Smalltalk: an Introduction to Application Development Using

Total Page:16

File Type:pdf, Size:1020Kb

Smalltalk: an Introduction to Application Development Using Contents i Contents Contents.........................................................................................................................i Preface.............................................................................................................................xi Typographical Conventions......................................................................................xi Trademarks...................................................................................................................xii Acknowledgements.....................................................................................................xii Chapter 1: What is Object–Oriented Programming?...........................................1 1.1. Objects................................................................................................................1 1.2. Messages............................................................................................................2 1.3. Classes and Instances......................................................................................4 1.4. Class Hierarchy................................................................................................5 1.5. Methods............................................................................................................7 1.6. Alternative Object–Oriented Programming Languages.........................8 1.6.1. Simula......................................................................................................8 1.6.2. Smalltalk..................................................................................................8 1.6.3. Eiffel..........................................................................................................9 1.6.4. C++............................................................................................................9 1.6.5. Objective–C.............................................................................................9 1.6.6. C+@...........................................................................................................10 1.6.7. Object Pascal............................................................................................10 1.6.8. CLOS.........................................................................................................10 1.6.9. Self.............................................................................................................10 1.6.10. Dylan.......................................................................................................10 1.7. The Advantages of Object–Oriented Programming................................11 1.8. Summary..........................................................................................................12 Chapter 2: Introduction to Smalltalk.......................................................................13 2.1. What is Smalltalk?.........................................................................................13 2.1.1. A Language..............................................................................................13 2.1.2. A Programming Environment...........................................................13 2.1.3. A Class Library........................................................................................14 2.1.4. A Persistent Object Store......................................................................15 2.2. Smalltalk Implementations.........................................................................15 2.2.1. Smalltalk–80...........................................................................................16 2.2.2. Smalltalk⁄V..............................................................................................17 2.2.3. SmalltalkAgents.....................................................................................17 2.2.4. VisualAge................................................................................................17 2.2.5. Smalltalk⁄X..............................................................................................17 2.2.6. Apple Smalltalk.....................................................................................18 2.2.7. Little Smalltalk.......................................................................................18 2.3. The Books.........................................................................................................18 2.4. Summary..........................................................................................................18 Chapter 3: Language Basics........................................................................................20 3.1. Smalltalk Expression Syntax........................................................................20 3.2. Literals...............................................................................................................20 3.2.1. Numbers..................................................................................................20 3.2.2. Characters................................................................................................21 3.2.3. Strings.......................................................................................................21 3.2.4. Symbols....................................................................................................21 Contents ii 3.2.5. Literal Arrays..........................................................................................21 3.2.6. Byte Arrays..............................................................................................21 3.3. Variables...........................................................................................................21 3.4. Pseudo–Variables............................................................................................22 3.5. Messages............................................................................................................22 3.5.1. Unary Messages......................................................................................22 3.5.2. Binary Messages.....................................................................................22 3.5.3. Keyword Messages.................................................................................23 3.6. Parsing Rules...................................................................................................23 3.7. Assignments....................................................................................................25 3.8. Returning.........................................................................................................26 