/*•

NASA CR-114609 DOUGLAS MDC-J4371

STUDY OF QUIET TURBOFAN STOL

FOR

SHORT-HAUL TRANSPORTATION

FINAL REPORT

VOLUME IV

MARKETS

JUNE 1973

Prepared Under Contract No. NAS2-6994

for

ADVANCED CONCEPTS AND MISSIONS DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MOFFETT FIELD, CALIFORNIA 94035

Douglas Aircraft Company - Long Beach FOREWORD

This document is one of six volumes which comprises the final report of a contract study performed for NASA, "Study of Quiet Turbofan

STOL Aircraft for Short-Haul Transportation," by the Douglas Aircraft Company, McDonnell Douglas Corporation.

The NASA technical monitor for the study was R. C. Savin, Advanced

Concepts and Missions Division, Ames Research Center, California.

THe Douglas program manager for the study was L. S. Rochte. He was assisted by study managers who prepared the analyses contained in the technical volumes shown below.

Volume I Summary Volume II Aircraft L. V. Mai than

Volume III J. K. Moore

Volume IV Markets G. R. Morrissey Volume V Economics M. M. Platte Volume VI Systems Analysis J. Seif

The participation of the airline subcontractors, (Air California,

Allegheny, American and United), throughout the study was coordinated by

J. A. Stern.

The one year study, initiated in May 1972, was divided into two phases. The final report covers both phases. TABLE OF CONTENTS

SECTION PAGE VOLUME IV MARKETS LIST OF ILLUSTRATIONS LIST OF TABLES SYMBOLS AND UNITS SUMMARY

INTRODUCTION

1.0 SELECTION OF CITY PAIRS 1

1.1 Data Collection 1

1.2 Traffic Forecast 2

1.3 Selection Criteria 4

1.3.1 Phase I Criteria 4

1.3.2 Phase II Criteria 4

2.0 SHORT HAUL REGIONS 15

2.1 Representative - Phase I 15

2.2 National - Phase II 20

2.2.1 Northeast Region 20

2.2.2 California Region 25

2.2.3 Chicago Region 25

2.2.4 Southeast Region 32

2.2.5 Southern Region 32

2.2.6 Northwest Region 32

2.2.7 Hawaii Region 41 TABLE OF CONTENTS (Continued) SECTION PAGE 3.0 COMPETING TRAVEL MODES 47 3.1 Intercity Travel Mode Perspective 47 3.2 Modal Competition Dynamics 55 3.3 Regional Modal Competition 55 4.0 MODAL SPLIT ANALYSIS 63 4.1 Phase I Patronage Model Modal Split Analysis 65 4.1.1 Origin-Destination Surveys 67 4.1.2 Patronage Model Calibration 68 4.2 Phase II Modal Split Analysis 68 5.0 PARAMETRIC ANALYSIS 89 5.1 Fare Sensitivity - 89 5.2 Aircraft Size 96 5.3 STOL Locations 102 5.4 Market Demand 103 6.0 NATIONAL DEMAND FOR STOL SERVICE 107 6.1 Passenger Convenience 107 6.1.1 Satellite Airports 107 6.1.2 Value of Time 108 i 6.2 Level of Competition 108 7.0 NATIONAL DEMAND FOR STOL AIRCRAFT 111 8.0 FOREIGN AND MILITARY MARKETS 115 8.1 Foreign Civil Markets 115 8.1.1 Selection of City Pairs 115 8.1.2 Competing Travel Modes 116

IV TABLE OF CONTENTS (Concluded)

SECTION PAG|

8.1.3 Modal Split Analysis 124

8.1.4 Non-U.S. STOL Civil Market 125

8.2 Military Markets . 126

8.2.1 U.S. Military Market 126

8.2.2 Foreign Military Market 126

9.0 CONCLUSIONS l31

10.0 BIBLIOGRAPHY l35

11.0 APPENDICES 141

11.1 City Code List (Encoding) 1*2-

11.2 City Code List (Decoding) 147

11.3 City Pair Origin-Destination Traffic 152 Time Series

11.4 Origin-Destination Traffic Trends 190

11.5 1985 City Pair Traffic Forecasts 195

11.6 Air Passenger Ground Origin-Destination 204 Survey Data

11.7 City Pair Parametric Analysis

11.8 Foreign City Pair Flight Data 241 LIST OF ILLUSTRATIONS FIGURE PAGE 1-1 Domestic Revenue Passenger - Mile Distribution - 1970 6 1-2 - Short Haul Passenger Distribution vs. Segment Distance - 1985 (O&D Air Passengers) 7 2-1 Representative Short-Haul Market Regions 16 2-2 Northeast Region Representative City Pair Network 17 2-3 California Region - Representative City Pair Network 18 2-4 Chicago Region - Representative City Pair Network. 19 2-5 Northeast Region - Representative City Pair Network - Passenger Distribution vs. Segment Distance - 1985 - (O&D Air Passengers) 23 2-6 Northeast Region - Selected City Pairs 24 2-7 California Region - Representative City Pair Network - Passenger Distribution vs. Segment Distance - 1985 - (O&D Air Passengers) 27 2-8 California Region - Selected City Pairs 28 2-9 Chicago Region - Representative City Pair Network - Passenger Distribution vs. Segment Distance - 1985 - (O&D Air Passengers) 30 2-10 Chicago Region - Selected City Pairs 31 2-11 Southeast Region - Representative City Pair Network - Passenger Distribution vs. Segment Distance - 1985 - (O&D Air Passengers) 35 2-12 Southeast Region - Selected City Pairs 36 2-13 Southern Region - Representative City Pair Network - Passenger Distribution vs. Segment Distance - 1985 - (O&D Air Passengers) 38 2-14 Southern Region - Selected City Pairs 39 2-15 Northwest Region - Representative City Pair Network - Passenger Distribution vs. Segment Distance - 1985 - (O&D Air Passengers) 42

vi LIST OF ILLUSTRATIONS (Continued) FIGURE PAGE 2-16 Northwest Region - Selected City Pairs 43 ; 2-17 Hawaii Region - Representative City Pair Network - Passenger Distribution vs. Segment Distance - 1985 - (O&D Air Passengers) 45 2-18 Hawaii Region - Selected City Pairs 46 3-1 Domestic Intercity Travel 48 3-2 Annual Growth Rates - Domestic Intercity Passenger Miles/Kilometers - Public and Private Modes 49 3-3 Domestic Intercity Travel - Public Modes 50 3-4 Annual Growth Rates - Domestic Intercity Passenger Miles/Kilometers - Selected Modes 51 3-5 Distribution of - Intercity Passenger Miles/Kilometers - By Mode 52 4-1 U.S. Short Haul Passenger Mile/Kilometer Demand - Stage Lengths - 600 St. Mi 1/966 Km or less - STOL & CTOL - 1970 - 1985 64 4-2 Patronage Model 66 4-3 Kansas City Metropolitan Area - 1967 Air Passenger Trip - Origins and Destinations - (Percent) 69 4-4 Kansas City Metropolitan Area - 1990 Air Passenger Trip - Origins and Destinations - (Percent) 70 5-1 1985 - Los Angeles - San Francisco - Metropolitan Areas - Effect by Fare By Aircraft Capacity 93 5-2 1985 - Northeast Region - Representative City Pairs - Effect by Fare on STOL Patronage 94 5-3 1985 - Chicago-Detroit - Metropolitan Areas - Effect of Fare by Aircraft Capacity 95 5-4 1985 - Los Angeles - San Francisco - Metropolitan Areas - Effect of Fare and Aircraft Capacity on STOL Patronage 97

vii LIST OF ILLUSTRATIONS (Continued) FIGURE . PAGE 5-5 1985 - Chicago - Detroit - Metropolitan Areas - Effect of Fare and Aircraft Capacity on STOL Patronage 98 5-6 1985 - Los Angeles - San Francisco Metropolitan Areas - STOL Aircraft Requirements vs. Seating Capacity (60% Load Factor) 104 ' 8-1 Relationship Between - Market Share and Trip Length - Business Travel - Europe 120

viii LIST OF TABLES

Table Page

1-1 U.S. City Pairs - 1985 - By Stage Length and Annual Passenger Volume . 3

1-2 Domestic United States - 1970 Market Distribution vs. Stage Length - Based on 987 City Pairs Q

1-3 1970 Market Demand - Based on Top 1000 U.S. City Pairs - Passenger Mile/Kilometer Distribution - By Stage Length and Passenger Density Category JQ

1-4 1985 Market Demand - Based on Top 1000 U.S. City Pairs - Passenger Mile/Kilometer Distribution - By Stage Length and Passenger Density Category 12

2-1 Northeast Region Passengers vs. Stage Length - 1985 - Origin Destination Passengers - Distance 21

2-2 California Region Passengers vs. Stage Length - 1985 - Origin Destination Passengers - Distance 26

2-3 Chicago Region Passengers vs. Stage Length - 1985 - Origin Destination Passengers - Distance 29

2-4 Southeast Region Passengers vs. Stage Length - 1985 - Origin Destination Passengers - Distance 33

2-5 Southern Region Passengers vs. Stage Length - 1985 - Origin Destination Passengers - Distance 37

2-6 Northwest Region Passengers vs. Stage Length - 1985 - Origin Destination Passengers - Distance 40 ;

2-7 Hawaii Region Passengers vs. Stage Length - 1985 - Origin Destination Passengers - Distance 44 I

3-1 Distribution of Person-Trips by Mode by Distance 57 3-2 Distribution of 1967 Domestic Person-Miles by Mode by Range Category 58

3-3 Distribution of 1967 Domestic Person-Miles by Modal Split/All Ranges 59

3-4 1970 Passenger Data Estimates - California Representative Region 50

3-5 1968 Passenger Data Estimates - Northeast Representative Region 61

ix LIST OF TABLES (Continued)

Table Page

3-6 1970 Passenger Data Estimates - California Representative Region 62

4-1 Patronage Model Calibration - California Corridor 71

4-2 Patronage Model Calibration - Los Angeles- San Francisco 71

4-3 Patronage Model Calibration - Los Angeles- Sacramento 72

4-4 Patronage Model Calibration - Los Anqeles-San Diego 72

4-5 Patronage Model Calibration - Los Angeles-Fresno 73

4-6 Patronage Model Calibration - San Francisco- Sacramento 73

4-7 Patronage Model Calibration - San Francisco- San Diego 74

4-8 Patronage Model Calibration - San Francisco-Fresno 74

4-9 Patronage Model Calibration - San Diego-Sacramento 75

4-10 Northeast Region Air Passengers - 1985 STOL/CTOL Modal Split 77

4-11 California Region Air Passenaers - 1985 STOL/CTOL Modal Split " 79

4-12 Chicago Region Air Passengers - 1985 STOL/CTOL Modal Split 80

4-13 Southeast Region Air Passengers - 1985 STOL/CTOL Modal Split " 81

4-14 Southern Region Air Passengers - 1985 STOL/CTOL Modal Split 82

4-15 Northwest Region Air Passengers - 1985 STOL/CTOL Modal Split " 83

4-16 Hawaii Region Air Passengers - 1985 STOL/CTOL Modal Split 83

4-17 STOL 1985 Market Demand - Based on Top 1000 U.S. City Pairs - Passenger Mile/Kilometer Distribution - by Stage Length and Passenger Density Category 87 x LIST OF TABLES (Concluded)

Table Page

5-1 Candidate Airport Locations for Selected Metropolitan Areas 90-

5-2 CTOL/STOL Market Share - 1985 Passenger Traffic by All Modes - Los Angeles - San Francisco Metropolitan Areas - (Percent) 99-

5-3 CTOL/STOL Market Share - 1985 Passenger Traffic by All Modes - Boston-Philadelphia - (Percent) 100 .

5-4 CTOL/STOL Market Share - 1985 Passenger Traffic by All Modes - Chicago-Detroit - (Percent) 101

5-5 Chicago-Detroit - Parametric Market Studies - 1985 (Meigs-Berz & Detroit City STOL Airports) 105

7-1 U.S. Civil Market For 150 Passenger STOL- Aircraft 1985 & 1990 114

8-1 Total Domestic Inter-City Passenger Market in Japan (Passenger Totals in Millions) 118

8-2 Tokyo-Osaka Corridor - Total Passenger Market Air and Rail 122

8-3 Non-U.S. Civil Market for 150 Passenger STOL Aircraft 1985 and 1990 127

8-4 Estimate of U.S. and Foreign Military STOL Transport Deliveries 128

xi SYMBOLS AND UNITS

Advanced Passenger Train APT

California Public Utilities Commission CPUC

Central Business District CBD

Civil Aeronautics Board CAB

Conventional and CTOL

High Speed Ground Transportation HSGT

Kilometers KM

Origin-Destination O&D

Statute Miles ST MI SUMMARY

Market analysis activity in support of the NASA sponsored "Study of Quiet Turbofan STOL Aircraft for Short-Haul Transportation", included an examination of the Civil Aeronautics Board's listing of the top 1000 U.S. origin-destination city pairs. The top 1,000 U.S. city pairs account for almost three quarters of total domestic passenger miles and represent less than two percent of total city pairs.

Air transportation was used by travelers in 51,676 separate city pairs in the United States in 1970. The distances between the city pairs ranged from very short to over 5000 miles (8050 km). They had annual traffic volumes from 10 passengers to over 5 million. This study categorized the top 1000 city pairs by distance and annual passenger volume to determine the markets with the best potential for the development of STOL service.

Origin-destination passenger traffic was then projected to 1985 using trend analysis and socio-economic data. A total of 494 city pairs was selected as candidates for STOL service in 1985. These city pairs were selected because they were separated by a distance of less than 600 miles (966 km) and had a forecast annual traffic volume of more than 50,000 passengers or more by 1985. Traffic between these city pairs (1970) represents 15 percent of the U.S. passenger miles/kilometers and 50 percent of the passengers.

Seven short haul representative networks were formulated from a total of 319 city pairs. These networks were identified as the Northeast, California, Chicago, Southeast, Southern, Northwest, and Hawaii regions. All of the city pairs contained in these regions were under 600 statute miles

xiii (966 km) and are expected to generate 50,000 or more origin-destination air passengers by the year 1985. These 319 city pairs are expected to generate a total of 124 million origin-destination air passengers by the year 1985.

This represents 87 percent of the 142 million origin-destination air passengers expected to travel between the 494 city pairs in 1985. The great majority of the higher density city pairs have been included in the seven representative regions. Both in terms of number of city pairs and number of passengers the seven regional networks constitute a representative statistical sample.

Examination of higher density city pairs (-300,000 psgrs/yr) where it might be possible to utilize STOL commuter service led to the identification of 96 candidate routes. These routes were used to determine the market demand for 150 passenger STOL aircraft for stage lengths of 600 statute miles or less (966 km).

Comprehensive investigation of the city pair markets for STOL service required an examination of the traffic demand at distances 600 miles (966 km) and above. Two additional categories were examined. They were 600 to 900 miles (966 to 1449 km) and 900 to 1200 miles (144g to 1931 km). City pairs investigated in these two categories were limited to those with a forecast annual traffic volume of 50,000 passengers by 1985. The increase in market demand with range extension is substantial. The number of additional city pairs is 164 in the first category and 134 in the second category.

The increase in passenger miles/kilometers, upon which aircraft requirements and revenues are based, is even more substantial. Markets with distances up to 900 miles (1449 km) account for 51 percent of total U.S. domestic passengers and 24 percent of the passenger miles/kilometers. At 1200 xiv miles (1931 km) 792 city pairs represent 61 percent of total passengers and 36 percent of the passenger miles/kilometers.

A patronage model was used to help determine the modal split as a function of competition from alternate modes, passenger preferences, fares, total costs (including access), total trip times, and schedule frequency. Over 1200 parametric patronage model runs were made for 23 city pairs in three representative regions. Parametric studies in these 23 markets revealed that the most important factor in attracting passengers to STOL service was competitive fare levels. This parametric data was used to help develop the final modal split methodology.

The U.S. market demand for STOL aircraft is as follows. Sensitivity variations from this base case have been developed to depict the upper and lower market demand boundaries.

