeta Function. 73 § 1. Theorem on the Mean Value of the Modulus of a Trigonometric Sum . 73 §2. Estimate of a Zeta Sum. 82 §3. Estimate for the Zeta Function Close to the Line (1 = 1. 86 §4. A Function-Theoretic Lemma ............................. 87 §5. A New Boundary for the Zeros of the Zeta Function. 88 §6. A New Remainder Term in the Prime Number Theorem. 90 Exercises . 91 Chapter VII. The Density of the Zeros of the Zeta Function and the Problem of the Distribution of Prime Numbers in Short Intervals. 94 § 1. The Simplest Density Theorem. 94 §2. Prime Numbers in Short Intervals. 98 Exercises . .. 100 Chapter VIII. Dirichlet L-Functions . .. 102 § 1. Characters and their Properties . .. 102 §2. Definition of L-Functions and their Simplest Properties. .. 110 §3. The Functional Equation. .. 113 §4. Non-trivial Zeros; Expansion of the Logarithmic Derivative as a Series in the Zeros. .. 116 §5. Simplest Theorems on the Zeros ........................... 117 Exercises . .. 119 Chapter IX. Prime Numbers in Arithmetic Progressions. .. 122 §1. An Explicit Formula. .. 122 §2. Theorems on the Boundary of the Zeros . .. 124 §3. The Prime Number Theorem for Arithmetic Progressions. .. 135 Exercises. .. 138 Chapter X. The Goldbach Conjecture . .. 141 §1. Auxiliary Statements. .. 141 §2. The Circle Method for Goldbach's Problem. .. 142 §3. Linear Trigonometric Sums with Prime Numbers. .. 149 §4. An Effective Theorem. .. 153 Exercises. .. 158 Contents vii Chapter XI. Waring's Problem .............................. " 160 §l. The Circle Method for Waring's Problem. .. 160 §2. An Estimate for Weyl Sums and the Asymptotic Formula for Waring's Problem. .. 171 §3. An Estimate for G(n). .. 174 Exercises . .. 177 Hints for the Solution of the Exercises. .. 181 Table of Prime Numbers < 4070 and their Smallest Primitive Roots.. 217 Bibliography. .. 219 Subject Index. .. 221 Translator's Preface This English translation of Karatsuba's Basic Analytic Number Theory follows closely the second Russian edition, published in Moscow in 1983. For the English edition, the author has considerably rewritten Chapter I, and has corrected various typographical and other minor errors throughout the the text. August, 1991 Melvyn B. Nathanson Introduction to the English Edition It gives me great pleasure that Springer-Verlag is publishing an English trans­ lation of my book. In the Soviet Union, the primary purpose of this monograph was to introduce mathematicians to the basic results and methods of analytic number theory, but the book has also been increasingly used as a textbook by graduate students in many different fields of mathematics. I hope that the English edition will be used in the same ways. I express my deep gratitude to Professor Melvyn B. Nathanson for his excellent translation and for much assistance in correcting errors in the original text. A.A. Karatsuba Introduction to the Second Russian Edition Number theory is the study of the properties of the integers. Analytic number theory is that part of number theory in which, besides purely number theoretic arguments, the methods of mathematical analysis play an essential role. The purpose of this book is to provide an introduction to the central problems of analytic number theory. I have concentrated on the most important results, and have ignored excessively technical improvements. Consequently, I do not present the most recent refinements of the fundamental theorems. These latest results do not differ in principle from those that are presented in this book. The book focuses on four problems in analytic number theory: the problem of integer points in planar domains, the problem of the distribution of prime numbers in the sequence of all natural numbers and in arithmetic progressions, Goldbach's problem, and Waring's problem. To solve these problems one must use the fundamental methods of analytic number theory: I.M. Vinogradov's method of trigonometric sums, the method of complex integration, and the circle method of G.H. Hardy, J.E. Littlewood, and S. Ramanujan. There are