3.9. Blocks.................................................................................................................26 3.10. Variables (again)............................................................................................26 3.11. Comments......................................................................................................27 3.12. Summary........................................................................................................27 Chapter 4: Getting Going with the User Interface.................................................28 4.1. Windows..........................................................................................................28 4.2. Menus, Prompters, etc...................................................................................29 4.3. The Mouse........................................................................................................29 4.4. Cursors..............................................................................................................30 4.5. Using VisualWorks........................................................................................31 4.5.1. Unix..........................................................................................................32 4.5.2. MS–Windows.........................................................................................32 4.5.3. Macintosh................................................................................................32 4.6. The Launcher...................................................................................................33 4.7. <Window> Button Menu Operations.......................................................35 4.8. The Window Menu.......................................................................................36 4.9. Help....................................................................................................................36 4.10. Summary........................................................................................................38 Chapter 5: Typing and Editing in Workspaces......................................................40 5.1. Introduction.....................................................................................................40 5.2. Typing and Selecting......................................................................................40 5.3. Editing...............................................................................................................45 5.4. Scrolling............................................................................................................48 5.5. Evaluating Smalltalk Code...........................................................................50 5.6. The Settings Tool............................................................................................54
Recommended publications
  • The Development of Smalltalk Topic Paper #7
    The Development of Smalltalk Topic Paper #7 Alex Laird Max Earn Peer CS-3210-01 Reviewer On Time/Format 1 2/4/09 Survey of Programming Languages Correct 5 Spring 2009 Clear 2 Computer Science, (319) 360-8771 Concise 2 [email protected] Grading Rubric Grading Total 10 pts ABSTRACT Dynamically typed languages are easier on the compiler because This paper describes the development of the Smalltalk it has to make fewer passes and the brunt of checking is done on programming language. the syntax of the code. Compilation of Smalltalk is just-in-time compilation, also known Keywords as dynamic translation. It means that upon compilation, Smalltalk code is translated into byte code that is interpreted upon usage and Development, Smalltalk, Programming, Language at that point the interpreter converts the code to machine language and the code is executed. Dynamic translations work very well 1. INTRODUCTION with dynamic typing. Smalltalk, yet another programming language originally developed for educational purposes and now having a much 5. IMPLEMENTATIONS broader horizon, first appeared publically in the computing Smalltalk has been implemented in numerous ways and has been industry in 1980 as a dynamically-typed object-oriented language the influence of many future languages such as Java, Python, based largely on message-passing in Simula and Lisp. Object-C, and Ruby, just to name a few. Athena is a Smalltalk scripting engine for Java. Little Smalltalk 2. EARLY HISTORY was the first interpreter of the programming language to be used Development for Smalltalk started in 1969, but the language outside of the Xerox PARC.
    [Show full text]
  • Type Feedback for Bytecode Interpreters Position Paper ICOOOLPS 2007
    Type Feedback for Bytecode Interpreters Position Paper ICOOOLPS 2007 Michael Haupt1, Robert Hirschfeld1, and Marcus Denker2 1 Software Architecture Group Hasso-Plattner-Institut University of Potsdam, Germany 2 Software Composition Group Institute of Computer Science and Applied Mathematics University of Berne, Switzerland michael.haupt,hirschfeld @hpi.uni-potsdam.de, [email protected] { } Abstract. This position paper proposes the exploitation of type feed- back mechanisms, or more precisely, polymorphic inline caches, for purely interpreting implementations of object-oriented programming languages. Using Squeak’s virtual machine as an example, polymorphic inline caches are discussed as an alternative to global caching. An implementation proposal for polymorphic inline caches in the Squeak virtual machine is presented, and possible future applications for online optimization are outlined. 1 Introduction Bytecode interpreters are small in size and comparatively easy to implement, but generally execute programs much less efficiently than just-in-time (JIT) compilers. Techniques like threaded interpretation [9, 11, 2] focus on speeding up bytecode interpretation itself, and caching [4, 5, 1] improves the performance of message sends—the most common operation in object-oriented software [7]. It is interesting to observe that, while threading mechanisms are used natu- rally to a varying degree in bytecode interpreter implementations, such systems usually employ only global caching to speed up dynamic method dispatch. A global cache is clearly beneficial with respect to overall performance. Still, it does not provide optimal support for polymorphic message send sites, and it does not allow for exploiting type information (we provide details on these issues in the following section). In our opinion, the employment of polymorphic inline caches (PICs) [5] instead can provide means for achieving significant speedups in bytecode interpreters while exhibiting only a moderate increase in memory footprint and implementation complexity.