U.S. CIVIL MARKET FOR 150 PASSENGER STOL AIRCRAFT 1985 & 1990 YEAR STARE SEGMENT s mi 0-600 0-900 0-1200 km 0-966 0-1449 0-1931 1985 HIGH 290 445 645 BASE 240 375 535 LOW 175 270 385 1990 HIGH 420 645 940 BASE 320 500 715 LOW 235 360 560

Foreign demand estimates for STOL aircraft are shown below. High and low cases were also developed.

xv FOREIGN CIVIL MARKET FOR 150 PASSENGER STOL AIRCRAFT 1985 and 1990 YEAR STAGE SEGMENT s mi 0-600 0-900 0-1200 km 0-966 0-1449 0-1931 1985 HIGH 390 505 575 BASE 320 415 475 LOW 230 300 340 1990 HIGH 655 850 975 BASE 545 710 810 LOW 390 505 580

In view of the specialized military requirements for the STOL mission and the unique commercial requirements for safety, economy and low community noise, there is no military market foreseen for off-the-shelf civil STOL aircraft. There are significant commonality benefits which apply to both military and commercial designs in the propulsion, , and operating sub-systems which could reduce the overall program cost.

xvi INTRODUCTION

Increasing demand for convenient, interurban transportation, com- patible with environmental constraints, might best be satisfied by quiet, relatively short aircraft. Studies have been conducted which investigate many concepts of STOL aircraft and operating systems. Most of these studies have been limited to a particular geographic region or have analyzed short haul transportation as separate from the long haul system with- out sufficiently investigating the compatibility of the two systems. It is possible for the present small, turboprop STOL airplanes to operate in a limited number of markets relatively independent of the remaining air transport systems but the introduction of larger turbofan aircraft with increased range and higher speed will require integration into the total air transportation scenario.

The market portion of this study addresses itself to the relation- ship between quiet STOL aircraft characteristics and the passenger demand on a national basis. That passenger demand can be greatly influenced by the characteristics of the aircraft is shown dramatically by the surge of traffic after the introduction of commercial jets. Aircraft demand is derived from the passenger demand but advances in technology can have a significant impact on the latter.

Since one of the objectives of this study was to determine the relationship between STOL characteristics and the economic and social viability of short-haul air transportation, considerable attention was given to the potential role of STOL as a short haul reliever system. A large proportion of the arrivals and departures at the nation's busiest airports are short haul origin-destination passengers. An environmentally viable STOL

xv ii reliever system would increase the available long haul capacity of the major hub airports and offer the air commuter more convenience and reduced total trip time. A study flow chart has been prepared to show the city pair and traffic split analysis.

MARKETS -STUDY FLOW CITY PAIR AND TRAFFIC SPLIT ANALYSIS

319 CITY PAIRS AND SEVEN REPRESENTATIVE REGIONS 1985 494 CITY PAIRS CAB TOP 1,000 >50,000 PSGR CITY PAIRS - AND 600 ST Ml ALL RANGES -y OR LESS APART 96 CITY PA IRS > 300,000 PSGR AND 600 ST Ml OR LESS APART

CTOL TRAFFIC FORECAST CAB TOP SPLIT -1970 1,000 CITY PAIR BASE FORECAST PSGR Ml TO 1985 TO 1985 AT AT2%/ANNUM 2%/ANNUM 1970 CAB TOP 1,000 CITY -N TRAFFIC SPLIT 96 CITY PAIRS PAIRS- \ r ALL RANGES -i/ STOLTRX\FFIC FORECAST CAB TOP SPLIT - 1985 1,000 CITY PAIR TOTAL F(DRECAST PSGR Ml TO 1985 LESS CTO L AT 8%/ANNUM FORECAS T

XVTM 1.0 SELECTION OF CITY PAIRS

Selection of candidate city pairs for potential STOL service was based on analysis of historical origin - destination (0 & D) data, assessment of future travel trends and conformance to criteria established to provide a competitive level of service. The criteria specified annual passenger density requirements and city pair distance limitations. These reflect the study aircraft characteristics such as seating capacity and design range.

1.1 Data Collection

The principal source of city pair traffic data is the "Origin - Destination Survey of Airline Passenger Traffic" compiled by the Civil Aero- nautics Board (CAB) which provides information on traffic carried by certifi- cated scheduled air carriers. CAB Form 295-C was used as a supplement for commuter airline traffic and the California Public Utilities Commission (CPUC) provided data on intra-state traffic in California. These sources provide all the significant information on domestic origin - destination air traffic for the base year 1970.

From 1959 through 1967, the CAB provided a list of the top 500 city pairs in terms of passengers. In 1968, this list was expanded to include the top 1000 city pairs. The individual cities included in these lists are shown alphabetically in Appendix 11.1 along with their three letter code. Appendix 11.2 shows the same list, but arranged alphabetically by three letter code. The CAB and CPUC data were organized to obtain an origin - destination time series as shown in Appendix 11.3. This list includes slightly more than 1000 city pairs as a time series was prepared if the city pair was in the top 1000 for any or all of the years 1968, 1969 or 1970. 1.2 Traffic Forecast

The statistics discussed above were used as the base for providing city pair forecasts. An existing Douglas computer program was used to project the traffic for each of the city pairs using linear, geometric, exponential smoothing and polynomial trend fitting techniques. The program also computed the historical average annual growth rate for each of the city pairs. Several examples are shov/n in Appendix 11.4. The four derived growth rates were compared with the historical growth rate and then the judgment of the market analysis group and the airline subcontractors was applied to determine the most realistic growth rate through 1985. The judgment of the market analysis group and the airline subcontractors is based upon the evaluation and appli- cation of historical causative and associative factors and patterns and their probable effect and relationship in the future. Using the methodology discussed above, a traffic forecast was developed through 1985 for each of the city pairs listed in Appendix 11.2. The results were that almost all of these city pairs were above 50,000 annual origin-destination passengers by 1985. Several were not above 50,000 and were dropped from further consideration. In addition, a small number of the cities listed independently by the CAB were considered to be part of a major metropolitan area and were combined with the major city in that area. An example of this is the combination of Oakland and San Jose traffic with that of San Francisco. The only other metropolitan area in which this situation was a major factor was Los Angeles. Candidate city pairs were organized into a matrix based on their stage length and 1985 forecast level of traffic. The number of city pairs by range and traffic density categories is shown in Table 1-1. There was a _x-^ -»i— ->>r— *-> (/> o i — cMoo«d-LOCMCO^i-oooCT>LOi — r^. n LO i — r^^d-ovocvi uis-(£>CMCO«3-o<£>i— cM«3-ir>r-xa>ocM«3-LOi-^oooc\jroLor«.coo COLO c oo«i- a> (Dill i i I I I I I I I I I I I I I I I I I I I I QJ ^D ^^ r"™ ^^ OO ^J* LO r^* co en QJ c3 ^~ CM oo ^~ LO LO r*-» co en c^ ^~ cvj oo ^~ ^~ CT) ^™ VO ^\J 00 ^d~ ^3 CMCO^J-I— r^oocnioi— r-»oocnLOi— CO«^-OLOCMCO fO •.- i— OO «3" VO CO i— CM«d-VOf^CTiOCM«^-LOI^.COCDCMOOLOI^COOi-i—— OO cMC\JCMCM(\jojoooooooooooo«3-^i-«3- co—-

to +j oo oo CM en co 01 1 — oooLooio«*o<=i-CTiOLOOOi — o i— ocMCTicnLor^^LOLO^d-oocMCMi— i— .— i— r-r— oo en +0009 ~£ 666Z-0003 Z3 o 5661-000L LO «3- CM r- CM r— 00 r— •— r- LO CM

LO LJJ 666-006 CO CD ^-, K c 668-008 I CO „ l/l (O (U r— CM r— r— i— i— i— t- £"-. I 66Z-00/1 fO a> 669-009 i— C\J i — C\J CM LO t— i— <; £ £>Q 0> 669-009 -"CM CM^OO ^-n-r- r- CM <£> O i— Q. • «=£ ^31— «3 *3- CU

iJ-i • 66£~00£ en r-^ LO

662"002 CM CM CM QJ CO c

66L"09L I i— CM •— i— CM CO CM i— i— CM O (J r— r— r— LO O) O) jQ

LOOOOCM-=J-OOOOLOOOCMi -i— CMOOi— CM oo ai 66-9Z i— CM CM i— i— r— i— i— W3 > r— tO

, i— <* i— CM CM >— r— i— LO (/) CM i— r- CM en •(-> r- S- o CL) e-

ai CD CMOo«^-LO CO +-> (O to (OOOOOOOOOOOOOOOOOOOOOOOOOOOOO fB a. +J -(-> O O O O O O O O O O O O O O O O O O O O O O O O O O O -M CD coco i— CMOO«si-LOvor-N.oocr>Oi— CMOO«d-LOkDr^cooiOi— CMOO«d-iovor^ o CO --- i— i— r— r— i— i— i— .— •— i— CMCMCMCMCMCMCMCMl— total of 987 city pairs after eliminating those under 50,000 annual passengers and combining cities in metropolitan areas.

1.3 Selection Criteria

The selection of city pairs for Phase I and Phase II studies followed different guidelines. In the Phase I portion of the study selection criteria were developed which were oriented toward obtaining a limited number of repre- sentative city pairs for parametric analysis. In Phase II criteria were established which were designed to identify all potential STOL markets in the United States.

1.3.1 Phase I Criteria - The criteria for Phase I were established consid- ering the requirements of the study. This resulted in the selection of city pairs which provided a variety of stage distances and included both higher and lower density city pairs. The specifications for selecting city pairs for Phase I were that they be 575 statute miles (925 kilometers) or less apart and be able to support four daily round trips at 60 percent load factor with a 50-passenger aircraft. This frequency and load factor criteria requires approximately 100,000 annual passengers. There were 236 city pairs which the forecasts indicated would meet this criteria in 1980. Of the 236 city pairs, 23 were selected, with the help of the airline subcontractors, for parametric analysis. These 23 city pairs were confined to three regions to provide representative networks.

1.3.2 Phase II Criteria - In Phase II of the study, it was required to determine the market demand for STOL aircraft and to examine the effect of range extension. For this reason, the criteria used required that the market group identify all city pairs which would be potential candidates for STOL service. These were later narrowed to the most likely city pairs for service within the time frame considered. When determining aircraft requirements and revenues, passenger miles are a more valid measure than passengers. Figure 1-1 shows passenger miles plotted against range. This figure shows a fairly constant demand experienced in passenger miles for stage lengths of 200 through 999 miles (322 - 1609 kilometers). There is a peak at 1000 to 1099 miles (1610 - 1769 kilometers) with a dropoff in demand at longer stage lengths. The figure also indicated the proportion of passenger mile demand for city pairs with an average of 50 passengers a day or more. This corresponds very closely to the top 1000 origin - destination city pairs. Fifty passengers or more a day are the equivalent of 18,250 or more annual passengers while inclusion in the top 1000 city pairs in 1970 required 17,730 or more annual passengers. The total number of city pairs in the United States between which some travelers moved by air in 1970 is 51,676. The top 1000 markets account for approximately 73 percent of the passenger miles and less than 2 percent of the city pairs. The potential STOL markets could be reduced to those in the top 1000 city pairs and less than 600 miles (966 kilometers) apart. The shaded area of Figure 1-1 shows the passenger mile demand of this portion of the air travel market. Using the distance criterion of less than 600 miles (966 kilometers) and the requirement that forecast 1985 demand exceed 50,000 annual passengers, 494 city pairs were identified as being potential STOL markets. The complete list of 494 city pairs along with the 1985 origin - destination traffic forecast is shown in Appendix 11.5. The passenger distribution versus range for these city pairs is shown in Figure 1-2. It can be seen from this figure that the number of passengers decreases significantly 00 ,0) ! r*» ; N

<*) • j O

U. CO a.

CM CO

O CO

CO S2 CM to o CM LU CM

CM CM

0 cr CM LU o

zo to LU

C3 a. CM UJ

CO LU to cUrJ o CM

CO CM fH

O LU o cOr UaJ. J O in ma. a. o in o oo 00 o> LU o

o O HI

LU LU

CN O LU O 5 UccJ Q m

0 0£ O o CM

(O

Q_ _J < tr o

LU O OC LU Q_ as range increases, although passenger miles shown in Figure 1-1 do not. These 494 city pairs formed the base for estimating the U.S. STOL market demand and total system requirements. One of the study tasks was to Investigate the market impact of extending the design range of the study STOL aircraft. Therefore, market demand was examined as a function of stage length for all the 987 city pairs expected to exceed 50,000 annual passengers in 1985. The market potential was examined in terms of passengers, passenger miles, and number of city pairs. This is shown below in Table 1-2.

TABLE 1-2 DOMESTIC UNITED STATES 1970 MARKET DISTRIBUTION VS. STAGE LENGTH BASED ON 987 CITY PAIRS

st mi 0-599 0-899 0-1199 km 0-966 0-1448 0-1930 TOTAL Passengers (%) 40.7 51.2 61.1 100.0 Passenger Miles (%) 15.2 24.3 36.4 100.0 City Pairs Number 494 658 792 987 50.0 66.6 80.2 100.0

It can be seen from this table that an aircraft with a design range of 1200 miles (1931 kilometers) could serve most of the passengers and higher density city pairs in the United States. Although the percent of passenger miles in markets of this range and higher passenger density is not as large, it is significant. The remainder of the passenger mile percentage is spread through lower density city pairs with ranges from 0 to over 5000 miles (0 - 8050 kilometers). The actual number of passenger miles was determined for 100-mile (161 kilometer) increments by passenger density for the 792 city pairs with stage lengths up to 1199 miles (1930 kilometers). This information is shown in Table 1-3 for 1970 and Table 1-4 for 1985. The passenger miles were also summed by lower density, less than 300,000 annual passengers, and higher density, greater than 300,000 annual passengers categories. The figure of 300,000 passengers was arrived at by assuming air service to be four daily round trips with a 150 seat aircraft. This would provide 438,000 seats annually. To meet the study load factor of 60 percent would require 263,000 annual passengers. This was rounded to the nearest passenger density category used in Table 1-3 and Table 1-4 which is 300,000 annual passengers. The passenger mile demand for city pairs generating more than 300,000 annual passengers was used as the base for estimating the U.S. market demand for STOL aircraft. There were 96 city pairs under 600 miles (966 kilometers) which met this criteria. In addition, there were 30 city pairs between 600 and 899 miles (966 - 1448 kilometers) and 29 between 900 and 1199 miles (1449 - 1930 kilometers). The U.S. market demand for STOL aircraft is based on these city pairs. oo o"> i— r*^ oo CM ^t~ to o LO r— ^~ r** CO LO 996-908 r-^cMCMCOLor--.ocoooi— i— co to o CMCMLOOOCO«a-«^-i— CM"!3-CMOO o oo LO CM LO

r>.OLOi— to oo '— '^•oo'd-oo OCM cn CO o *• r^CMOCDOOOCMLOOOCDtO CMCO o* to ^-* I708-l7l79 CM P** oo r— cn cn r*** LO LO r** oo cn to CM co cn 00 $2 OOCM^'vfLOCMtOCMCMi— i— P^Cn to o LO CM cu LO CM oo oo cu cn cn to i— cn ^* r— to LO ^ CM P*** LO o <* o ** C47Q-CQ+7 ^fOLocoLocMOO CMP-» tor^. to to LO ,_! cn Cv.7 C*OV cn CM cn CM i— o i— cMcn r>-^- toCO LO CO CO ^ i— OOCMOOtOOOCM i— i— CM 00 P-s ,^ o to —' r— CM to •— LO cn