exercises at the end of each chapter. They are related to the contents of the chapter, and the reader should try to solve them. The problems either refine the theorems proved in the text, or lead to new ideas in number theory. The mathematical prerequisites for this book are undergraduate courses in number theory, mathematical analysis, and the theory of functions of a complex variable. This book should be read consecutively, since each chapter is connected with its predecessors. If a topic occurs several times in the book, then it will be explained in detail only at its first appearance. The reader should understand and be able to justify every mathematical argument, line by line. Only in this way will the study of the book be useful. The exercises in this book playa special role. Some of them are often very difficult, and can serve as topics for further research. The books [1]-[12] listed in the Bibliography discuss various mathematical topics related to this volume, and also contain historical and other references. Statements and formulas are numbered separately in each chapter. To refer to statements in other chapters, we note the chapter. This second edition is considerably different from the first. I have added new material to Chapter I on integer points, as well as hints for the solution of most of the exercises in the book. There are also new proofs for various theorems in Chapters III -- VII, X, and XI. Introduction to the Second Russian Edition xi I received considerable assistance with this book from G.I. Arkhipov, S.M. Voronin, A.F. Lavrik, and V.N. Chubarikov. The manuscript was typed and edited by L.N. Abramochkina and R.I. Sorokina. I am very grateful to them all. A.A. Karatsuba Notation C, Co, C l' ... denote absolute positive constants, which are, in general, different in different theorems. For positive A, the notations B = O(A) and B ~ A mean that IBI ~ cA; the notation A::=::: B means that c1A ~ B ~ c2 A. C, c1 are arbitrarily small positive constants, and n, m, k, I, N denote natural numbers. Except in Chapter II, p, P1' . .. denote prime numbers. The Mobius function Jl(n) is defined by 1, if n = 1; Jl(n) = { 0, if n = p2 m; ( - 1)\ if n = P1 ... Pk For x > 0, the logarithm and the logarithmic integral are defined by x du x du Inx = logx = J-; Lix = J-I - + Co, 1 U 2 nu where The von Mangoldt function A(n) is defined by A(n) = {loOgp if n = pk; if n#pk. The Euler function q>(k) is the number of natural numbers less than and relatively prime to k.
Recommended publications
  • On Analytic Number Theory
    Lectures on Analytic Number Theory By H. Rademacher Tata Institute of Fundamental Research, Bombay 1954-55 Lectures on Analytic Number Theory By H. Rademacher Notes by K. Balagangadharan and V. Venugopal Rao Tata Institute of Fundamental Research, Bombay 1954-1955 Contents I Formal Power Series 1 1 Lecture 2 2 Lecture 11 3 Lecture 17 4 Lecture 23 5 Lecture 30 6 Lecture 39 7 Lecture 46 8 Lecture 55 II Analysis 59 9 Lecture 60 10 Lecture 67 11 Lecture 74 12 Lecture 82 13 Lecture 89 iii CONTENTS iv 14 Lecture 95 15 Lecture 100 III Analytic theory of partitions 108 16 Lecture 109 17 Lecture 118 18 Lecture 124 19 Lecture 129 20 Lecture 136 21 Lecture 143 22 Lecture 150 23 Lecture 155 24 Lecture 160 25 Lecture 165 26 Lecture 169 27 Lecture 174 28 Lecture 179 29 Lecture 183 30 Lecture 188 31 Lecture 194 32 Lecture 200 CONTENTS v IV Representation by squares 207 33 Lecture 208 34 Lecture 214 35 Lecture 219 36 Lecture 225 37 Lecture 232 38 Lecture 237 39 Lecture 242 40 Lecture 246 41 Lecture 251 42 Lecture 256 43 Lecture 261 44 Lecture 264 45 Lecture 266 46 Lecture 272 Part I Formal Power Series 1 Lecture 1 Introduction In additive number theory we make reference to facts about addition in 1 contradistinction to multiplicative number theory, the foundations of which were laid by Euclid at about 300 B.C. Whereas one of the principal concerns of the latter theory is the deconposition of numbers into prime factors, addi- tive number theory deals with the decomposition of numbers into summands.