    [Show full text]
  • A Tour of the Squeak Object Engine
    A Tour of the Squeak Object Engine A Tour of the Squeak Object Engine Tim Rowledge, [email protected] Introduction This chapter is intended to explain some basics of how a Virtual Machine (VM) works, why a VM is useful, what it does for the Squeak programmer and user, and how the Squeak VM might develop in the future. What is a Virtual Machine and why do we need one? A Virtual Machine provides us with a pretense of being a machine other than the actual hardware in use. Using one allows systems that behave differently than the host hardware to run as if on hardware designed for them. The term Object Engine is less commonly used but is a useful concept that includes the lowest system areas of the langauge environment running on the VM. Since there is often some flux in the definition of which components are within the actual VM and which are part of the supported environment, Object Engine is useful as a more inclusive term. The term Virtual Machine is used in several ways. When IBM refer to VM/CMS they are referring to a way of making a mainframe behave as if it is many machines, so that programs can assume they have total control even though they do not. Intel provide a somewhat similar facility in the x86 architecture(?), referred to as Virtual Mode. This sort of VM is a complete hardware simulation, often supported at the lowest level by the hardware. Another sort of VM is the emulator - SoftWindows for the Mac, Acorn's !PC, Linux's WINE are good examples - where another machine and/or OS is simulated to allow a Mac user to run Windows programs, an Acorn RiscPC or a Linux machine to run Windows98 programs and so on.
    [Show full text]
  • Smalltalk Language Mapping Specification
    Smalltalk Language Mapping Specification New Edition: June 1999 Copyright 1995, 1996 BNR Europe Ltd. Copyright 1998, Borland International Copyright 1991, 1992, 1995, 1996 Digital Equipment Corporation Copyright 1995, 1996 Expersoft Corporation Copyright 1996, 1997 FUJITSU LIMITED Copyright 1996 Genesis Development Corporation Copyright 1989, 1990, 1991, 1992, 1995, 1996 Hewlett-Packard Company Copyright 1991, 1992, 1995, 1996 HyperDesk Corporation Copyright 1998 Inprise Corporation Copyright 1996, 1997 International Business Machines Corporation Copyright 1995, 1996 ICL, plc Copyright 1995, 1996 IONA Technologies, Ltd. Copyright 1996, 1997 Micro Focus Limited Copyright 1991, 1992, 1995, 1996 NCR Corporation Copyright 1995, 1996 Novell USG Copyright 1991,1992, 1995, 1996 by Object Design, Inc. Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc. Copyright 1996 Siemens Nixdorf Informationssysteme AG Copyright 1991, 1992, 1995, 1996 Sun Microsystems, Inc. Copyright 1995, 1996 SunSoft, Inc. Copyright 1996 Sybase, Inc. Copyright 1998 Telefónica Investigación y Desarrollo S.A. Unipersonal Copyright 1996 Visual Edge Software, Ltd. The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified ver- sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason of having used the specification set forth herein or having con- formed any computer software to the specification. PATENT The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of an invention covered by patent rights.
    [Show full text]
  • The Cedar Programming Environment: a Midterm Report and Examination
    The Cedar Programming Environment: A Midterm Report and Examination Warren Teitelman The Cedar Programming Environment: A Midterm Report and Examination Warren Teitelman t CSL-83-11 June 1984 [P83-00012] © Copyright 1984 Xerox Corporation. All rights reserved. CR Categories and Subject Descriptors: D.2_6 [Software Engineering]: Programming environments. Additional Keywords and Phrases: integrated programming environment, experimental programming, display oriented user interface, strongly typed programming language environment, personal computing. t The author's present address is: Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Ca. 94043. The work described here was performed while employed by Xerox Corporation. XEROX Xerox Corporation Palo Alto Research Center 3333 Coyote Hill Road Palo Alto, California 94304 1 Abstract: This collection of papers comprises a report on Cedar, a state-of-the-art programming system. Cedar combines in a single integrated environment: high-quality graphics, a sophisticated editor and document preparation facility, and a variety of tools for the programmer to use in the construction and debugging of his programs. The Cedar Programming Language is a strongly-typed, compiler-oriented language of the Pascal family. What is especially interesting about the Ce~ar project is that it is one of the few examples where an interactive, experimental programming environment has been built for this kind of language. In the past, such environments have been confined to dynamically typed languages like Lisp and Smalltalk. The first paper, "The Roots of Cedar," describes the conditions in 1978 in the Xerox Palo Alto Research Center's Computer Science Laboratory that led us to embark on the Cedar project and helped to define its objectives and goals.