£ tocMcocntocMOOto p^p~»cn LO to cn *r CD P^. OO CO P^ i— ^i" OO P*-» CM LO OO ,_! oo i«>| 00 Ool7Q-b-777 OGCr ^_ r*x o^ snUi OOi— «^-r — CMOf~~OO tOCMhx oo o C£i 1 i— cMCMLOLooo«3-<— ooenoo p^ to 0 to •^ 1 1 i ^ —1 __J _l * «£ CO >-•£ L2S-L9L cni— ocM«j-«d-cMCOi — i— Locotocn CD oo o' O.. t—i 1— g; £ «a-cMtocn^i-Lo^i-«a-r--. O«S-LOLOCM to o CO i— i— CMi — CO i— i— tO CM p*» LO LO >— J-~ OO CM r-* r— 1— oo z.^ CD 1— 1 *— i UJ ^jr zo a a c^ oo to oo to «d- CM •Si- CM CM CM si • CE: a: ft 09L~0 *a- 1— to «3- to P->. CD oo r%! 1-1 PO UJOO UJ UJ ^ CM i— CM CM 0 r*x CM CM 1 0 - t- &'— . . ._. _ , , : fm r— ID uj z. £• .x.,,.vWW;w,Wv,,^W«.v,W,^^ i— 2: uj s=- :3:ft-3>S CU UJO O OO r •— ^g _J oo J lOCnOLOOOLOr— LOP~>tOtO O o o !"*• (0 eC.— S 0- ^ oor~-.cococnLocMCMtOLOi— o CO 669-009 CO cn oo LO i— i— OOCMCMCMCMr— i— CMi— CM LO o ^J- to ""^CJ-bjO % r oo _i z ;£ CM ~ *~ cn 'I"*** . 1*^ .^~_ .* d^*- » (VH* cn z o_ it*i (~^ i ^ oo ^""^ P*N to P** *«j cn i r*™ to O cn ^ r-. OJPO^£ l~i - tt UJ O „ oo cn p*^ tj rx. i o p^» co p** LO 1***^ CM r~~ LO o ej z: ° CO 6617-0017 ototoioioooi— LOLOOI— eno cn to oo CM LU Z UJ CMt~CMCMCOr^^-n— i— i— i— ^J"tO it" CM CM CM i— oo uj _i X: ^^~ 00 CM CO .cnLO CMto too co cn 00 •— to CD 3 i— en oo oo CM P-». LO too cnLO r— to to cn .eee-ooe CM cn oo o oo oo oo r-» «D or- oo cn CM 00 'Si "*"\ i— i— i— CM co i— i— i— r- P-. CM o cn ^_ ^"""^ ^~ f^ 00 LO CO oJo^ *-_^ LOLOCMCOi— O"*LO «^CM O to i—^ LO LO J= LOCMCMr— =3"Cn«=l-LO LOLO CO LO CM oo 66Z-OOZ COOOLOCMCMCOCnOO CMP-- o sr o ^ oo ^ CMo cn r- CD cMLOi— r~-a>otoo«* OOOOCOP-.I— rf to r— l_ * 66L-OOL cn r**« to LO co CM CM co ^d~ to CM co cn en oo LO r— CM OO en cn 00 ^ ^ r** ^j* cn i— ^~ cn *• LO cn en 66-0 CM oo oo cn vo to CM LO to to i— »— i— to <^- C i— ^— to t. cn o> c h- cu cu >, >, cncncncncncncncncncncncn to ^j- cn ^^ cn cn cn cn cn o^ o% cn cn cn o^ *>)-£! ^"^ >k ^ t^ o o C -r- O -"-~- p-xcni — i— cMco«d-Lotoi— co cn i— CM + •M 1— O •t-> CU O -Q O i i i i i i i i i i i i i i i— •i- O •i- 4J 0 O Lor-»-oioooooooooooo C 10 O c eu o E 0 (O Q flO **-- i— i— cMOO«si-intoP^cocnooo o cu cu o CU S- O § 0 0- 0 •— CM CO 0 _l CO o o oo o oo

10 r— co vo co CM r>- vo «*• ro r^~ «:»• co vo • • CO LO co VO Ucnrc.i-n//b L ULL iI o£o •«!"*• •—LO 2 cJo •r~*» if cio ° vor— LO LO CTi LO LO i— VO CO VD CO CM sh ^~ CO CM OO co VO CM LO CO

r-~.CMCocsio«3-ooco co rv. r»~ . CO co CT> LO CO CO CTi 00 CM byZ.l~vJL9l co LO CM i— LO to r-. COr— CO LO CO cn CT> CO LO CM CM 00 CM VO ro co O) •*-> «a- LO r% co •— co o vo o co co VO CO cn § rnr> I /-i-i. i ^-r— OLOr— COVOVQ CO CTi OJ o> Is*. O VO co r bUyi~DV7l COro^OLOOOOCO vo cr> «3- CO «=!- ~ coooLOCOcnvoeMCM VO CM LO CO LO LO CD LO CM CO

co LO CM

°* 0+,+, 1 -007 1 •— COCOf— OCnCMCTl 10 LO c oVv L OOG I co r-. co •— vo vo cn co o CM O o jaj co •— to «a- «± •— r- CM CD I— CM CM CO CO

co LO CM cn LO to /Q-7i_/-7ii ocyir^^co^j" vo CM VO VO vo O VO o >- Loci /.oil ^ o i— i— r— «tf- o 01 O C^ o i— CO ^" ^" CO ^}" CO CM to CD VO CD CM LO f— co CM

O H- 01 i j C/0 »— H ^^ CM r*^ ^"* co vj ^ ^ o> CO e \ CO /*n i i rtrt^ f"™^ QO ^O LO *J tf^ ^y^ CO o

SJSJ^WK»^!*^iaS«S»«5H^;«»iS«iW^^ WJ5SSW CO O i—ii — < »B*ssssw8a«*sSSSftWftSi ftwsssswss:5iWSSS*«K*SS(WSSSKSSSBmats OO C

PASSENGE I C OOOOOCDOO CD O O o O O CD CD r— y Q-UJ Q to ^^ fififl 1 -nnfl 1 CMLOrj-cor-^cricnr^.CM CM LO 10 o LO VO cn VO CO O O_l Z V) to £> CMCOCMCM^1-CMCO«— «i- CM CsJ oo LO CD VO JD C7> LO (XJ r— oo: LU CD 0 QJ OOOCDOOOO O O O o O O CD cn UJ _J C —• * CCC^Of\C ^^ ^O ^-O c^ji ^^ CO OO ^^ CM vo r-. 00 O r- o -i-> ODD UUD coococncncMCM^J- i— CO CO VO CO co to UJ _2 cMCMCOi— LO«S-I— i— *J- i— CO CM LO CO VO CD CO VO o_ t/o to i: ^^~ * * r^^ r*^ r^^ CM ^j co oo >_ CM o co r-» cn v^ rrr\ r\r\r* ^^ O ^~ LO VO LO O% CO CO vo 0 C 668~008 COr— CMLOCOOr—^- VO CO ^CO CMi— ^-CMCMr— i— •— CO LO CO CM r-. CM CO 01 jo ,— c\j^3-coocMr^ CM o vO CM LO r-» CM o*^ vo ^\J co r— CM CM •— CM i— co CM CM CT> CM 1 CO CM CO

ovOLor-.covooco CTI CTI i— co LO ccn-nnn CMCMOVOOLOLO^ to CM •— CD 01 buy UUy vocMCMLor^.r^Loco CM CM co a~i «a- i— CM«3-«3-'— LOi— CO to O «=!• LO CM CO r- C r— r- ro r- t- CTi Cn C I— CO v7>+-> i- ^3-C5^«^-CTiCTiCT%CTiCT»vTiCT»CTivTiO\CTi >>i; O >, S- O O O C-i-O--^ t>.Ol.— i— CMCO^J-LOvOr>.COCT>i— CM+ -Mh-O -MOJO _QO a> 10 o>o i i i i i i i i i i i i i i i— -r- o •!-+-> o <=t o |/>CO)O OLOOOOOOOOOOOOOO ro »/>co » io CtOO CCOO SO (OQfO~-- r— i— CMrO^-LOvOr-^COvTtOOO O COCOO COS-O Bo CL.O i— CMCOt~£D_icoQOcOv_>ro

11 • • CD«d-CDOOinOOO*l-i— inOO CD vo oo OO CM .3 yo ™ jUo P"*» f^- in i-~ CD CM ^* CD VO CD ^" CD CM CM O 00 co r~- r-» CM CM vo i—

«d-Or— vooooi-^cDCOom *j- vo oo 0 OOsl-VOCDCOCD«d-OOCOi— VO ^t- (»^ o f^ CD ^7QQ — +»4^Q r~-coooco«3-r--i— cMOi— oo oooo p_» CM CD f^ ooo^-ooocDoooocDLnin r— CM oo CO VO *~""^ i— i— r— CM CM CM OO CO VO i*—^ CD I/) f— OO S_ Ol vo oo co r~ CM i— i*^ ooo incD oo oo in CO !•>. CD «* vo in CM CM r». CM invo VOCM CD r— CD ew-esfr oo r^ CD in «a- vo vo co •* 00** i— o O CO r—• vo o co o i— CD r~- oooo «* vo o ^J- CO VO r— •r- i— r— CM OO r»N CD in oo CO ;*£ "~ i—- CM

-C LO LO CO LO CO t*""1* *-"*-* C^l t-Q CA! LO in oo CM CD

CD O^ CO CO 00 ^^ ^~-* ^J* C\l C^l LO ^VJ CM in 2817-22E C\J 00 LO r~"* r^ CO ^ij . O I— 4-J ^d-o^^LocoOLor^co cocococor-. r~m I t-H *&.. QJ r^ '\- <-> oo i un CM oo 0> L2£-L9l o^J ^"^ <~i co ^*™ c^i c\j ^^ r^ LQ ^^ ^^ ^^ QQ CM CO 1 o :¥:;S S¥f#SS:S¥£*S:W:*::S¥^ SJSSSS:WSSSSWftSSSSSiSBSSSSSSftSSWSSSS:¥ftS8 CD s: f^ <* CM 00 CO VO 00 CM VO l-s CM 00 oo ^1- CD OO LU S- t— LU CD O oo a> LO ^^ CO ^J *sl* LO CT^ r^* OO LO LO i^^ CO 0 00 J3 •*£ O _loo cr> 669-009 ^^ OO C7^ LO f"^ ^^ C^J ^^ ^J1 CO LO ^J" CO oo. CD re cc o I-H«=c c LO ^~ ^3 r^^ oo CD r*** co co o^ *^~ r^ CM VO in r— a. a> r—- i— CO oo ^~ CD V) CM QL. LU Q w Lf) O _J CO I— i-. i— CO i — LOOJO^-LOLOCT»CO LOCT^ CD 00 r— «* CD zs: LO LO t— ^— CO r** r— CSJ r— i— r— f"*** O> m *~ o a: »— O 6617-0017 LO ^* O^ LO Is*** CO ^" ^^ ^O C\J LO Cvl L^ CO 00 in 1 1 CD ^""•^ LO LO CO CO C\J LO ^J" LO LO CO CO CO C^ oo CM vo ^~ Q_ C"-D- Z CO I/) •— r— r— C\J i— r^ ^~ LU Z LU C r~ CM - to CQ oo ^ *— VOt^OOI^.1— OO«d-OO CDCM CD CD ^t- in VO .c CM vj sj i c^ |*^» QO ui vj OO CM t~~ ££7-nn7 CD m «^ -4-> Quo UUo v^? CM ^^ t i (,^3 ^^ in r^* r*** CT^ f*^ 00 ^oo m in cn CM ^i" *d" CD *~~* in CD CM VO CO 00 CM CM o c r~ t-~ r^ r^ d) CD 00 VO CD

^^ r*^ CM oo oo •vj* un o^ **f in ^"^ oo o^ <*4 CD CO r- in CD in CD VO CD •4-* CM r- «* r— CM in r— r- i— CMCM o CM f^ r^ OO •^ CM CM

CM CM OO in CM OO r^ *• OO oo 66-0 p~- vo CD r^ <* oo CM CO co' OO CM OO OO in * C 00 oo • — i — to ^~ t- CD CD c h- O) ^ ^^ CD CD CD CD CD CD CD CD CD CD CD CD CD+J S_ ^* CD ^" CD CD CD CD CD CD CD CD CD CD CD >,-C O >, i. 0 0 0 C *i— O '— r^ CD t~~ r~ CM oo ^~ in vo r^ co CD n~ CM -4- •!-> \~ O -4-» (U O j^ CO a) t/i coo i i i i i i i i i i i i i i ^_ •r- O •i- +-> O tO " * in CO •»-> O ini^-omoooooooooocD 4-> c in O c o o (O Q tO i— r— CMOO*J-invor>.OOCDOOO O CD CD O 0) i- O § o 0- 0 i— CM OO t— Q _J OO Q CD OO o oo

12 CO i^ r^ o o * oeei-om cM^s-coocooocn,— CM , •* oo ,_! VO cn tn vo in co cn r— vo i— CM CM LO P>s ^J- LO r— O CM CM CM CO CM OO LO VO oo CM CM CM i— csj i— i— i— CM OO VO r^ VO O t LO CM VO LO i— LO VO VO VO oo m CM ,_ r- o coooicTi*i-ooLOCMa%ooLO *J- O> OO CM r— in 69ZL-OL9L aicMOor~.ocMOOi— oooo VO CO VO ^~ CM f^ oor^.r-ooooovocncMoooo o •— VO CTl O"> i— r— i— i— CM •— i— CM i— r— CM VO i-% VO oo CM cn CD +J cnr-~cn^i-cncooocMoor^cn VO ^a- CM CM cn 0) cnvor^'d-i— ccvocrJr— oocn VO o VO* oo o 609L-61?l7l roi-»oocncor-»vOi— cOi— in oo 00 O in i— OOOOOCMVOCOCOi— OO 00 CM VO CM i— r— i— i— CO CM i— i— i— §pw CO cn CM •— CO

VO CM r^. *- ^ r— i— COOfOfOLOCM CD' CM CD CM i-«! i— cnLncooor— *s- CQ ,— ~ CM f-. LO «^ g f— CMLOCM«d-«3«d-VOr^ ^•O VO ^~ VO i— CM •— r— OO r-% VO CM at "* r— o> to LO CM i— O O ** «d" oo *a- CO cn cn LO 4-> Qi CM If) Lf5 O O CM Ln CM t^ VO CM 00 in o un n ro o co <=>• oo VO oo «d- LO CM cn «* O 00 •=!- O CM i— CT> O CM CO CM vo r— CM LO in LO o VO •— *~ VO O ' $2 oo >—< i CC I— CMi— ^-i— LOi— i— LO CO o> OO VO VO 0} •=£ CO h— S CM oo ,3! cn ,-J Ct- i—i I-H ° 9ZLL-996 oo in VO 00 r*% QL OO1" r^ CM VO in LO '— >-t— Z'O r- CM CM r— OO i— CM vo oo LO •O I— 00 LUC" in CU O I—i i—i Q •~ ; A^XrWiftWwytW^ 3 Z O O y. Wft'>«5«S-:-W5S:W:WftWX««Sf^^ MttftWvxxytf:*:-:-:y:':W::-tStfASttftSfi*:*:*:* ^wAwwff c«.i— vo CO «* CM OO cn 0 r-coi- •-• °- CM 00 oo o^ oo LO t— J3 CT> SI ^ u_ •— oo LO ^- o « r- z: i— T^ VO h- o a: cr ° •— •-1-1 z ,« Q cr LU 52 OOOCDOOOOOOOO o O o o CM LU z: _i E OO LU ° cocncMOinvo'si-cncyicMLO LO oo cn O d: oo LU"^ 666-006 CD VO ^^ CO r~~ r*~ r~• CD VO Cn ^i" CM CO ^~ VO r— • CQ oo cr'i: i— voi— vovT> •— oo OLOCMOOOCMi— i— 00 r*. LO CM CNJ CO oor--oo«3-r-»r— vo ,-j! ,-j! LO cn ^-« 668-008 LOVOOCMr— LOOCO VO VO LO o ^a- ^- r-~ 00 ^- o CM CO in 0) "* "* w cn cMOovocnoom CO VO ^ O ^j- o as i— oocTicnocMin o CM O LO ,_! CM 4-> oo •* CM vo ^a- r~- o o VO VO VO ^VO o oo oo vo CM CM CO CM vo ^~ r— 00 en OO VO r— «*

r- r». ^1- oo O

vocO'sj'vOLOcnoovo 00 cn CM |S^ o 669-009 cn VO oo oo VO CD oo LO r— r— CM I— r— « o c in ^~ to o^^o *T~ a\ en C cu cn o** cn cn cn CT> cn cn cn cnc cnn c ncn to > ^ o^ ^* cn 0^1 o^ CT» cn cn cn cn ccn cn >,jc o >, J- 0 o o c -r- O-—» r~.cni— i— odoo«*Lovor^coo •— CM + +-> H- O 4-> CU 0 _a o CU (/> CDO i i i i i i i i i r— •i- O •i- -t-> O o inr^OLOooooooooooo o o c co O C OJ O o to o to- ——- 000 o O) CU O CU i- O § 0 o. o r— CM OO 1— o _j oo Q t3 OO o oo

13 2.0 SHORT HAUL REGIONS

During the four months allocated to the first phase of this study, it was specified that the Contractor should conduct "... parametric systems analyses of a number of different STOL transportation systems in representative regions of the U.S. and develop the approach for analyzing total systems requirements in Phase II." Three representative regions were developed using a total of 23 city pairs. Both high and low density city pairs were used to construct these representative regions. In addition, the city pairs selected were drawn from a mix of range categories.

In order to assure broader representation of the U.S. market and to conduct the tradeoffs necessary to optimize system operations, etc., the three Phase I regions were expanded and four additional regions were formu- lated for Phase II analysis. A total of 319 city pairs was examined in these seven regions. The information generated in this expanded analysis was also used to help define the national demand for STOL service.