    [Show full text]
  • Analytic Number Theory
    A course in Analytic Number Theory Taught by Barry Mazur Spring 2012 Last updated: January 19, 2014 1 Contents 1. January 244 2. January 268 3. January 31 11 4. February 2 15 5. February 7 18 6. February 9 22 7. February 14 26 8. February 16 30 9. February 21 33 10. February 23 38 11. March 1 42 12. March 6 45 13. March 8 49 14. March 20 52 15. March 22 56 16. March 27 60 17. March 29 63 18. April 3 65 19. April 5 68 20. April 10 71 21. April 12 74 22. April 17 77 Math 229 Barry Mazur Lecture 1 1. January 24 1.1. Arithmetic functions and first example. An arithmetic function is a func- tion N ! C, which we will denote n 7! c(n). For example, let rk;d(n) be the number of ways n can be expressed as a sum of d kth powers. Waring's problem asks what this looks like asymptotically. For example, we know r3;2(1729) = 2 (Ramanujan). Our aim is to derive statistics for (interesting) arithmetic functions via a study of the analytic properties of generating functions that package them. Here is a generating function: 1 X n Fc(q) = c(n)q n=1 (You can think of this as a Fourier series, where q = e2πiz.) You can retrieve c(n) as a Cauchy residue: 1 I F (q) dq c(n) = c · 2πi qn q This is the Hardy-Littlewood method. We can understand Waring's problem by defining 1 X nk fk(q) = q n=1 (the generating function for the sequence that tells you if n is a perfect kth power).
    [Show full text]
  • Nine Chapters of Analytic Number Theory in Isabelle/HOL
    Nine Chapters of Analytic Number Theory in Isabelle/HOL Manuel Eberl Technische Universität München 12 September 2019 + + 58 Manuel Eberl Rodrigo Raya 15 library unformalised 173 18 using analytic methods In this work: only multiplicative number theory (primes, divisors, etc.) Much of the formalised material is not particularly analytic. Some of these results have already been formalised by other people (Avigad, Harrison, Carneiro, . ) – but not in the context of a large library. What is Analytic Number Theory? Studying the multiplicative and additive structure of the integers In this work: only multiplicative number theory (primes, divisors, etc.) Much of the formalised material is not particularly analytic. Some of these results have already been formalised by other people (Avigad, Harrison, Carneiro, . ) – but not in the context of a large library. What is Analytic Number Theory? Studying the multiplicative and additive structure of the integers using analytic methods Much of the formalised material is not particularly analytic. Some of these results have already been formalised by other people (Avigad, Harrison, Carneiro, . ) – but not in the context of a large library. What is Analytic Number Theory? Studying the multiplicative and additive structure of the integers using analytic methods In this work: only multiplicative number theory (primes, divisors, etc.) Some of these results have already been formalised by other people (Avigad, Harrison, Carneiro, . ) – but not in the context of a large library. What is Analytic Number Theory? Studying the multiplicative and additive structure of the integers using analytic methods In this work: only multiplicative number theory (primes, divisors, etc.) Much of the formalised material is not particularly analytic.
    [Show full text]
  • Analytic Number Theory What Is Analytic Number Theory?
    Math 259: Introduction to Analytic Number Theory What is analytic number theory? One may reasonably define analytic number theory as the branch of mathematics that uses analytical techniques to address number-theoretical problems. But this “definition”, while correct, is scarcely more informative than the phrase it purports to define. (See [Wilf 1982].) What kind of problems are suited to \analytical techniques"? What kind of mathematical techniques will be used? What style of mathematics is this, and what will its study teach you beyond the statements of theorems and their proofs? The next few sections briefly answer these questions. The problems of analytic number theory. The typical problem of ana- lytic number theory is an enumerative problem involving primes, Diophantine equations, or similar number-theoretic objects, and usually concerns what hap- pens for large values of some parameter. Such problems are of long-standing intrinsic interest, and the answers that analytic number theory provides often have uses in mathematics (see below) or related disciplines (notably in various algorithmic aspects of primes and prime factorization, including applications to cryptography). Examples of problems that we shall address are: How many 100-digit primes are there, and how many of these have the last • digit 7? More generally, how do the prime-counting functions π(x) and π(x; a mod q) behave for large x? [For the 100-digit problems we would take x = 1099 and x = 10100, q = 10, a = 7.] Given a prime p > 0, a nonzero c mod p, and integers a1; b1;
    [Show full text]
  • LECTURES on ANALYTIC NUMBER THEORY Contents 1. What Is Analytic Number Theory?