    [Show full text]
  • CS 535 Object-Oriented Programming & Design Fall Semester, 2008 Doc
    CS 535 Object-Oriented Programming & Design Fall Semester, 2008 Doc 4 Starting VisualWorks Sept 9 2008 Copyright ©, All rights reserved. 2008 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA. OpenContent (http:// www.opencontent.org/openpub/) license defines the copyright on this document. Reference VisualWorks Application Developer’s Guide, doc/AppDevGuide.pdf in the VisualWorks installation. Chapter 1 The VisualWorks Environment. Reading VisualWorks Application Developer’s Guide, doc/AppDevGuide.pdf in the VisualWorks installation. Chapter 1 The VisualWorks Environment. Chapter 2 Programming in VisualWorks (minus the sections Loading Code Libraries & Paintng a GUI) 2 Learning Smalltalk Smalltalk language syntax Smalltalk Programming Environment Smalltalk Class Library Object-oriented thinking This is the hardest part Smalltalk culture 3 Versions of Smalltalk VisualWorks VisualAge for Smalltalk Squeak Dolphin Smalltalk X Smallscript (.NET Smalltalk) 4 Bytecode & VMs Smalltalk is compiled to a bytecode for a virtual machine VisualWorks has VM's for: Windows Macintosh Unix/Linux VisualWork’s virtual machine (VM) uses a JIT to compile bytecodes 5 Parts of VisualWorks Executable Virtual Machine (visual, visual.exe) This is the VM that interprets Smalltalk bytecode visual.sou Source code for most of class library visual.cha Source code for changes & new classes Does not exist until after you first use VisualWorks visual.im Bytecode of sources that are executed At first the image will appear to be an IDE for Smalltalk 6 Before Starting VisualWorks Make a copy of visual.im You will need it later 7 Starting VisualWorks on Windows Method 1 Drag and drop the image file on the Visual application or visual.exe Method 2 Double click on the image file The first time you do this you may get a dialog asking for the application to run the image.
    [Show full text]
  • MVC Revival on the Web
    MVC Revival on the Web Janko Mivšek [email protected] @mivsek @aidaweb ESUG 2013 Motivation 30 years of Smalltalk, 30 years of MVC 34 years exa!tly, sin!e "#$# %ot in JavaScri&t MVC frameworks 'or Sin(le)*age and +ealtime web a&&s ,e Smalltalkers s-ould respe!t and revive our &earls better Contents MVC e &lained %istory /sa(e in !.rrent JavaScri&t frameworks /sa(e in Smalltalk C.rrent and f.t.re MVC in 0ida/Web MVC Explained events Ar!hite!tural desi(n &attern - Model for domain s&e!ifi! data and logi! View updates Controller ) View for &resentation to t-e .ser ) Controller for intera!tions wit- t-e .ser UI and .&datin( domain model Domain changes Main benefit: actions observing ) se&aration of !on!erns Model MVC based on Observer pattern subscribe ) 3bserver looks at observee Observer changed - 3bservee is not aware of t-at s u 4e&enden!y me!-anism2 B t n - 3bserver is de&endent on 3bservee state e observing v - 3bservee m.st re&ort state !-an(es to 3bserver E b - *.b/S.b Event 6.s de!ou&les 3bservee from u S / 3bserver to &reserve its .nawarnes of observation b u changed P Observee Main benefit: (Observable) ) se&aration of !on!erns Multiple observers subscribe - M.lti&le observers of t-e same 3bservee Observer changed - 7n MVC an 3bservee is View and 3bservee is domain Model, t-erefore2 s u B t - many views of t-e same model n e observing v - many a&&s E b - many .sers u S / - mix of all t-ree !ases b u Observee changed P (Observable) Example: Counter demo in Aida/Web M.lti.ser realtime web !ounter exam&le -ttp://demo.aidaweb.si – !li!k Realtime on t-e left – !li!k De!rease or In!rease to c-an(e counter – !ounter is c-an(ed on all ot-er8s browsers History of MVC (1) 7nvented by 9rygve +eenska.g w-en -e worked in "#$:1$# wit- Alan ;ay's group on <ero *arc on Smalltalk and Dynabook – 'inal term Model)View)Controller !oined 10.