2.1 Representative - Phase I

Three representative short haul market regions were studied during Phase I. These regions are identified by the crosshatched area in Figure 2-1. The city pairs selected for each representative region were modified from those shown on Figure 2-1. Allegheny Airlines and Air California assisted Douglas in the development of these networks. Selected city pair networks for each region were later reviewed by American Airlines and United Air Lines. It was agreed that the 23 city pairs chosen constituted an adequate sample.

Figures 2-2, 2-3, and 2-4 show these 23 city pairs combined into

15 LU CC 8- LU

CSI LJJ cc I- D o: a o

LU

LU CO LU cr QL

16 m o O in

C/> o ^ LU £p J- <

LU O LU ZCCQ_ LU a:

17 O1 o3 (- I/I aCM: a

^ o: li C3 2 LU o:

CO

O

UJ LCUO a:

18 19 representative Northeast, California and Chicago regions. The Douglas

Patronage Model was used to determine the modal split between the various transportation modes in use between these cities. This is discussed in

Sections 4.0 and 5.0.

2.2 National - Phase II

During Phase II the three representative regions were expanded by the inclusion of additional city peirs. Four additional reoresentative regions were added for Phase II analysis. This was dene in order to oerform a more detailed systems analysis. These seven representative regions are as follows:

Representative 1985 Origin & Destination Region No. of Cities Passengers

Northeast 100 44,806,883

California 26 28,371,671

Chicago 61 18,613,911

Southeast 77 17,477,042

Southern 37 9,002,995

Northwest 11 2,116,829

Hawaii 7 3,657,979

Total 319 124,097,310

Lower density city pairs were included in the various regions in order to examine the tradeoffs resulting from scheduling aircraft of varying seating capacities.

2.2.1 Northeast.Region. - Table 2-1 and Figure 2-5 show the 1985 oassenger distribution versus segment distance for the 100 citv pairs included in the expanded Northeast region. Figure 2-6 is a man which depicts the location of

20 Table 2-1 NORTHEAST REGION PASSENGERS V5 STAGE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS - DISTANCE

DISTANCE RANGE CATEGORY CITY PAIRS ST.MI. KM ST.MI. 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 322-482 483-643 644-904 805-965

ALB BOS 145 233 179366 ALB BUF 251 404 221477 ALB CLE 419 674 78066 ALB DH 479 771 106587 ALB NYC 139 224 297428 ALB PHL 208 335 133185 ALB PIT 367 591 76018 ALB ROC 198 319 92175 ALB SYR 119 192 56317 ALB WAS 321 517 184466 BAL BDL 283 455 195322 BAL BOS 370 595 370899 BAL BUF 281 452 65522 BAL CLE 312 502 151275 BAL CVG 430 692 87136 BAL OH 404 650 191946 BAL IND 515 829 63054 BAL NYC 179 288 599817 BAL ORF 159 256 131875 BAL PHL 96 154 193003 BAL PIT 210 338 235810 BDL BUF 317 510 111581 BDL CLE 471 758 214321 BDL DTT 540 869 241799 BDL NYC 107 172 193024 BDL PHL 190 306 250453 BDL PIT 406 653 185466 BDL ROC 267 430 89112 BDL SYR 192 309 64019 BDL WAS 319 513 386331 BGR BOS 201 323 179163 BGR NYC 384 618 82571 BOS BTV 181 291 68202 BOS BUF 396 637 309845 BOS CLE 558 898 421332 BOS HAR 337 542 86954 BOS NYC 191 307 6907105 BOS ORF 468 753 191084 BOS PHL 274 441 1707300 BOS PIT 496 798 404980 BOS PWM 95 153 84224 BOS ROC 343 552 262728 BOS SYR 264 425 276658 BOS WAS 406 653 2453000 BTV NYC 261 420 164159 BUF NYC 289 465 1227913 BUF PHL 282 454 316676 BUF PIT 186 299 101086 BUF WAS 290 467 231329 CLE NYC 410 660 1522841 CLE ORF 434 698 54642 CLE PHL 365 587 473335 CLE PVD 536 863 53099 CLE ROC 239 385 93700 CLE SYR 312 502 81398 CLE WAS 297 478 428466 CMH NYC 472 760 624804 CMH PHL 412 663 217083 CMH WAS 310 499 274670 CVG NYC 579 932 602122 CVG PHL 513 826 177702 CVG WAS 400 644 207437 DAY NYC 543 874 411354

21 Table 2-1 (Concluded) NORTHEAST REGION PASSENGERS VS STAGE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS - DISTANCE

DISTANCE RANGE CATEGORY CITY PAIR ST. MI. KM ST.MI. 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 322-482 483-643 644-804 805-965

DAY PHL 483 777 152895 DAY WAS 379 610 224038 DTT NYC 489 787 2076400 DTT ORF 527 848 72180 DTT PHL 452 727 655940 on SYR 364 586 109554 DTT WAS 391 629 611733 ERI NYC 335 539 86208 ERI PHL 304 489 66061 HAR NYC 154 248 148518 HAR PIT 182 293 207981 IND PHL 593 954 194800 IND WAS 487 784 225768 NYC ORF 291 468 463601 NYC PHL 84 135 208000 NYC PIT 329 529 1725380 NYC PVD 150 241 328167 NYC PWM 275 442 109003 NYC ROC 252 406 1119154 NYC SYR 197 317 840229 NYC WAS 215 346 5473051 ORF PHL 215 346 218837 ORF PIT 330 531 83774 ORF PVD 420 676 71431 ORF WAS 149 240 192394 PHL PIT 274 441 941578 PHL PVD 231 372 162383 PHL ROC 259 417 187297 PHL SYR 228 367 131433 PHL WAS 133 214 291000 PIT PVD 467 752 57877 PIT ROC 224 360 78000 PIT SYR 279 449 78551 PIT WAS 194 312 414864 PVD WAS 364 586 238043 PWM WAS 487 784 52647 ROC WAS 292 470 192984 SYR WAS 297 478 163064 Total Passengers (44,800,630) 485227 11364020 14884728 5996862 9832351 2237442 Percent of Total (100.0) 1.1 25.4 33.2 13.4 21.9 5.0

22 O O

in U. a. o o o o in 00 in o> oo o> 04 i UJ o o o

CO

CO UJ 0£ °- 3 z o up >• UJ UJ 0 CD <* L— I- CO CO •4- UJ g5-J ^>i 5ni SA3 0 0 • •• r ° — CM I < t < o 2 o in o

UJ

O J o o CO CM

ao:

23 2.4 these city pairs.

2.2.2 California Region. - A total of 26 city pairs constitute the expanded Phase II California region. Over 28 million passengers will travel between these city pairs in 1985. As in Phase I, the California region is dominated by the 300 to 400 statute mile range category (483-643 KM). The Los Angeles- San Francisco city pair accounts for this situation. Table 2-2 and Figure 2-7 contain the projected 1985 O&D distribution for the 26 city pairs in the California region. A map of these city pairs is shown on Figure 2-8.

2.2.3 Chicago Region. - The Chicago market region was modified and expanded to include a larger representative sample of city pairs capable of supporting STOL service. There are now 61 city pairs included in the Chicago region.

By increasing the number of city pairs and including some that do not feed directly into one central point, Chicago in this instance, several operational problems were investigated. These included the necessity for aircraft to "overnight" in locations other than the base city in order to provide flights at convenient times of day.

In the expanded network, 21 of the 61 city pairs feed into Chicago. This required investigating the tradeoffs between desirable flight times, air- craft requirements and gate requirements. A number of city pairs of lower passenger density was also included in the network to examine the tradeoffs of a mixed fleet with two aircraft of different passenger capacities. Table 2-3 and Figure 2-9 contain, respectively, tabular and graphic portrayals of passenger distribution versus segment distances for the year 1985. A total of 18.6 million passengers are forecast to travel between the 61 city pairs that constitute the Chicago region by 1985. Figure 2-10 contains the

25 Table 2-2 CALIFORNIA REGION PASSENGERS VS STAGE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS - DISTANCE

DISTANCE RANGE CATEGORY CITY PAIR ST. MI. KM ST. MI. 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 322-482 483-643 644-804 805-965

DEN PHX 589 948 309198 EKA SFO 239 385 157688 FAT LAX 213 343 444000 FAT SFO 164 264 362000 LAS LAX 227 365 3078439 LAX PHX 255 410 253710 LAS RNO 345 555 277046 LAS SAN 258 415 257298 LAS SFO 419 674 551750 LAX MRY 273 439 472715 LAX PHX 358 576 1362133 LAX RNO 393 632 234180 LAX SAN 101 163 2248000 LAX SBA 100 161 107385 LAX SFO 355 571 12613000 LAX SMF 379 610 1435000 LAX TUS 438 705 480051 MRY SFO 87 140 107125 PDX SFO 540 869 863453 PHX SAN 304 489 270650 RNO SFO 187 301 375241 SAN SFO 456 734 1439000 SAN SMF 480 772 108000 SAN TUS 367 591 99425 SBA SFO 272 438 261184 SFO SMF 78 126 204000 Total Passengers (28,371 ,671 } 311125 3092626 4925034 16291434 2578801 1172651 Percent of Total (100.0) 1.1 10.9 17.4 57.4 9.1 4.1

26 f i-H *t

m a a.

O o 00

o UJ o o 10

o o m UJ

o o CM

o cc LU O.

27 < C/5

28 Table 2-3 CHICAGO REGION PASSENGERS VS STAGE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS - DISTANCE

DISTANCE RANGE CATEGORY CITY PAIR ST. MI KM ST.MI. 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 322-482 483-643 644-804 805-965 BUF CHI 467 752 312249 BUF CLE 26 42 62060 BUF DTT 230 370 150949 CHI CLE 312 502 968940 CHI CMH 287 462 480830 CHI CVG 254 409 541012 CHI DAY 231 372 339171 CHI DSM 306 492 352393 CHI DTT 238 383 1651370 CHI EVV 254 426 165395 CHI FWA 148 348 108703 CHI GRR 134 216 122662 CHI IND 167 269 538212 CHI MKC 407 655 887797 CHI MSN 118 190 160331 CHI MSP 344 554 1876763 CHI OMA 423 681 324412 CHI PIA 131 211 144415 CHI PIT . 404 650 796667 CHI ROC 522 840 235503 CHI SPI 172 277 125750 CHI STL 256 412 1540859 CHI TOL 206 332 170001 CLE CVG 226 364 131180 CLE DAY 168 270 93559 CLE OH 94 151 407967 CLE PIT 104 167 97440 CLE STL 492 792 250873 CMH DH 161 259 130419 CMH PIT 144 232 63395 CMH STL 410 660 97305 CVG DH 238 383 204866 CVG PIT 256 412 85817 CVG STL 308 496 175606 DAY DTT 175 282 59743 DAY PIT 214 344 95062 DAY STL 339 546 93642 DEN MKC 552 888 394916 DEN OMA 484 779 196002 DLH MSP 144 232 57230 DSM MKC 174 280 85436 DSM MSP 232 373 151048 DSM STL 260 418 117223 on GRR 126 203 54446 DTT IND 241 388 184835 DTT MKE 244 393 224064 DTT MSP 534 859 334726 DTT PIT 198 319 325334 DTT ROC 286 460 160924 DTT STL 451 726 422559 FSD MSP 197 317 77868 IND PIT 325 523 113813 IND STL 299 481 213190 MKE MSP 297 478 345273 MKE STL 317 510 123330 MKC STL 229 368 357259 MSN MSP 228 367 106147 MSP OMA 282 454 226175 .OMA STL 342 550 97935 PIT STL 553 890 165090 STL TUL 351 565 97830 Total Passengers (18,675,971 y 470027 2244943 7642650 3900252 3287864 1130235 Percent of Total (100.00) 2.5 12.0 40.9 20.9 17.6 6.1

29 o in

o LJJ o O

CD 05 LJJ o DC o LU 10 CO = O o o o o CM

O J

LU cOr LJ Q.

30

location of each of these city pairs.

2.2.4 Southeast Region. - A total of 77 citv pairs was included in the

Southeast region. This region differs from the Chicago, Northeast and

Southern regions in that the predominant range category is the 400 to 500 statute mile segment distance (644-804 KM). This range categorv accounts for

just over 30 percent of the O&D air passengers.

A total of 17.5 million passengers are forecast to travel in the Southeast region, as defined above, in the vear 1985. Table 2-4 and Figure 2-11 contain the 1985 passenger distribution versus segment distance

for these citv oairs. As opposed to the Northeast, California, and Chicago regions, the Southeast region has a fewer number of city pairs which have

large annual passenger volumes. Figure 2-12 shows each of the city pairs in

the Southeast region.

2.2.5 Southern Region. - Just over nine million O&D air passengers are

expected to travel between the 37 city pairs comprising the Southern region in 1985. Table 2-5 and Figure 2-13 show the 1985 nassenger distribution versus segment distance for these city pairs. It should be noted that the Southern region is dominated bv the 200 to 300 statute mile range category (322-482 KM). City pairs in this segment distance constitute almost 30 percent of the O&D air passengers. All of this region's citv oairs are shown in Figure 2-14.

2.2.6 Northwest Region. - The Northwest region was constructed with a total

of eleven city pairs. Of these city pairs, the Spokane-Seattle route contributed the largest volume of passengers. Over 450,000 passengers were allocated to STOL service on this city pair for the vear 1985. Table 2-6

32 Table 2- 4 SOUTHEAST REGION PASSENGERS VS STAGE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS - DISTANCE

DISTANCE RANGE CATEGORY CITY PAIR ST. MI.. KM ST. HI. 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 322-482 483-643 644-804 805-965

ATL BAL 576 927 239223 ATL BHM 134 216 173879 ATL BNA 214 344 306485 ATL CAE 192 309 276279 ATL CHI 597 961 778460 ATL CHS 259 417 206933 ATL CLE 559 900 238357 ATL CLT 227 365 228583 ATL CVG 373 600 174631 ATL DAB 366 589 65093 ATL DAY 432 695 96364 ATL FLL 581 935 173962 ATL 6SO 306 492 218118 ATL IND 432 695 133079 ATL JAN 341 549 161468 ATL JAX 276 444 400738 ATL MCO 400 644 269982 ATL MEM 332 534 417277 ATL MGM 147 237 125836 ATL MIA 595 958 791473 ATL MOB 302 486 158767 ATL MSY 425 684 388519 ATL ORF 516 830 141111 ATL PBI 545 877 127800 ATL PIT 526 847 192157 ATL PNS 272 438 109049 ATL RDU 356 572 274751 ATL RIC 481 774 132832 ATL SAV 215 346 336176 ATL SDF 321 516 230622 ATL STL 484 779 242609 ATL TLH 223 359 89487 ATL TPA 410 660 441310 ATL TRI 227 365 63158 ATL TYS 152 245 108096 ATL WAS 481 774 594920 BHM MEM 212 341 84998 BHM MSY 321 516 103153 BNA CHI 401 645 241920 BNA MEM 200 322 178732 BNA WAS 552 888 154145 CAE WAS 404 650 135687 CHI CLT 589 948 136868 CHI MEM 485 780 464401 CHI SDF 277 446 41 7013 CHS ORF 351 565 94319 CHS WAS 442 711 140873 CLE SDF 310 499 117842 CLT NYC 537 864 572060 CLT PHL 453 729 151944 CLT WAS 325 523 153963 CRW WAS 238 383 109769 DTT SDF 316 508 258395 FLL TPA 190 306 85893 GSO NYC 455 732 497703 GSO WAS 244 393 163270 JAN MEM 189 304 87549 JAX MIA 329 529 271975 MCO MIA 196 315 144819 MEM MKC 379 610 108795 MEM MSY 349 562 217939 MEM STL 255 410 236248 MIft TLH 403 649 189672

33 Table 2- 4 (Concluded) SOUTHEAST REGION PASSENGERS VS STAGE LENGTH - 1985 ORIGIN DESTINATION PASSENRERS - DISTANCE

DISTANCE RANGE CATEGORY CITY PAIR ST.MI. KM ST.MI. 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 322-482 483-643 644-801 805-965

MIA TPA 199 320 399011 MSY TPA 495 797 118079 NYC PHF 283 455 138527 NYC RIC 285 460 309188 NYC RDU 425 684 623757 PBI TPA 167 269 77613 PHL SDF 583 938 138982 PIT SDF 335 539 89362 RDU WAS 225 362 218439 ROA WAS 184 296 100865 SDF STL 254 409 149387 SDF WAS 463 745 198114 TLH TPA 205 335 90342 TYS WAS 428 689 197847 Total Passengers (17,477,042) 1579840 3836522 3116470 5259612 3684598 Percent of Total (100.0) 9.0 22.0 17.8 30.1 21.1

34 o i-

O O in 00 00 O)

LU

o o o z I<- o LU O CO C5 * LU CO LU cr *g o CNI >- LU o W t LU O «> LU _

< H Z 00 o ni ~ o CM O ££ en CL O

LU CO o CO

oLU oc aLU.