    LECTURES ON ANALYTIC NUMBER THEORY J. R. QUINE Contents 1. What is Analytic Number Theory? 2 1.1. Generating functions 2 1.2. Operations on series 3 1.3. Some interesting series 5 2. The Zeta Function 6 2.1. Some elementary number theory 6 2.2. The infinitude of primes 7 2.3. Infinite products 7 2.4. The zeta function and Euler product 7 2.5. Infinitude of primes of the form 4k + 1 8 3. Dirichlet characters and L functions 9 3.1. Dirichlet characters 9 3.2. Construction of Dirichlet characters 9 3.3. Euler product for L functions 12 3.4. Outline of proof of Dirichlet's theorem 12 4. Analytic tools 13 4.1. Summation by parts 13 4.2. Sums and integrals 14 4.3. Euler's constant 14 4.4. Stirling's formula 15 4.5. Hyperbolic sums 15 5. Analytic properties of L functions 16 5.1. Non trivial characters 16 5.2. The trivial character 17 5.3. Non vanishing of L function at s = 1 18 6. Prime counting functions 20 6.1. Generating functions and counting primes 20 6.2. Outline of proof of PNT 22 6.3. The M¨obiusfunction 24 7. Chebyshev's estimates 25 7.1. An easy upper estimate 25 7.2. Upper and lower estimates 26 8. Proof of the Prime Number Theorem 28 8.1. PNT and zeros of ζ 28 8.2. There are no zeros of ζ(s) on Re s = 1 29 8.3. Newman's Analytic Theorem 30 8.4.
    [Show full text]
  • Analytic Number Theory
    Analytic Number Theory Donald J. Newman Springer Graduate Texts in Mathematics 177 Editorial Board S. Axler F.W. Gehring K.A. Ribet Springer New York Berlin Heidelberg Barcelona Hong Kong London Milan Paris Singapore Tokyo Donald J. Newman Analytic Number Theory 13 Donald J. Newman Professor Emeritus Temple University Philadelphia, PA 19122 USA Editorial Board S. Axler F.W. Gehring K.A. Ribet Department of Department of Department of Mathematics Mathematics Mathematics San Francisco State University University of Michigan University of California San Francisco, CA 94132 Ann Arbor, MI 48109 at Berkeley USA USA Berkeley, CA 94720-3840 USA Mathematics Subject Classification (1991): 11-01, 11N13, 11P05, 11P83 Library of Congress Cataloging-in-Publication Data Newman, Donald J., 1930– Analytic number theory / Donald J. Newman. p. cm. – (Graduate texts in mathematics; 177) Includes index. ISBN 0-387-98308-2 (hardcover: alk. paper) 1. Number Theory. I. Title. II. Series. QA241.N48 1997 512’.73–dc21 97-26431 © 1998 Springer-Verlag New York, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.
    [Show full text]
  • LTCC Basic Course: Analytic Number Theory Andrew Granville
    LTCC basic course: Analytic Number Theory Andrew Granville 3 Preface Riemann's seminal 1860 memoir showed how questions on the distribution of prime numbers are more-or-less equivalent to questions on the distribution of zeros of the Riemann zeta function. This was the starting point for the beautiful theory which is at the heart of analytic number theory, which we introduce in this mini- course. Selberg showed how sieve bounds can be obtained by optimizing values over a wide class of combinatorial objects, making them a very flexible tool. We will also see how such methods can be used to help understand primes in short intervals. Key phrases: By a conjecture we mean a proposition that has not been proven, but which is favoured by some compelling evidence. An open question is a problem where the evidence is not especially convincing in either direction. The distinction between conjecture and open question is somewhat subjective and may change over time.1 We trust, though, that there will be no similar ambiguity concerning the theorems! The exercises: In order to really learn the subject the keen student should try to fully answer the exercises. We have marked several with y if they are difficult, and occasionally yy if extremely difficult. Some exercises are embedded in the text and need to be completed to fully understand the text; there are many other exercises at the end of each chapter. Textbooks: There is a bibliography at the end of these notes of worthy books. Davenport's [Da] is, for us, the greatest introduction to the key ideas of the subject.