    [Show full text]
  • Object-Oriented Programming
    2/28/2008 Why Study Smalltalk CSE 3302 Programming Languages • Purest OO language, encourage OO programming • Can inspect and change objects and the runtime system itself at run time Object-Oriented • Pioneered in many things – GhilGraphical user inter face (WidM(Window, Menu, M)Mouse) Programming – Personal workstation – Push OO into success • I invented the term Object-Oriented, and I can tell you I Chengkai Li did not have C++ in mind. -- Alan Kay Spring 2008 • Has an active community • Could have deserved more popularity Lecture 13 – OO Programming, Lecture 13 – OO Programming, CSE3302 Programming Languages, UT-Arlington 1 CSE3302 Programming Languages, UT-Arlington 2 Spring 2008 ©Chengkai Li, 2008 Spring 2008 ©Chengkai Li, 2008 Key Features History • Very simple syntax • 1967: Inspired by Simula67, the first OO language • Everything is object • 1971: Started by Dynabook project (Alan Kay) 3, true, nil – Hardware: GUI, pointing device, external storage, etc. Class is object • Later led to Alto (“laptop”) no control: if, loop are objects – Software: for Children • Dyyyypnamically typed: • Became Smallta lk – Variable has no type. – The class hierarchy is the type system. – Education • The language is together with its interactive runtime system – Runtime written in the language itself Is Dynabook realized? Kay doesn’t think so: – Can change the system on-the-fly – Squeak – Debug system state (image), object, class hierarchy – One Laptop Per Child project (Nicholas Negroponte, Alan Kay, …) • All data is private (protected), all methods
    [Show full text]
  • Dynamic Object-Oriented Programming with Smalltalk
    Dynamic Object-Oriented Programming with Smalltalk 1. Introduction Prof. O. Nierstrasz Autumn Semester 2009 LECTURE TITLE What is surprising about Smalltalk > Everything is an object > Everything happens by sending messages > All the source code is there all the time > You can't lose code > You can change everything > You can change things without restarting the system > The Debugger is your Friend © Oscar Nierstrasz 2 ST — Introduction Why Smalltalk? > Pure object-oriented language and environment — “Everything is an object” > Origin of many innovations in OO development — RDD, IDE, MVC, XUnit … > Improves on many of its successors — Fully interactive and dynamic © Oscar Nierstrasz 1.3 ST — Introduction What is Smalltalk? > Pure OO language — Single inheritance — Dynamically typed > Language and environment — Guiding principle: “Everything is an Object” — Class browser, debugger, inspector, … — Mature class library and tools > Virtual machine — Objects exist in a persistent image [+ changes] — Incremental compilation © Oscar Nierstrasz 1.4 ST — Introduction Smalltalk vs. C++ vs. Java Smalltalk C++ Java Object model Pure Hybrid Hybrid Garbage collection Automatic Manual Automatic Inheritance Single Multiple Single Types Dynamic Static Static Reflection Fully reflective Introspection Introspection Semaphores, Some libraries Monitors Concurrency Monitors Categories, Namespaces Packages Modules namespaces © Oscar Nierstrasz 1.5 ST — Introduction Smalltalk: a State of Mind > Small and uniform language — Syntax fits on one sheet of paper >
    [Show full text]
  • Preserving Instance State During Refactorings in Live Environments Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury Bouraqadi, Stéphane Ducasse
    Preserving Instance State during Refactorings in Live Environments Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury Bouraqadi, Stéphane Ducasse To cite this version: Pablo Tesone, Guillermo Polito, Luc Fabresse, Noury Bouraqadi, Stéphane Ducasse. Preserving In- stance State during Refactorings in Live Environments. Future Generation Computer Systems, Else- vier, In press, 10.1016/j.future.2020.04.010. hal-02541754 HAL Id: hal-02541754 https://hal.archives-ouvertes.fr/hal-02541754 Submitted on 14 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Preserving Instance State during Refactorings in Live Environments Pablo Tesonea,b,∗, Guillermo Politoc, Luc Fabresseb, Noury Bouraqadib, Stéphane Ducassea aInria Lille-Nord Europe, 40 Avenue Halley, Villeneuve d’Ascq, France bUnité de Recherche Informatique et Automatique, IMT Lille Douai, 764 Boulevard Lahure, Douai, France cUniv. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France Abstract An important activity of software evolution consists in applying refactorings to enhance the quality of the code without changing its behaviour. Having a proper refactoring tool is a must-to in any professional development environment.