35 CM CM

0 In

36 Table 2- 5 SOUTHERN REGION PASSENGERS VS STARE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS - DISTANCE

DISTANCE RANGE CATEGORY CITY PAIR ST. MI. KM ST. MI. 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 322-482 483-643 644-804 805-965

ABI DAL 182 293 64786 ABQ DAL 594 956 210333 ABO DEN 339 546 259381 ABQ ELP 223 359 134499 AMA DAL 336 541 216258 ADS DAL 187 301 370785 CRP DAL 353 568 199666 CRP I AH 194 312 84571 DAL ELP 576 927 269618 DAL I AH 222 357 945267 DAL ICT 335 539 119263 DAL LBB 307 494 357891 DAL LIT 283 455 190018 DAL MAP 333 536 248220 DAL MEM 410 660 261210 DAL MKC 448 721 356629 DAL MSY 423 681 489430 DAL OKC 185 298 395414 DAL SAT 253 407 542988 DAL STL 537 864 368753 DAL TUL 234 377 297403 DEN ICT 428 689 150371 DEN OKC 500 805 143235 ELP SAT 496 798 92687 I AH MAF 435 700 148297 IAH MEM 477 768 145294 I AH MSY 303 488 710135 IAH OKC 407 655 168729 IAH SAT 192 309 200901 IAH SHV 202 325 98597 IAH TUL 441 710 234225 ICT MKC 184 296 67985 JAN MSY 160 257 53323 LIT STL 296 476 96279 MKC TUL 215 346 63360 MLU MSY 203 327 69161 MSY SHV 271 436 178033 Total Passengers (9,002,995) 1237765 2615605 2110814 2046872 911939 Percent of Total (100.0) 13.8 29.0 23.5 22.7 11.0

37 FIGURE 2-13 SOUTHERN REGION REPRESENTATIVE CITY PAIR NETWORK PASSENGER DISTRIBUTION vs SEGMENT DISTANCE - 1985 (O&D AIR PASSENGERS)

e•> *frCOM1- 1 nD O C O O) ^ oc O 38 CM CO CM / CM y / q i-H i-H 3 10 O 40 O 0 O 0 O O O i-H O 0 CM 0 O O O LJ ^r QJ O (•} o S <0 Z _«/> 20 200 •^1- 800 CO I- < LlJ z CO

05 • il Q.

CM

O O) og O LU I- o LU _J UJ O t/>

39 Table 2- 6 NORTHWEST REGION PASSENGERS VS STAGE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS - DISTANCE

DISTANCE RANGE CATEGORY CITY PAIR ST.MI. KM ST.MI. 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 322-482 483-643 644-804 805-965

BOI PDX 344 554 148532 BOI SEA 400 644 134944 BOI SFO 516 830 134488 BOI SLC 291 468 107124 EUG SFO 440 708 213152 GEG PDX 278 447 206089 GEG SEA 223 359 451404 PDX RNO 444 715 130053 PDX SEA 132 212 330454 RNO SEA 566 911 138391 SEA YKM 105 169 72198 Total Passengers (2,066,829) 402652 764617 148532 478149 272879 Percent of Total (100.0) 19.5 37.0 7.2 23-l 13-2

40 and Figure 2-15 show the 1985 passenger distribution versus segment distance for these eleven city pairs. It is significant that the 100 to 200 statute mile range category (161-321 KM) dominates this representative region with a total of just over 35 percent of the O&D air passengers. Figure 2-16 contains a map of the region's city pairs.

2.2.7 Hawaii Region. - The Hawaii region contains a total of seven city pairs. By 1985 almost 3.7 million O&D air passengers are forecast to travel between these city pairs. This market is dominated by the 100 to 199 statute mile stage segment (161-321 KM). Passengers 1n this range category comprise almost 69 percent of the total. Table 2-7 and Figure 2-17 depict the forecast 1985 passenger distribution versus segment distance for the seven city pairs comprising the Hawaii region. These city pairs are also shown in the map contained in Figure 2-18

In summary, seven representative regions comprising a total of 319 city pairs and 124 million passengers were examined during Phase II of this study. This compares with a total of 494 city pairs previously identified as being potential STOL markets. Each of these city pairs was required to be within the 0-600 statute mile (966 KM) range cateogry and to generate 50,000 or more origin and destination passengers by the year 1985.

41 - O to o: Q. oO 00 in oo o> i-H I Ul o O o CD < o uj Q _, CO z i_ co o 5 K UJ DEC fr^ uj < ^ 7 °- P ui o LU o > CO

o o CM LU CO

UJ QC QC ouj UJ CO

oOr LQU_

42 (T a

43 Table 2- / HAWAII REGION PASSENGERS VS STARE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS - DISTANCE

DISTANCE RANRE CATEGORY CITY PAIR ST.MI. KM ST.MI. 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 322-482 483-643 644-804 805-965

HNL I TO 216 348 977217 HNL KOA 169 272 383451 HNL LIH 102 164 1036790 HNL MKK 54 87 166411 HNL MUE 171 275 138782 HNL OGG 100 161 899974 ITO OGG 121 195 55354 Total Passengers (3,657,979) 166411 2514351 977217 Percent of Total (100.0) 4.6 68.7 26.7

44 O o

o So m a. a. o o o o in 00 in CO o>

o o o LU o o

OS C0

o o O CM o

en en o o o in CO CM

LU Q_

45 V) « e> cc o hU-J O UJ -j UJ CO 3.0 COMPETING TRAVEL MODES

3.1 Intercity Travel Mode Perspective

An overview of U.S. domestic intercity travel has been prepared from the Transportation Association1 of America's Transportation^ Facts and^ Trends_.

Between 1960 and 1971, total domestic intercity passenger-miles (passenger-kilometers) grew from 784 (1262) to 1221 (1965) billion at an average annual rate of 4.1 percent (Figures 3-1 and 3-2). In comparison, during the same period private mode intercity passenger-miles (passenger- kilometers), almost exclusively accounted for by private automobiles, grew from 706 (1136) billion to 1071 (1724) billion or at an average rate of 3.9 percent. And public mode intercity passenger-miles (passenger-kilometers), primarily accounted for by the air mode, grew from 75 (121) to 141 (227) billion or at an average annual rate of 6.1 percent (Figures 3-2 and 3-3).

During the 1960 to 1969 period, the common carrier share of total domestic intercity passenger-miles (passenger-kilometers) increased from 9.6 percent at the beginning of the period to 12.6 percent at the end. However, since 1969, the common carrier share has dropped. It fell to 11.9 percent in 1970 and further declined to 11.5 percent in 1971. The growth rate of public intercity travel began to decline in 1967 (Figures 3-2 through 3-5). See Appendix 11.5 for additional exhibits.

In contrast to the slowing growth of public mode domestic inter- city travel since 1969, travel by private modes, primarily private automo- bile, has shown consistent growth for the same period. Besides the long decline of rail travel resulting from the increased popularity of air and

47 tr•. oCcO CO LU LU z 01- o Z UJ J O 1/1 m o o o o o o o ooooooooooo CNOCOtO^OslOOOOO CM CM •-' ^ i-H i-lt-lOO

i-H o>

00 to

UccJ. LU in CO UJ CO Q UJ o i § CO I- O CO < Ij CM a. Q. Oo o to I I o o o o o o o o o o o o o o o CNJ O CX5 CM OZ CO UJ Oco O u-ZUJ Hj Ow c "oJ ^ — — CO ^ OQ < Q_

48 LU LU o s I/) o 5

C/)LU UJ-J

o o o CVI < CO w tLcU I D Q. o O Z < DO CO o cr LU

O

CO LU oUJ ae LU O a. o

49 co

CO O « in o

o 8 s h 22 1/1

oooooo CM i-H »H «-• «-• i-i 00

LU

• u> I— UJ !— Q CO CO O 2 5 LU o iZ ^_ QQ

— O. O

o o

CO LU "Z. C3 CO 2 ^- g j =!0co5 d co S QQ a<.

50 cr o LJU to o

O H LU

CD o

01 Q 5O £ O CO o u Qn- €0

O H 0) o QL UJ O Q_ O < u> o _ O 1/1

LJJ

If) CO HI 0:0 cc

o CM a:

LU O CC aUJ.

52 auto, there are several more reasons to account for this situation. These include: economic recession, airport and airways congestion, and the growth of interstate and intrastate highways and freeways.

First, the 1969 to 1971 recession caused individuals and businesses to either avoid travel or to opt for the least expensive means of travel, the automobile. Most of the 1969 to 1971 leveling of public mode travel occurred in the scheduled air carrier industry.

Second, public air mode intercity travel, which accounts for most of the domestic intercity public mode passenger-miles (passenger-kilometers) and which has shown the most dynamic growth of all of the intercity modes, public and private (Figure 3-4), was inhibited in 1968 and 1969 by airport and airways congestion.

Third, after capturing a declining share of total intercity passenger-miles (passenger-kilometers), the private auto mode's share began to increase again after 1969 (Figure 3-5). It is believed that the growth of interstate highway and freeway networks in recent years has provided individuals, driving more powerful and comfortable automobiles, with a private and convenient way to get from point of origin to point of desti- nation. The private automobile has become an increasingly effective competitor to the public modes of intercity transport reversing the previous trend.

However, it is anticipated that public mode transport, stimulated primarily by air mode growth, will experience new vigorous growth in the years ahead. Important reasons are expected to be scarcity of land available

53 for highway and freeway expansion and new technology devised to relieve airport and airway congestion. The California State Division of Highways has reported that it has become increasingly difficult to obtain rights of way for highways and freeways within the state. Existing approved rights of way will be completed by 1980.. Therefore, it can be expected that roadway congestion will significantly increase in future years. The same phenomenon will occur in some of the other states. If so, it is likely that improved modes of transport (including STOL) v/ill be emphasized especially those which can accommodate large numbers of passengers at a lower environmental cost.

Trains, in order to be competitive in the future, must offer faster service with more amenities if they are to compete with the convenience of the automobile and the speed of the jet airplane on intercity routes. During the past decade, the rail mode's share of total intercity travel has dropped from 2.6 percent in 1961 to 0.8 percent in 1971 (Figure 3-5).

In consideration of the fact that rail accounted for over 30 percent of total intercity passenger-miles (passenger-kilometers) in the mid- 19405, its 1971 share would seem to indicate that it has little significance. However, under the auspices of the U.S. Department of Transportation, the rail mode may regain some of its former importance. High speed trains on short-haul runs traveling city center to city center are competitive in the Northeast Region with other modes as has been demonstrated by the Metroliner's success between Washington and New York. However, it might be pointed out that despite the Metroliner's success, four times as many passengers still fly between Washington and flew York as take the train.

54 It is doubtful that rail will be able to recapture any significant share of the traveling public now using air travel. Modal split analyses were performed in this study for the Northeast Region under conditions with and without high speed rail competition to determine the individual impact of STOL and high speed rail on the total Northeast Region transportation system.

3.2 Modal Competition Dynamics

Table 3-1 offers a perspective of the competitive dynamics of U.S. transportation. It shows the changes in the shares of total U.S. person- trips by transport mode and by distance between the years 1953 and 1967. It is interesting to note that during the designated time period the auto- mobile increased its competitive share for distances up to 100 miles (161 kilometers) while losing its competitive share for distances over 200 miles (322 kilometers). The air mode, which increased its competitive share for distances over 100 miles (161 kilometers) and which significantly increased its competitive share for distances over 200 miles (322 kilometers), therefore captured some of the auto's share of total person-trips as well as the shares of other modes of transport. Tables 3-2 and 3-3 are similar to Table 3-1 but offer a comparison of the competitive shares of total 1967 U.S. person-miles/ kilometers by transport mode and by distance.

3.3 Regional Modal Competition

Passenger traffic data for the competing modes (air, auto, bus and rail) were assembled for 23 city pairs in the California, Chicago and North- east regions. Tables 3-4 through 3-6 contain the assembled data for selected city pairs in the California and the Chicago regions for data which was adjusted to the year 1970 for the purposes of calibrating the Douglas Patronage Model.

55 Table 3-5 presents data for selected city pairs in the Northeast Region. It is 1968 data and was extracted from the Northeast Corridor Transportation Project Report NECTP-212 (December 1969). The Douglas Patronage Model was calibrated for the Northeast Region on the basis of the 1968 data with the escalation of fares for each of the travel modes to reflect current fare levels (1972 dollars).

56 0 0 0 0 0 0 vo o o o o o o

CVJ cvj oo CVJ eVnO O> *"" •M co O V£> cvj l— CVJ vo CVJ Cn

VO CVJ Cn

CO vo I— CVJ CVJ oo CVJ en

CO O- HH C£ LU K™ f —^ UD cvj co co oo cvi co er> O H- CO CO to C£ I—* 00 LU O OQ 00 CO O_ cu vo CO CVJ cvj 00 00 oo cu - o cr> U_ CO .a o O) (O LU 0- Z O o 00 o

VO in VO 00 ,_ en r^ ' it- CC CO cn cn 00 in oo CD H-4 o r~" o: t— 3 to CO «a: OO CO !»-« in oo CVJ i— cn 0 o <£ ^c^n cn cn oc vo oo X ^— CO c

ex V^O i i CVJ CVJ CVJ 1^ •r— to en i i CO s- 4-* to &. ^- c •r™ ^. cu *r— o cu 4J 0 ^» c^u t— 3 c CVJ ^o^ > cn (O cu o 0 1 £^ •r- tO in VO ^^ CM -a S- 3 vo CM c co CO c 1 OO Q'E' *«**^ +J :2 "^^ o .c o^ cn in • • cn en S- cu •r- 3 S cn § ,- 0 (J C— ' QJ o o o O O O CO O in CVJ in i— ,— CO

57 i— O O O O O O to 4-> O O O O O O O O O O O

i- r». o co in in 0) • • • • • O r— CM CO CM

r^ o to o co • • • • • O •— i— «3- CM

i— CM r-» i— •* 01 • • • • • CO CNJ CM CM CVI e— •r- O •r" O I/I O •r* r— CO VO r-» •^ o • • • • O •M o in CM vo oo o en co 10 vo «c I/) o trt D. « Xs id OJ to r«N. r*» oo i— ex • • • • i— o ro in r- CM CM s. (O 4J

c/) CO I/I en n. t- r- «^ O O) oo CM O IO »- 1. *—I CO CO t— OJ 4-> in O > +J (T3 => I I O (O 0) « ^- CM O C 4J o I IO CM C C IO t- «/» m OQ c oo cr> en CM o o> (O *^ Cf> CP> CM r— CT> r— «d- CT> VO >>' o O) 10 Cf> r— t. o , ' ' ' ^ o C ii 10 O O O O 01 o o o o o m i— CM in •— r— CM

58 19 i— co r*. co r>. 4-> • • • • O r— in in o» co• o o

CM in in «— co • • • • • •M o o o •— CM O

co CM co vo o ex. • • • • o o o •—

CO

V) •— co in co vo oo V} CO O* CJ CD O O* i-^ 0) o co ui o I o o«a;

1. 01 o oo CO c (—1 OJ o: a. o i— «* O •^ 0) oo CM O VO 1. i—i CO CO r— 0) CO Q 0) o U O vo I I I O 10 3 00 ro 0) o p—pO— O> VO o (U I. u «0 I S O (O o c $- 0> CO o o o o +* =1 •M C CO 0) o o o o o o o CO O«— * in i— CM in r— t— CM co

59 vo CO o o 00 un in ce. o CM en o o en CO HH O CO VO «=c o

if) O o i— co in o ra o o CM *J- o DO o to o

_i o in o in oo •-> o o CVJ CM «=c o 00 aet uZj ai co o UJ C£ «/> -I— (O CD 0_ Z UJ co ra ro UJ OL (/) 3 *- CO o O o CO o o - o o o O o o o •r- i- O_ Z I— o r-. CO O i— •— DI o 3 O ft o o o co r— r- i— ro a> ca =3 o o -a ro o O CO O en XI ro i- CU Q. o =3 3 •(-> r— C S- Cn o +j (O O_ CO T- V- O ra cu CU C ra c ro _l O S- CO $_ o (a ra ct: rO cu u 0) •r- T- "X3 CU CU ro I— I