    [Show full text]
  • 2. Congruences. Chinese Remainder Theorem
    O. Forster: Analytic Number Theory 2. Congruences. Chinese Remainder Theorem 2.1. Definition. Let m ∈ Z. Two integers x, y are called congruent modulo m, in symbols x ≡ y mod m, if m divides the difference x − y, i.e. x − y ∈ mZ. Examples. 20 ≡ 0 mod 5, 3 ≡ 10 mod 7, −4 ≡ 10 mod 7. x ≡ 0 mod 2 is equivalent to “x is even”, x ≡ 1 mod 2 is equivalent to “x is odd”. Remarks. a) x, y are congruent modulo m iff they are congruent modulo −m. b) x ≡ y mod 0 iff x = y. c) x ≡ y mod1 for all x, y ∈ Z. Therefore the only interesting case is m ≥ 2. 2.2. Proposition. The congruence modulo m is an equivalence relation, i.e. the fol- lowing properties hold: i) (Reflexivity) x ≡ x mod m for all x ∈ Z ii) (Symmetry) x ≡ y mod m =⇒ y ≡ x mod m. iii) (Transitivity) (x ≡ y mod m) ∧ (y ≡ z mod m) =⇒ x ≡ z mod m. 2.3. Lemma (Division with rest). Let x, m ∈ Z, m ≥ 2. Then there exist uniquely determined integers q,r satisfying x = qm + r, 0 ≤ r < m. Remark. The equation x = qm + r implies that x ≡ r mod m. Therefore every integer x ∈ Z is equivalent modulo m to one and only one element of {0, 1,...,m − 1}. 2.4. Definition. Let m be a positive integer. The set of all equivalence classes of Z modulo m is denoted by Z/mZ or briefly by Z/m. From the above remark we see that Z/mZ = {0, 1,..., m − 1}, where x = x mod m is the equivalence class of x modulo m.
    [Show full text]
  • Transcendental Numbers
    Bachelor Thesis DEGREE IN MATHEMATICS Faculty of Mathematics University of Barcelona TRANSCENDENTAL NUMBERS Author: Adina Nedelea Director: Dr. Ricardo Garc´ıaL´opez Department: Algebra and Geometry Barcelona, June 27, 2016 Summary Transcendental numbers are a relatively recent finding in mathematics and they provide, togheter with the algebraic numbers, a classification of complex numbers. In the present work the aim is to characterize these numbers in order to see the way from they differ the algebraic ones. Going back to ancient times we will observe how, since the earliest history mathematicians worked with transcendental numbers even if they were not aware of it at that time. Finally we will describe some of the consequences and new horizons of mathematics since the apparition of the transcendental numbers. Agradecimientos El trabajo final de grado es un punto final de una etapa y me gustar´aagradecer a todas las personas que me han dado apoyo durante estos a~nosde estudios y hicieron posible que llegue hasta aqu´ı. Empezar´epor agradecer a quien hizo posible este trabajo, a mi tutor Ricardo Garc´ıa ya que sin su paciencia, acompa~namiento y ayuda me hubiera sido mucho mas dif´ıcil llevar a cabo esta tarea. Sigo con los agradecimientos hacia mi familia, sobretodo hacia mi madre quien me ofreci´ola libertad y el sustento aunque no le fuera f´acily a mi "familia adoptiva" Carles, Marilena y Ernest, quienes me ayudaron a sostener y pasar por todo el pro- ceso de maduraci´onque conlleva la carrera y no rendirme en los momentos dif´ıciles. Gracias por la paciencia y el amor de todos ellos.
    [Show full text]
  • Analytic Number Theory
    Otto Forster: Analytic Number Theory Lecture notes of a course given in the Winter Semester 2001/02 at the Department of Mathematics, LMU Munich, Germany O. Forster: Analytic Number Theory Contents 0. Notations and Conventions 1 1. Divisibility. Unique Factorization Theorem 3 2. Congruences. Chinese Remainder Theorem 7 3. Arithmetical Functions. M¨obiusInversion Theorem 11 4. Riemann Zeta Function. Euler Product 20 5. The Euler-Maclaurin Summation Formula 27 6. Dirichlet Series 37 7. Group Characters. Dirichlet L-series 47 8. Primes in Arithmetic Progressions 52 9. The Gamma Function 57 10. Functional Equation of the Zeta Function 64 11. The Chebyshev Functions Theta and Psi 72 12. Laplace and Mellin Transform 78 13. Proof of the Prime Number Theorem 84 O. Forster: Analytic Number Theory 0. Notations and Conventions Standard notations for sets Z ring of all integers N0 set of all integers ≥ 0 N1 set of all integers ≥ 1 P set of all primes = {2, 3, 5, 7, 11,...} Q, R, C denote the fields of rational, real and complex numbers respectively A∗ multiplicative group of invertible elements of a ring A [a, b], ]a, b[ , [a, b[ , ]a, b] denote closed, open and half-open intervals of R R+ = [0, ∞[ set of non-negative real numbers ∗ ∗ R+ = R+ ∩ R multiplicative group of positive real numbers bxc greatest integer ≤ x ∈ R Landau symbols O, o For two functions f, g :[a, ∞[ → C, one writes f(x) = O(g(x)) for x → ∞, if there exist constants C > 0 and x0 ≥ a such that |f(x)| ≤ C|g(x)| for all x ≥ x0.