    [Show full text]
  • As We May Communicate Carson Reynolds Department of Technical Communication University of Washington
    As We May Communicate Carson Reynolds Department of Technical Communication University of Washington Abstract The purpose of this article is to critique and reshape one of the fundamental paradigms of Human-Computer Interaction: the workspace. This treatise argues that the concept of a workspace—as an interaction metaphor—has certain intrinsic defects. As an alternative, a new interaction model, the communication space is offered in the hope that it will bring user interfaces closer to the ideal of human-computer symbiosis. Keywords: Workspace, Communication Space, Human-Computer Interaction Our computer systems and corresponding interfaces have come quite a long way in recent years. We no longer patiently punch cards or type obscure and unintelligible commands to interact with our computers. However, out current graphical user interfaces, for all of their advantages, still have shortcomings. It is the purpose of this paper to attempt to deduce these flaws by carefully examining our earliest and most basic formulation of what a computer should be: a workspace. The History of the Workspace The modern computerized workspace has its beginning in Vannevar Bush’s landmark article, “As We May Think.” Bush presented the MEMEX: his vision of an ideal workspace for researchers and scholars that was capable of retrieving and managing information. Bush thought that machines capable of manipulating information could transform the way that humans think. What did Bush’s idealized workspace involve? It consists of a desk, and while it can presumably be operated from a distance, it is primarily the piece of furniture at which he works. On top are slanting translucent screens, on which material can be projected for convenient reading.
    [Show full text]
  • Filename Extensions
    Filename Extensions Generated 22 February 1999 from Filex database with 3240 items. ! # $ & ) 0 1 2 3 4 6 7 8 9 @ S Z _ a b c d e f g h i j k l m n o p q r s t u v w x y z ~ • ! .!!! Usually README file # .### Compressed volume file (DoubleSpace) .### Temp file (QTIC) .#24 Printer data file for 24 pin matrix printer (LocoScript) .#gf Font file (MetaFont) .#ib Printer data file (LocoScript) .#sc Printer data file (LocoScript) .#st Standard mode printer definitions (LocoScript) $ .$$$ Temporary file .$$f Database (OS/2) .$$p Notes (OS/2) .$$s Spreadsheet (OS/2) .$00 Pipe file (DOS) .$1 ZX Spectrum file in HOBETA format .$d$ Data (OS/2 Planner) .$db Temporary file (dBASE IV) .$ed Editor temporary file (MS C) .$ln TLink response file (Borland C++) .$o1 Pipe file (DOS) .$vm Virtual manager temporary file (Windows 3.x) & .&&& Temporary file ) .)2( LHA archiver temporary file (LHA) 0 .0 Compressed harddisk data (DoubleSpace) .000 Common filename extension (GEOS) .000 Compressed harddisk data (DoubleSpace) .001 Fax (Hayes JT FAX) (many) .075 75x75 dpi display font (Ventura Publisher) .085 85x85 dpi display font (Ventura Publisher) .091 91x91 dpi display font (Ventura Publisher) .096 96x96 dpi display font (Ventura Publisher) .0b Printer font with lineDraw extended character set (PageMaker) 1 .1 Unformatted manual page (Roff/nroff/troff/groff) .10x Bitmap graphics (Gemini 10x printer graphics file) .123 Data (Lotus123 97) .12m Smartmaster file (Lotus123 97) .15u Printer font with PI font set (PageMaker) .1st Usually README.1ST text 2 .24b Bitmap
    [Show full text]