60 LO o O IT) O 0£ O CM CM co o r-. H-1 O CO If)

CO O in o LO o O o ID O «± CO ro CTl LCI LO CO O co O in CM

00 C UJ I—< H- ti

CO C oo t— o «C oo CM CM r- Q. «C UJ oo a: O r— O Q. t/)

o -o •r- S- S- o •r- Q. o -C C i— Q. O CD CO •— 4J XJ (O to s- (\y ^TJ 'O (O o •o C i—

(O S- I o I I S- l_ a> Q- C C o o -o cu o o o (O o >- 4-> +J •»-> to to to 3 o o o O d) o CO CO CO oo

61 a: o oo in in ro oo LO •—« o CM o LO co r-» in <: o LO m ro

OO CD o 10 LO => O o un 03 O

LO I I—

o: oo UJ UJ o o: Z Q. UJ UI o o LO •— 00 00 CM oo o: i—o co o O CO oo => O CO «3- LO CM cri—> co r-. i—i cr. x:

to cu •r- cu i— tO O •!- Q. r— CU to CU to 2: oo 8 oO O I I I o •3; o Q. O O O Q. Ol (O O) (?) o cn (O

62 4.0 MODAL SPLIT ANALYSIS

During Phase I, the Douglas Patronage Model was used to determine the percent of travelers selecting automobile, bus, rail, or air (either CTOL or STOL) for any given city pair. Over 1200 parametric patronage model runs were made for 23 city pairs in the three representative regions which were studied in Phase I. These 23 city pairs constituted about 40 percent of the total forecast 1980 Phase I short haul market. Because of the unavailability of city data for all of the 319 city pairs selected for analysis within the 5 months allowed for Phase II, the Douglas Patronage Model was not used. A modified modal split procedure was developed to facilitate analysis. For the seven Phase II networks, the modal split procedure is as follows. The 1970 level of CTOL traffic for U.S. short- haul city pairs was forecast to 1985 (Section 1.2). On average, the growth rate from 1970 to 1985 was 8 percent compounded annually. In order to main- tain the viability of the present CTOL system, both with respect to connecting and origin-desgination passengers, the 1970 level of origin-destination passengers was assigned to CTOL aircraft. This 1970 CTOL base was allowed to expand by 2 percent a year reflecting the fact that not all U.S. city pairs are affected by airside and groundside congestion. The balance of the annual passenger growth, or 6 percentage points per annum, was allocated to the STOL system. Figure 4-1 depicts this modal split procedure. The traffic split for each of the 319 city pairs was computed individually. The Douglas airline subcontractors were asked to comment on this modal split procedure. As a group, they endorsed the Douglas approach to this subject area. THe following comment on the modal split procedure was received from one of the airlines:

63 0< m '

1 m It a.

o — S. Q. 64 "Baseline data for 1970 is probably a safe (conservative) starting point for allocating future short haul STOL and CTOL traffic because traffic was extremely depressed that year. Beyond 1980, the allocating of 2 percent annual short haul growth to CTOL, and the remaining 6 percent annual short haul growth to STOL is also probably reasonable, although this must be examined in relation to the growth rates of connecting traffic as well as 0 & D traffic."

4.1 Phase I Patronage Model Modal Split Analysis The STOL patronage model is essentially a gravity model which assumes that travel between city-pairs is increased by the attraction exerted by the population masses of the cities and impeded by the cost of travel. Cost is the portal to portal cost to the traveler and includes portal to terminal costs, terminal processing costs, fares, and intangible costs such as values of travel time, convenience of auto, delays, degree,of safety and service frequency.

The essential element of the Douglas Patronage model modal split analysis is the determination of the percent of travelers selecting each mode of travel with a least cost selection criterion (Figure 4-2). Each city in a city-pair network is divided into zones determined by Origin-Destination Surveys (4.1.1) or other means with each zone having a percent of the city population. Costs from each zone centroid are calculated to each of the terminals of egress from a city (auto having only one). Terminal processing costs are determined and the total trip cost is determined as the least of

65 j O -i -i O k O O H afO H I- 3 a o O CO < z Ul Ul i!

O O (O O O a o CO LU O I- CO Ul o 0 g P o S 2 S < U- CD O ui 5 !

o o

66 the total costs of travel by each mode, i.e. portal to terminal costs plus terminal processing costs plus intangible costs plus fare. The percent of CTOL travelers and the CTOL traffic projection allows direct calculation of the traffic projections for all other modes. The model then iterates attempting to meet pre-assigned STOL load factors by varying STOL service frequency, which changes the cost factors since service frequency has a value. When further improvement of STOL patronage cannot be achieved by varying STOL service frequency within pre-assigned limits, the model concludes the parti- cular study with the output reports.

4.1.1 Origin - Destination Surveys - Most large cities have conducted origin - destination surveys to determine the percentage of the air travelers who originate and terminate their journeys within each zone in the city. These survey data are used whenever possible and provide the data base to estimate the ground origins and destinations in cities which have not recently conducted an air travel survey. Some of the surveys used in this study are as follows: Chicago - 1969 O'Hare Passenger Survey, City of Chicago, Department of Public Works, September 1970. Cleveland - Cleveland Hopkins Airport Access Study, Regional Planning Commission, Cuyahoga County, Ohio, June 1970. Detroit - Travel Patterns and Characteristics of Airline Passengers, Detroit Metropolitan Airport 1968. Detroit Regional Transportation and Land Use Study and The Wayne County Road Commission, November 1969. Indianapolis - Air Travel Study, Indianapolis Regional Transportation and Development Study (IRTADS), March 1967. Los Angeles - Surveys of Airport Scheduled Air Passenger Market, Landrum & Brown, March 1967.

67 Because the number and percentage of persons originating and termin- ating their trips in any given zone varies from year to year according to socio-economic influences, every effort was made in this study to anticipate the variations. Figures 4-3 and 4-4 present an example of the anticipated variations in the percent of passengers originating and termin- ating their trips by zone in Metropolitan Kansas City between the years 1967 and 1990. Additional ground 0 & D surveys are in Appendix 11.6. During Phase I, city data, including the ground origin - destination surveys of air travelers, was collected for the 17 cities in the California, Northeast and Chicago Regions.

4.1.2 Patronage Model Calibration - The actual city data collected was used to calibrate the Douglas Patronage Model for all of the city pairs in the first three regions studied in order to assure the accuracy of the modal split analysis. Tables 4-1 through 4-9 summarize the final calibration of the Douglas Patronage Model for one sample region. The calibration is within 2.5 percent of total traffic. Although calibration is poor for rail and bus, it should be pointed out that together they represent no more than 3.4 percent of the total regional traffic.

4.2 PHASE II MODAL SPLIT ANALYSIS The Phase II modal split procedure described in the introduction of this Section did not mention connecting or transfer passengers. For the most part, connecting or transfer passengers will continue to use the CTOL System except in those cases where the STOL system offers a more direct flight rout- ing. These connecting passengers together with the current level of 0 & D passengers now traveling between any given short haul city pair constitute

68 o I- tr a.

in 6

69 j O t- in <\i IX a

in 6

UJ CO CO to zero ^CM

•X-

70 TABLE 4-1 PATRONAGE MODEL CALIBRATION CALIFORNIA CORRIDOR

1970 Data Calibration Data PAX Percent Difference Percent (Millions) (Millions) (Millions) Difference

AUTO 53.657 84.662 53.709 0.052 0.097 AIR 7.596 11.985 7.596 0 0 BUS 1.907 3.009 0.531 -1.376 -72.155 RAIL 0.218 0.344 0.024 -0.194 -88.991 TOTAL 63.378 100 61.860 -1.518 - 2.395

TABLE 4-2 PATRONAGE MODEL CALIBRATION LOS ANGELES - SAN FRANCISCO

1970 Data Calibration Data PAX Percent Difference Percent (Millions) (Millions) (Millions) Difference

AUTO 6.700 55.6 6.696 0.004 0.060 AIR 5.126 42.5 5.126 0 0 BUS 0.184 1.5 0.103 -0.081 -44.022 RAIL 0.045 0.4 0.021 -0.024 -53.333 TOTAL 12.055 100 11.946 -0.109 - 0.904

71 TABLE 4-3 PATRONAGE MODEL CALIBRATION LOS ANGELES - SACRAMENTO

1970 Data Calibration Data PAX Percent Difference Percent (Millions) (Millions) (Millions) Difference

AUTO 1.100 62.6 1.109 0.009 0.818 AIR 0.600 34.1 0.600 0 0 BUS 0.043 2.4 0.035 -0.007 -16.279 RAIL 0.015 0.9 0.001 -0.014 93.333 TOTAL 1.758 100.0 1.745 -0.013 0.739

TABLE 4-4 PATRONAGE MODEL CALIBRATION LOS ANGELES - SAN DIEGO

1970 Data Calibration Data PAX Percent Difference Percent (Millions) (Millions) (Millions) Difference

AUTO 23.700 91.7 23.675 -0.025 -0.105 AIR 0.933 3.6 0.933 0 0 BUS 1.100 4.3 0.040 -1.060 -96.364 RAIL 0.100 0.4 0.002 .098 -98.000 TOTAL 25.833 100 25.640 -0.193 - 0.747

72 TABLE 4-5 PATRONAGE MODEL CALIBRATION LOS ANGELES - FRESNO

1970 Data Calibration Data PAX Percent Difference Percent (Millions) (Millions) (Millions) Differem

AUTO 1.600 88.4 1.593 -0.007 0.438 AIR 0.109 6.0 0.109 0 0 BUS 0.075 4.2 0 -0.075 RAIL 0.025 1.4 0 -0.025 TOTAL 1.809 100 1.702 -0.107 -5.915

TABLE 4-6 PATRONAGE MODEL CALIBRATION SAN FRANCISCO - SACRAMENTO

1970 Data Calibration Data PAX Percei Difference Percent (Millions) (Millions) (Millions) Difference

AUTO 19.100 97.5 19.166 0.066 0.346 AIR 0.085 0.4 0.085 0 0 BUS 0.400 2.1 0.302 -0.098 -24.500 RAIL 0 0 0 0 0 TOTAL 19.585 100 19.553 -0.032 - 0.163

73 TABLE 4-7 PATRONAGE MODEL CALIBRATION SAN FRANCISCO - SAN DIEGO

1970 Data Calibration Data PAX Percent Difference Percent (Millions) (Millions) (Millions) Difference

AUTO 0.344 35.3 0.344 0 0 AIR 0.600 61.5 0.600 0 0 BUS 0.021 2.2 0.012 -0.009 -42.857 RAIL 0.010 1.0 0 -0.010 TOTAL 0.975 100.0 0.956 -0.019 - 1.949

TABLE 4-8 PATRONAGE MODEL CALIBRATION SAN FRANCISCO - FRESNO

1970 Data Calibration Data PAX Percent Difference Percent (Millions) (Millions) (Millions) Difference

AUTO 1.013 83.6 1.030 0.017 1.678 AIR 0.098 8.1 0.098 0 0 BUS 0.077 6.4 0.031 -0.046 -59.740 RAIL 0.023 1.9 0 -0.023 TOTAL 1.211 100.0 1.159 -0.052 - 4.294

74 TABLE 4-9 PATRONAGE MODEL CALIBRATION SAN DIEGO - SACRAMENTO

1970 Data Calibration Data PAX Percent Difference Percent (Millions) (Millions) (Millions) Difference

AUTO 0.100 65.8 0.096 -0.004 - 4.000 AIR 0.045 29.6 0.045 0 0 BUS 0.007 4.6 0.008 0.001 14.286 RAIL 0 0 0 0 TOTAL 0.152 100.0 0.149 -0.003 - 1.974

75 a sizeable volume of passengers. This will permit an adequate level of CTOL flight frequencies at popular times to serve both connecting and O&D passen- gers. Tables 4-10 to 4-16 contain the results of the Phase II modal split procedure for the 319 city pairs studied, it should be noted, for example, that Table 4-10 contains the STOL/CTOL passenger allocation for each of the city pairs contained in the Northeast region. In addition, the percentage split between STOL and CTOL is also noted for each individual city pair. The overall STOL/CTOL passenger allocation for the Northeast region was 55.7 percent STOL and 44.3. percent CTOL. Table 4-11 contains the STOL/CTOL traffic split for the 26 city pairs comprising the California region. A total of eight city pairs was examined during the Phase I portion of the study. The overall traffic split for the California region was 51.5 percent STOL and 48.5 percent CTOL. In the Chicago region, different results were obtained largely because different study assumptions were being used at the time the market data was prepared. Under these study assumptions, designed to test the sensitivity of the modal split method, the modal split procedure was to assign the 1970 level of short haul CTOL traffic to the CTOL system and to assign all the traffic growth from 1970 to 1985 to STOL. This procedure, used only in case of Chicago, resulted in 66.5 percent of the traffic being assigned to STOL and 33.5 percent being assigned to CTOL. Table 4-12 contains the traffic split for each of the 61 city pairs making up the Chicago region. A total of 77 city pairs was examined in the Southeast region. Table 4-13 tabulates the traffic split data by city pair. It should be noted that 61 percent of the traffic is allocated to STOL and 39 percent is allocated to CTOL. This is a higher STOL traffic split, using the same modal

76 NORTHEAsHEGTON 7UR PASSENGERS 1985 STOL/CTOL MODAL SPLIT

CITY PAIR ORIGIN DESTINATION PASSENRERS (000) STOL (X) CTOL (%) ALB BOS 104 58.1 75 41.9 ALB BUF 125 56.5 96 43.5 ALB CLE 43 55.1 35 44.9 ALB DH 63 58.8 44 41.2 ALB NYC 105 35.3 192 64.7 ALB PHL 78 58.6 55 41.4 ALB PIT 42 55.2 34 44.8 ALB ROC 56 60.P, 36 39.2 ALB SYR 30 53.5 26 46.5 ALB WAS 105 57.0 79 63.0 BAL BDL 116 59.4 79 40.6 BAL BOS 196 52.8 175 47.2 BAL BUF 34 51.5 32 48.5 BAL CLE 76 50.3 75 49.7 BAL CVG 43 49.4 44 50.6 BAL DTT 102 53.1 90 46.9 BAL IND 33 52.3 30 47.7 BAL NYC 266 44.3 334 55.7 BAL ORF 78 59.0 54 41.0 BAL PHL 106 54.9 87 45.1 BAL PIT 126 53.3 110 46.7 BDL BUF 70 62.5 42 37.5 BDL CLE 131 61.2 83 38.8 BDL DH 152 62.8 90 37.2 BDL NYC 49 34.0 144 66.0 BDL PHL 157 62.8 93 37.2 BDL PIT 111 60.0 74 40.0 BDL ROC 55 61.7 34 38.3 BDL SYR 38 59.3 26 40.7 BDL WAS 234 60.6 152 39.4 BGR BOS 104 58.1 75 41.9 BGR NYC 48 57.8 35 42.2 BOS BTV 38 55.8 30 44.2 BOS BUF 174 56.1 136 43.9 BOS CLE 231 54.8 190 45.2 BOS HAR 51 58.6 36 41.4 BOS NYC 4094 59.2 2813 40.8 BOS ORF 124 64.5 67 35.5 BOS PHL 1200 70.2 507 29.8 BOS PIT 227 56.0 178 44.0 BOS PWM 38 45.2 46 54.8 BOS ROC 159 60.4 104 39.6 BOS SYR 153 55.2 124 44.8 BOS WAS 1751 71.4 699 28.6 BTV NYC 94 57.3 70 42.7 BUF NYC 544 44.2 684 55.8 BUF PHL 182 57.4 135 42.6 BUF PIT 26 25.7 75 74.3 BUF WAS ' 130 56.2 101 43.8 CLE NYC 688 45.1 835 54.9 CLE ORF 33 60.0 22 40.0 CLE PHL 266 56.2 207 43.8 CLE PVD 29 54.7 24 45.3 CLE ROC 55 58.5 39 41.5 CLE SYR 43 53.0 38 47.0 CLE WAS 237 55.3 191 44.7 CMH NYC 310 49.6 315 50.4 CMH PHL 124 57.1 93 42.9 CMH WAS 155 56.3 120 43.7 CVG NYC 261 43.3 341 56.7