    [Show full text]
  • A Density Chinese Remainder Theorem for the Case of Arbitrary Collections of Residue Classes and for Collections of Intervals of Residue Classes, Respectively
    A DENSITY CHINESE REMAINDER THEOREM D. JASON GIBSON Abstract. Given collections A and B of residue classes modulo m and n, respectively, we investigate conditions on A and B that ensure that, for at least some (a,b) ∈A×B, the system x ≡ a mod m x ≡ b mod n has an integer solution, and we quantify the number of such admissible pairs (a,b). The special case where A and B consist of intervals of residue classes has application to the Lonely Runner Conjecture. 1. Introduction The classical Chinese Remainder Theorem provides necessary and sufficient conditions for a system of linear congruence equations to possess a solution. Theorem 1.1 (Chinese Remainder Theorem). Let m1,...,mk be k positive integers, and let a1,...,ak be any k integers. Then the system of congruences x ≡ a1 mod m1 x ≡ a2 mod m2 . x ≡ ak mod mk has a solution if and only if ai ≡ aj mod gcd(mi, mj) for all pairs of indices i, j with 1 ≤ i < j ≤ k. Proof. See Theorem 7.1 of Hua [6] and exercises 19 – 23 in Chapter 2.3 of Niven, Zuckerman, arXiv:1302.0917v1 [math.NT] 5 Feb 2013 and Montgomery [11]. This theorem admits generalization in several directions. For a statement of a Chinese Remainder Theorem in the language of commutative rings and ideals, see, e.g., Hungerford [7]. Kleinert [8] considers a quite general formalism which yields the usual statement as a special case. In the sequel, we consider a density Chinese Remainder Theorem framed in the classical context of systems of two linear congruence equations.
    [Show full text]
  • Algebraic and Transcendental Numbers
    ALGEBRAIC AND TRANSCENDENTAL NUMBERS FROM AN INVITATION TO MODERN NUMBER THEORY STEVEN J. MILLER AND RAMIN TAKLOO-BIGHASH CONTENTS 1. Introduction 1 2. Russell’s Paradox and the Banach-Tarski Paradox 2 3. Definitions 2 4. Countable and Uncountable Sets 4 4.1. Irrational Numbers 5 4.2. Algebraic Numbers 5 4.3. Transcendental Numbers 7 4.4. Axiom of Choice and the Continuum Hypothesis 8 5. Properties of e 8 5.1. Irrationality of e 9 5.2. Transcendence of e 10 6. Exponent (or Order) of Approximation 14 6.1. Bounds on the Order of Real Numbers 14 6.2. Measure of Well Approximated Numbers 15 7. Liouville’s Theorem 17 7.1. Proof of Lioville’s Theorem 17 7.2. Constructing Transcendental Numbers 18 8. Roth’s Theorem 20 8.1. Applications of Roth’s Theorem to Transcendental Numbers 21 8.2. Applications of Roth’s Theorem to Diophantine Equations 21 References 24 Index 34 1. INTRODUCTION These notes are from An Invitation to Modern Number Theory, by Steven J. Miller and Ramin Takloo-Bighash (Princeton University Press, 2006). PLEASE DO NOT DISTRIBUTE THESE NOTES FURTHER. As this is an excerpt from the book, there are many references to other parts of the book; these appear as ?? in the text below. We have the following inclusions: the natural numbers N = f0; 1; 2; 3;::: g are a subset of the p integers Z = f:::; ¡1; 0; 1;::: g are a subset of the rationals Q = f q : p; q 2 Z; q 6= 0g are a subset of the real numbers R are a subset of the complex numbers C.
    [Show full text]