77 TABLE 4-10 NORTHEAST REGION AIR PASSENGERS 1985 STOL/CTOL MODAL SPLIT

CITY PAIR ORIGIN DESTINATION PASSENGERS (000) STOL (%) CTOL CVG PHL • 97 54.5 81 45.5 CVG WAS 111 53.6 96 46.6 DAY NYC 189 46.0 222 54.0 DAY PHL 82 53.9 71 46.1 DAY WAS 120 53.6 104 46.4 DTT NYC 1001 48.2 1075 51.8 DTT ORF 46 63.9 26 36.1 DTT PHL 386 58.8 270 41.2 DTT SYR 62 56.4 48 43.6 DTT WAS 350 57.2 262 42.8 ERI NYC 36 41.9 50 58.1 ERI PHL 34 51.5 32 48.5 HAR NYC 75 50.3 74 49.7 HAR PIT 118 56.7 90 43.3 IND PHL 113 57.9 82 42.1 IND WAS 128 56.6 98 43.4 NYC ORF 258 55.6 206 44.4 NYC PHL 87 41.8 121 58.2 NYC PIT 874 50.7 851 49.3 NYC PVD 83 25.3 245 74.7 NYC PWM 42 38.5 67 61.5 NYC ROC 613 54.8 506 45.2 NYC SYR 409 48.7 431 51.3 NYC WAS 3182 58.1 2291 41.9 ORF PHL 141 64.4 78 35.6 ORF PIT 50 59.5 34 40.5 ORF PVD 45 63.4 26 36.6 ORF WAS 48 25.0 144 75.0 PHL PIT 536 56.9 406 43.1 PHL PVD 96 59.2 66 40.8 PHL ROC 113 60.4 74 39.6 PHL SYR 73 55.7 58 44.3 PHL WAS 124 42.6 167 57.4 PIT PVD 32 55.1 26 44.9 PIT ROC 46 58.9 . 32 41.1 PIT SYR 44 55.6 35 44.4 PIT WAS 233 56.1 182 43.9 PVD WAS 137 57.5 101 42.5 PWM WAS 27 50.9 26 49.1 ROC WAS 114 59.0 79 41.0 SYR WAS 90 55.2 73 44.8 SUMMARY (%) . 55.7 44.3

78 CALIFOWIA* RE^ilfe1 ilR PASSENGERS 1985 STOL/CTOL MODAL SPLIT

CITY PAIR ORIGIN DESGINATION PASSENGERS (000)

STOL (35) CTOL (X) DEN PHX 191 61.8 118 38.2 EKA SFO 91 57.6 67 42.4 FAT LAX 297 66.8 147 33.2 FAT SFO 230 63.5 132 36.5 LAS LAX 2177 70.7 901 29.3 LAS PHX 162 63.7 92 36.3 LAS RNO 179 64.6 98 35.4 LAS SAN 174 67.7 83 32.3 LAS SFO 287 51.9 265 48.1 LAX MRY 298 63.0 175 37.0 LAX PHX 791 58.0 571 42.0 LAX RNO 198 58.9 96 41.1 LAX SAN 992 44.1 1256 55.9 LAX SBA 65 60.7 42 39.3 LAX SFO 5713 45.3 6900 54.7 LAX SMF 627 43.7 808 56.3 LAX TUS 301 62.7 179 37.3 MRY SFO 46 43.0 61 57.0 PDX SFO 535 61.9 328 38.1 PHX SAN 163 60.1 108 39.9 RNO SFO 143 38.1 232 61.9 SAN SFO 639 44.4 800 55.6 SAN SMF 47 43.5 61 56.5 SAN TUS 64 64.6 35 35.4 SBA SFO 160 61.3 101 38.7 SFO SMF 90 44.1 114 55.9 SUMMARY (%) 51.5 48.5

79 4-12 CHICAGO REGION AIR PASSENGERS 1985 STOL/CTOL MODAL SPLIT

CITY PAIR ORIGIN DESTINATION PASSENGERS (000) STOL (%) ... CTOL (X) BUF CHI 209 66.9 103 33.1 BUF CLE 28 45.1 34 54.9 BUF DTT 78 51.6 73 48.4 CHI CLE 618 63.7 351 36.3 CHI CMH 324 67.3 157 32.7 CHI CVG 350 64.6 191 35.4 CHI DAY 219 64.6 120 35.4 CHI DSM 237 67.3 115 32.7 CHI DTT 1138 68.9 513 31.1 CHI EVV 111 67.2 54 32.8 CHI FWA 73 66.9 36 33.1 CHI GRR 55 44.7 68 55.3 CHI IND 359 66.7 179 33.3 CHI MKC 603 67.9 285 32.1 CHI MSN 113 70.6 47 , 29.4 CHI MSP 1362 72.5 515 27.5 CHI OMA 207 63.8 117 36.2 CHI PIA 99 68.7 45 31.3 CHI PIT 535 67.1 262 32.9 CHI ROC 165 69.9 71 30.1 CHI SPI 81 64.2 45 35.8 CHI STL 1118 72.5 423 27.5 CHI TOL 110 64.7 60 35.3 CLE CVG 58 44.2 73 55.8 CLE DAY 42 44.6 52 55.4 CLE DTT , 304 74.5 104 25.5 CLE PIT 47 48.4 50 51.6 CLE STL 176 70.1 75 29.9 CMH DTT 88 67.6 42 32.4 CMH PIT 25 39.6 38 60.4 CMH STL 68 70.1 29 29.9 CVG DTT 133 64.8 72 35.2 CVG PIT 45 52.3 41 47.7 CVG STL 121 68.7 55 31.3 DAY DTT 24 40.0 36 60.0 DAY PIT 62 65.2 33 34.8 DAY STL 64 68.0 30 32.0 DEN MKC 287 72.6 108 27.4 DAN OMA 139 70.9 57 29.1 DLM MSP 23 40.3 34 59.7 DSM MKC 47 55.2 38 44.8 DSM MSP 105 69.5 46 30.5 DSM STL 83 70.9 34 29.1 DTT GRR 35 64.8 19 35.3 DTT IND 96 51.8 89 48.2 DTT MKE 108 48.2 116 51.8 DTT MSP 235 70.1 100 29.9 DTT PIT 219 67.3 106 32.7 DTT ROC 114 70.8 47 29.2 DTT STL 304 71.8 119 28.2 FSD MSP 43 55.1 35 44.9 IND PIT 77 67.5 37 32.5 IND STL 48 22.5 165 77.5 MKE MSP 241 69.8 104 30.2 MKE STL 86 69.9 37 30.1 MKC STL 197 55.1 160 44.9 MSN MSP 76 71.6 30 28.4 MSP OMA 151 66.8 75 33.2 OMA STL 66 67.3. 32 32.7 PIT STL 115 69.6 50 30.4 STL TUL 69 70.4 29 29.6 SUMMARY (%) . . 66.5 33.5

80 SOUTHEAST REGION AIR PASSENGERS 1985 STOL/CTOL MODAL SPLIT

CITY PAIR ORIGIN DESTINATION PASSENGERS (000) STOL (X) CTOL (*) ATL BAL 152 63.5 87 36.5 ATL BHM 61 35.0 113 65.0 ATL BNA 200 65.3 106 34.7 ATL CAE 194 70.2 82 29.8 ATL CHI 509 65.4 269 34.6 ATL CHS 148 71.4 59 28.6 ATL CLE 154 64.7 84 35.3 ATL CLT 109 47.5 120 52.5 ATL CVG 112 64.0 63 36.0 ATL DAB 37 56.9 28 43.1 ATL DAY 60 62.5 36 37.5 ATL FLL 112 64.3 62 35.7 ATL GSO 148 67.8 70 32.2 ATL IND 86 64.7 47 35.3 ATL JAN 103 63.9 58 36.1 ATL JAX 241 60.0 160 40.0 ATL HCO 169 62.5 101 37.5 ATL MEM 281 67.3 136 32.7 ATL MGH 86 68.2 30 31.8 ATL MIA 483 61.0 308 39.0 ATL HOB 102 64.1 57 35.9 ATL MSY 254 65.2 135 34.8 ATL ORF 97 68.8 44 31.2 ATL PBI 89 69.5 39 30.5 ATL PIT 121 63.0 71 37.0 ATL °NS 79 72.4 30 27.6 ATL RDU 193 70.1 82 29.9 ATL RIC 85 63.9 48 36.1 ATL SAV 243 72.3 93 27.7 ATL SDF 150 64.9 81 35.1 ATL STL 162 66.6 81 33.4 ATL TLH 62 69.6 27 30.4 ATL TPA 275 62.3 166 37.7 ATL TRI 36 57.1 27 42.9 ATL TYS 51 47.2 57 52.8 ATL WAS 378 63.5 217 36.5 BHM MEM 53 62.3 32 37.7 BHM MSY 61 59.2 42 40.8 BNA CHI 141 58.2 101 41.8 BNA MEM 113 63.1 66 36.9 BNA WAS 89 57.8 65 42.2 CAE WAS 89 65.4 47 34.6 CHI CLT 75 54.8 62 45.2 CHI MEM 289 62.2 175 37.8 CHI SDF 235 56.3 182 43.7 CHS ORF 70 74.4 24 25.6 CHS WAS 94 66.7 47 33.3 CLE SDF 64 54.2 54 45.8 CLT NYC 291 50.8 281 49.2 CLT PHL 85 55.9 67 44.1 CLT WAS 85 55.2 69 44.8 CRW WAS 59 53.6 51 46.4 DTT SDF 148 57.3 110 42.7 FLL TPA 50 58.1 36 41.9 GSO NYC 292 58.6 206 41.4 GSO WAS 100 61.3 63 38.7 JAN MEM 56 63.6 32 36.4 JAX MIA 141 51.8 131 48.2 MCO MIA 57 39.3 88 60.7 MEM MKC , 67 61.5 42 38.5 MEM MSY 139 63.7 79 36.3 MEM STL 152 64.4 84 35.6 MIA TLH 120 63.1 70 36.9 MIA TPA 122 30.5 277 69.5 MSY TPA 71 60.2 47 39.8 NYC PHF 74 53.2 65 46.8 NYC RIC 150 48.5 159 51.5 NYC RDU 411 65.8 213 34.2 PBI TPA 50 64.1 28 35.9 PHL SOF 80 57.6 59 42.4 PIT SOF 50 56.1 39 43.9 RDU WAS 144 66.0 74 34.0 ROA WAS 57 56.4 44 43.6 SDF STL 90 60.4 59 39.6 SDF WAS 112 56.5 86 43.5 TLH TPA 58 64.4 32 35.6 TYS WAS 145 73.2 53 26.8 SUMMARY (%) ei.o 39.0

81 TABLE 4-14 SOUTHERN REGION AIR PASSENGERS 1985 STOL/CTOL MODAL SPLIT

CITY PAIR ORIGIN DESTINATION PASSENGERS (000) STOL (%) CTOL (%) ABI DAL 41 63.0 24 37.0 ABQ DAL 138 65.7 72 34.3 ABQ DEN 173 66.7 86 33.3 ABQ ELP 88 65.6 46 34.4 AMA DAL 130 60.1 86 39.9 AUS DAL 239 64.4 132 35.6 CRP DAL 125 62.5 75 37.5 CRP IAH 18 21.1 67 78.9 DAL ELP 172 63.7 98 36.3 DAL IAH 483 51.1 462 48.9 DAL ICT 73 61.3 46 38.7 DAL LBB 233 65.0 125 35.0 DAL LIT 117 61.5 73 38.5 DAL MAP 154 62.0 94 38.0 DAL MEM 168 64.3 93 35.7 DAL MKC 221 61.9 136 38.1 DAL MSY 307 62.7 182 37.3 DAL OKC 247 62.5 148 37.5 DAL SAT 346 62.7 197 36.3 DAL STL 234 63.4 135 36.6 DAL TUL 181 60.9 116 39.1 DEN ICT 95 63.3 55 36.7 DEN OKC 92 64.3 51 35.7 ELP SAT 59 63.4 34 36.6 IAH MAP 90 60.8 58 39.2 IAH MEM 93 64.1 52 35.9 IAH MSY 440 61.9 270 38.1 IAH OKC 104 61.5 65 38.5 IAH SAT 88 43.8 113 56.2 IAH SHV 61 61.6 38 38.4 IAH TUL 141 60.2 93 39.8 ICT MKC 13 19.1 55 80.9 JAN MSY 23 43.3 30 56.7 LIT STL 58 60.4 38 39.6 MKC TUL 19 30.2 44 69.8 MLU MSY 42 60.8 27 39.2 MSY SHV 109 61.2 69 38.8 SUMMARY (%) 60.2 39.8

82 TABLE 4-15 NORTHWEST REGION AIR PASSENGERS 1985 STOL/CTOL MODAL SPLIT

CITY PAIR ORIGIN DESTINATION PASSENGERS (000) STOL (%) CTOL («) BOI PDX 88 59.1 61 40.9 BOI SEA 77 57.0 58 43.0 BOI SFO 76 56.7 58 43.3 BOI SLC 60 56.1 47 43.9 EUG SFO 146 68.5 67 31.5 GEG PDX 128 62.1 78 37.9 GEG SEA 245 54.3 206 45.7 PDX RNO 79 60.8 51 39.2 PDX SEA 84 25.4 246 74.6 RNO SEA 83 60.1 55 39.9 SEA YKM 41 56.9 31 43.1

SUMMARY (%) 53.6 46.4

TABLE 4-16 HAWAII REGION AIR PASSENGERS 1985 STOL/CTOL MODAL SPLIT

CITY PAIR ORIGIN DESTINATION PASSENGERS (000) STOL (%) CTOL (%) HNL ITO 563 57.6 414 42.4 HNL KOA 220 57.4 163 42.6 HNL LIH 597 57.6 440 42.4 HNL MKK 96 57.8 70 42..2 HNL MUE 80 57.6 59 42..4 HNL OGG 518 57.5 382 42.,5 ITO OGG 32 58.1 23 41 .9 SUMMARY (%) 57.6 42.4

83 split procedure, than those obtained in the other representative regions. The reason for this difference is related to the fact that traffic growth rates in the Southeast region are higher than in most other areas of the United States. Table 4-14 contains the STOL/CTOL traffic split for the Southern region. This region is similar to the Southeast region in that air traffic is growing very rapidly. It, too, has a higher STOL traffic split than most of the other representative regions. In 1985, just over 60 percent of the air traffic is expected to be STOL potential. This would mean over five million passengers out of a total of nine million passengers. Eleven city pairs are included in the Northwest region. Table 4-15 indicates that the STOL/CTOL traffic split was 53.6 percent STOL and 46.4 percent GTOL. A total of just over two million air passengers are expected to travel over the eleven city pairs comprising the Northwest region in 1985. More than one million of these passengers are potential STOL passengers. Table 4-16 contains air traffic split data for the Hawaii region. This region consists of seven city pairs which are expected to carry 3.7 million air passengers in 1985. Over two million passengers or 57.6 percent of the total are expected to be STOL traffic potential by 1985. A summary of the STOL/CTOL 1985 traffic split by region is shown below. Representative Region Modal Split STOL (%) CTOL (%) Northeast 55.7 44.3 California 51.5 48.5 Chicago 66.5 33.5 Southeast 61.0 39.0

84 Representative Region (Cont'd) Modal Split STOL (%) CTOL (25) Southern 60.2 39.8 Northwest 53.6 46.4 Hawaii 57.6 42.4

In terms of passengers, the traffic split by region reveals that the Northeast and California regions together account for 59 percent of the total traffic in the seven regions. A summary of the 1985 STOL/CTOL passenger allocation by region follows.

Representative Region Passenger Allocation (Millions) STOL CTOL TOTAL Northeast 25.0 19.8 44.8 California 14.6 13.8 28.4 Chicago 12.4 6.2 18.6 Southeast 10.7 6.8 17.5 Southern 5.4 3.6 9.0 Northwest 1.1 1.0 2.1 Hawaii 2.1 1.6 3.7 TOTAL 71.3 52.8 124.1

It should be noted that the overall STOL/CTOL traffic split for the seven representative regions is 57.4 percent STOL and 42.6 percent CTOL. A total of 319 city pairs and 124.1 million passengers were contained in the seven Phase II representative regions. In terms of number of passengers, this represented a 87.5 percent sample of the 141.9 million passengers

85 expected to travel by 1985 between the 494 higher density city pairs dis- cussed in Section 1.0. This data was prepared in order to analyze STOL transportation systems in representative regions of the United States. In order to determine the national market for STOL aircraft and service it was also necessary to determine the overall STOL/CTOL traffic split for all city pairs meeting the criteria. Table 4-17 contains passenger mile/kilometer data as a function of stage length and passenger density category for the year 1985. It should be noted that this exhibit contains 1985 STOL market demand data for extended ranges out to 1199 statute miles (1930 km). For the basic 0-600 statute mile market (0-965 km), there is a STOL demand for 16.193 million passenger miles (26.060 pax-km). This represents 55.5 percent of the total 1985 market (see Table 1-3). Similar information is shown for the extended range categories of interest. As noted above, the 0-600 statute mile (965 km) range category contained 494 higher density city pairs. A total of 792 higher density city pairs met the selection criteria for inclusion in the extended range 0-1200 statute mile (1930 km) analysis.

86 f"«. 0i CO CO CO' cn LO LO> r^ cn rv co CM r^ LO -—

ooLOCorxoovOr— ooi— oo . co CO LO o S96-S08 cn vo r-. LO o CO CM

cn LO vo toflR-febQ cn oo «3- «d- «a- VO LO r— CM CO Cn Oi— LO CO 1^.— covococM r^co CO LO VO LO ^^ ^J LO^ C^ CO c^^l O^ o vo CO ^s_r O cu CM

cu CO r^ CM r--- 00 O £ CM »*• .— o CO vo r-. cn .— CM * I**- i— co CD cn cn LO cn <3- 0 vo CO r-. CO r~ t# vj — c*o V p^ ^- cn t~~ i—~ vo vo I— r— «d- vo VO co co o •r— co vo ^f vo co LO ^" 00 CM CM cn CM ^^- CO CM 1 1 00 o co VD LO ^, .c •M *-> 13 CU OO LZe-L9L C\J CO (~i O^ CO co CM cn vo cn o o LO ct OQ >- E C\J *«!j* ScnS 00 5 00 ^~ 0_ 1-1 I— O C\J ^™ CO r~~ C\J r— t— CM ^~ O ^~ ^j- Q ct: 1—1 i— CO r •z. •>-\- -r\ ~ CM CM *S. r- 00 -Z. ^ _ 2: i—i >—i LU ^ CO CO VO VO LO r cn CO UJ O Q Q CO O 0) 09L-0 LO cn vo >=3- cn LO o LO LO LO CM CM i— oo OO £^i— oo LU uj •£: "~ CO CM TUJ • r— tS 2: ^SSftSW&KSWSftS:^^ *3- ii ^> UJ -Z. , tttt-ttroi* or 2" uj *- <^- 00 VO O CU et O O OO

02: ^ n: «*- ^^ ^O O^Jcnooo l-*0 i — i — r^ CM LO ^. I— O OC I— O -« oo uj ci- 66trOOl7 i— co cn r~- cn cn cn cn LO LO O cn LO LO Q C; 2T CO (/I cn2 VO O oo 00 00 LU Z UJ E OJ oo co LO LO r~> CO CO CM CO •— CM VO CM vo LO LO OO LU _l O 1 V^D CM co ^« * co oo uj •— •-*

LO^ OOkDO^ cn^ r^ LO O O CM oo o •*J * 663-002 h-. VO O OJ OCO CO O^ LO CO oo' r*^ r**« co r~- c — •si- 5 LO CO o c r— CM CxJ LO VO CO LO r— CO r— r— LO CO LO CM O) r LO CO "~ ~ •— LO

cu LOr- Lf> CO GO r-r-LO VD r^ COOOCVJ CO LO co oo CO CD ro 66L-OOL 00 cn r^ co co oo LO cn r^ o •— ^- O CO VO CM cn 4-* CO 00 ^~ LO OO r^ ^^ ^J- ^J" CO LO **O CAj LO LO ^o oo CM i— oo i — r~» r— VO LO LO CM *~ r~

VO CM t— CO i— VO cn CO VO VD /" ^ /\ 66-0 CO CO ^ LO OO LO CO 00 C LO LO 1 — 1 — ' — 1 — VO LO ro i — i — S_ O^ O^ c F^ CU CU ^» >i O^ O^ O^ cn cn cn cn cn cn o^ o^ o^ > CT>4-> S- ^ cn cn cn cn cn cn cn o^ o^ o^ >>J= O >, S- O o o c~ »r- O ^""^ r**^ cn i^—^ r^-^ C ^M^ CO ^J- LO vo r^ co cn •— oo + -t-> r— O •>-> Oo) J2 O CU co O>O i i 1 1 1 i i i i i i 1 1 1 i— •r- O "i— 4->o «C O co c cu O O LO O O O o o o o o o o o o O ro CO oo " CO ro n vt CO CU +-> O LO r~ O LO Oo o o o o o o o o o C co O C CU o E 0 ro Q ro<— i— i— CM CO «=J- LO LO r>- co cn o o 0 0 CU CU O CU S- o 3 O 0- O oo O I CO Q 05 oo o co

87 CM CO Cn ^" CO i— CO cn VO CO 00 VO CM 00 nffil-OZ/I --^coocoo'«d-c6^cn r^ co en LO UCOL UJ.LL «=t.cncncncor-.vooLO co CD. cn en vo ro «— r-. co i-» «s- r-s r»- co co o CM co co tr>

i— LO r-. co no o fiQ/|-f)IQI L UL cncocoocMOOi*-.cncM«d-r r-I CM LO LO CD "-"- -"- o r^ cn CM CM «a- LO CM LO r— vo to co ro CM i— r-» o •— vo r-^ en CM CM •=!• CJ Ol ocn«j-«d-LOCOLOLor^coco CM CM vo vo o o CM CM i— cn o cn r-^ cn LO CM co CM CO i— CO O LO CO O CO •— CM IT) f- LO CM VO vo vo i — vococorOLocnr^vo cn ro oo to CM O LO

in - . c ftfefcl-fifi?!O0i— fOvocoLOr--o 10 ro oo a, ovvi oaci cnLOfocM^-oooo^o r*. CM un ro vocorocTtOr— co»a- o PO r». CM OO CO I cr> , LO .— oo r— o co cn . /mi /-iii co en co i— i— CM o en CM oo co vc >- Loc\.~LC\.\. vo i— r«- «* o CM o ua oo en oo oo oc CM LO OO CD cn o r— CM oo ro u-> «a co O I— i_ t/"> •—" «a: oi 10 co co to Oil — CJ+j •—> ^ - c o in oo co CM en o <£> ^3- 0 CL K- , \— o in to r— CM O O£ I—i ,_ CT> Lf) r— -— z: >- t— oo .,_ ro -o =t t— oo ^ ^

LU C_> Q Q „, cv- ooooooo oo o 4J|— OOUJLU^I 66 II ~00 L CM Lrt r— Ln«d-cnir)oocn ror^ <£> o O CMr~«*oo^J-CM «a-^i- oo en ro LD CM CM l£> — < o o co -

Cn Q. uj Q w com«d-O«d-r— rocnoO'*!^ rx to o> r— O _j •z. re ''^/-cnto DbUL~UUUi nr\r> LI ocacor— oo^d-rocMr^«3-r^ LO LO LO ro i— r— I— i—i «=C o_

CO UlJ o 666~006 CTlCMCS^J-OOCMr— LOCMi-^ r— |->I LO CM LO «t co cocncncMCM^i-^J-r— r— «d-cncn «^- ro r_ vo ro ro oo a. «=C .^- oo CM

OLOvooovoroLooo LO vo LO OQ o~j 668 "008 «5a-cooOLoenLOOLo en vo i — co C COi — CMt^sCMi — «i-00 CO CO CO

to ovo«3-cnLOCMcn co vo vo co 66^~00^ *3-<3-ocMcoooo CM cn cvjcn LO ro CM vooococMr^o«d- r^ oo oOi— CM en oo r— co -3- LO co «3- «*• ro LOLO en LO en •— LO ro CM CM

ococnoi^cococM CM en en cocnoocMvo^a-'3-vo O o vo en i^coi^-CMi— rocnr>. en ro ro cr> oo en o oo ro vo CM c ro en tO en cn , cncncncncncncncncncncncn - «d"cn«d"Cncncncncncncncncncncn cz> >, i- o o O c -i- o *— - i^cni — i — CMro«sj-Lovoi — oocni — CM+ o 4-> •> ioa)_> Lor^oLooooooooooo^L o wo ccuo EO ID Q (O — r— CM co ^- LO vo i — oocnooo a> a> o aj s- o 30 i— CMCO Q_i ro Q oro oro

88 5.0 PARAMETRIC ANALYSIS

A number of parametric analyses have been performed for the 23 representative city pairs comprising the three Phase I regions. These analyses have been made considering existing airports of all types and exist- ing airports plus special new . The studies were made for STOL operations in conjunction with existing travel modes such as auto, bus, rail, and CTOL. The specific Phase I parameters investigated for the three regions were fares and aircraft seating capacity. Three fare levels of 1.00, 1.25 and 1.50 times CTOL coach fares were used as specified in the Request for Proposal. The aircraft seating capacities used were 50, 100, 150 and 200 seats. The number of seats affects the STOL patronage because, as frequency of service is increased, aircraft size decreases in order to maintain a 60 percent load factor for a fixed passenger demand. In addition, several STOL airport alternatives within each city were investigated to determine the effect of different locations on STOL patronage. The STOL airport locations selected for each metropolitan area are shown in Table 5-1. In applying these parameters it was determined that there is a certain amount of interaction between them and a significant variation in their effect for each of three regions.

5.1 Fare Sensitivity

The most important parameter in Phase I for attracting patronage to STOL service was fares. However, a comparison of selected cities in the Northeast Region, California Region and Chicago Region show a substantial difference in the magnitude of the results. Fare changes in the California

89 TABLE 5-1 SELECTED AIRPORT LOCATIONS FOR PHASE I CITY PAIRS

Area Airports San Francisco Metropolitan Area San Francisco International Airport (SFO) Metropolitan Oakland International Airport (OAK) San Oose Municipal Airport (SJC) Crissy AAF (CSY) Metropolitan Oakland International Airport - North Field (OAK) San Carlos Airport (SQL) Concord, CA - Buchanan Field (CCR) Hayward Air Terminal (HWD) Los Angeles Metropolitan Area Los Angeles International Airport (LAX) Burbank, CA. - Hollywood Burbank Airport (BUR) Long Beach Airport (LGB) El Monte Airport (EMT) General Patton Field (General Services Administration Facility) Fresno Metropolitan Area Fresno Air Terminal (FAT) Fresno-Chandler Airport (FCH) San Diego Metropolitan Area San Diego International - Lindbergh Field (MYF) Sacramento Metropolitan Area Sacramento Metropolitan Airport (SMF) Sacramento Executive (SAC)

Boston Metropolitan Area Logan International Airport (BOS) Bedford, Mass. - L. G. Hanscom Field (BED) New York Metropolitan Area LaGuardia Airport (LGA) Teterboro Airport (TEB) Secaucus, New Jersey, Proposed Airport Site

90 TABLE 5-1 (Concluded) SELECTED AIRPORT LOCATIONS FOR PHASE I CITY PAIRS

Philadelphia Metropolitan Area Philadelphia International Airport (PHL) North Philadelphia Airport (PNE) 30th Street RR Depot, Proposed Airport Site Washington, D.C. Metropolitan Area Washington National Airport (DCA) Boiling Air Force Base (BOF) College Park Airport, College Park, MD (CGS) D.C. Union Station, Proposed Airport Site Chicago Metropolitan Area O'Hare International Airport (ORD) Merrill C. Meigs Field (CGX) Cleveland Metropolitan Area Cleveland Hopkins International Airport (CLE) Cleveland-Burke Lakefront Airport (BKL) Detroit Metropolitan Area Detroit Metropolitan - Wayne County Airport (DTW) Detroit City Airport (DET) Birmingham, Mich., Berz Airport (7D2) Indianapolis Metropolitan Area Indianapolis Weir Cook Airport (IND) Milwaukee Metropolitan Area General Mitchell Field (MKE) Minneapolis Metropolitan Area Minneapolis - St. Paul International Airport (MSP) St. Louis Metropolitan Area Lambert Field - St. Louis Airport (STL) Bi-State Parks Airport (CPS)

91 Region produced an approximately equal but opposite percentage change in STOL patronage (see Figure 5-1) while in the Northeast Region a fare change resulted in a percentage change in patronage twice that of the fare change (see Figure 5-2). The effect of fares on STOL patronage in the Chicago Region was in between that in the California and Northeast Regions as shown in Figure 5-3. Several reasons can be given for the variation in sensitivity to parametric fares between the regions. One of these is the present fare structure. Coach fares for the stage lengths investigated typically run about 11-12 cents per mile (7 cents per kilometer) for the Chicago and North- east regions while the California intrastate fares are about 5 cents per mile (3 cents per kilometer). When STOL fare multiples of CTOL fares are used in the California Region the absolute fare increase is small and the convenience of well located STOL airports can offset a substantial portion of this increase. Another factor affecting the parametric fare results is the ground capture for STOL. For most cities in the Chicago and California regions there are a number of existing airports which are more convenient than the present air carrier airports. In general, this is not the case in the North- east. If these existing airports are assumed to be used for STOL operations, the Douglas Patronage Model shows significant ground capture for STOL in the Chicago and California regions and very little in the Northeast. Therefore, the ground capture in these two regions reduces the effect of the higher fare parameters.

92 ID O> 3 o I/I c\i cr a.

O o

-o_ ot a. < c/) o L

LLJ S O I- o

CD

O £ r<-

93 ^ s

O iI S o—

LU DC D

UJ o

u. O

<

94 01 0> O i/i eg £ a.

> K O h" °- o<*2 Q£ < K- ~ UJ U.

a: in 00 i t iO) O O m ^^ |5 o^" i ° o 5

95 5.2 Aircraft Size

Aircraft seating capacity is an important parameter affecting patronage because it relates to frequency of service. As aircraft size increases, it is necessary to decrease frequency in order to maintain the same load factor. This reduction in frequency results in some decrease in patronage which in turn requires an additional cut in frequency. The Patronage Model used a maximum of eleven iterations to examine this tradeoff between frequency and aircraft size. The effect of aircraft size on STOL patronage is influenced by individual city pair characteristics such as magnitude of origin - destination demand and STOL airports considered. Figures 5-4 and 5-5 show the reduction in patronage in relation to aircraft size for two city pairs. The effect of aircraft size is slightly greater for Los Angeles - San Francisco than for Chicago - Detroit due to the number and location of STOL airports. Because of a larger 0 & D market between Los Angeles and San Francisco more STOLports were used in the analysis causing the traffic to be split between more airport pairs. The result is increased sensitivity to aircraft size. A summary of the effects, of the combined fare and aircraft size parameters are shown in Tables 5-2 through 5-4 for one city pair in each region. These twelve combinations were examined for 1980 and 1985 for eight city pairs in California, six in the Northeast and nine in the Chicago region resulting in 552 different analyses. An example of one set of the twelve combinations is shown in Appendix 11.7 for Chicago - Detroit with 1985 traffic. In addition to the fare and aircraft size parameters, several different STOL airport locations were analyzed resulting in more than 1000 analyses.

96 00 CM CM

$ O j O h i/l N IT 0.

O O C/> O < cr

< 210 c/> i C/> LU

O

en O

LU

97 CM Ol O> J O UI

CD < O

-J O

o > o o

UJ 00 to IOQ < in 00 . o

u.

I - !

O o < »- I- o o o UI X X o in o CM

o o o 00 o tu

x fcg tr ui < a. Q.

98 o j O

aCC.

LU LU < CO _JQ_ CM o < LJJ Q_ < Q£ LI O U) o LU OQC CO Z LU ^™ iii Q£ O o^- *~ "J< 00 o m Q. (/) ni O> 0 (/> O in O o O CNJ in

99 en j O V- 1/1 CO o o CM

UJ S Q£ o O > IT) < 2 H CO o < 2 Q.

UJ CQ O CO I- < "- < Z Ll_ _j LJ ill in < O oo QJ

LU O S5 CO QJ O O «O DO in O) < Q. O in oo O 3en

o in o o o CM in

100 101 5.3 STOL Airport Locations

Although STOL airport locations were not specifically selected for parametric analysis 1n Phase I, several conclusions could be made based on the output of the Patronage Model. Differences were observed between the regions when adding STOL airports. These differences could be attributed to the demographics of the representative regions. In the California region, due to the influence of Los Angeles and San Francisco, it is desirable from the passenger standpoint to have a number of conveniently located STOL airports. The air travelers are not concentrated in any one area except near the present CTOL airport where hotel availability distorts the true ground origin and destination of the business traveler. New STOL airports and hotels would cause a shift in the ground origin - destination of overnight travelers toward these locations. In the Northeast region there is a heavy concentration of air travelers in the central business district (CBD) of the cities examined. These cities also have existing airports which for the most part are more convenient to the CBD than airports which would be used for STOL operations. This results in a passenger preference for CTOL operating from the hub airport rather than a STOL system using other airports. This is also the area, however, with the greatest percentage of congested airports and where a limitation on CTOL flights is necessary. The Chicago Region in general has air travelers concentrated near the CBD as well as airports capable of handling STOL operations. In this situation a STOL short haul system becomes the most desirable. In fact today in the Cleveland - Detroit market over 40 percent of the origin - destination air travelers use the commuter service between Burke Lakefront Airport and Detroit City Airport.

102 5.4 Market Demand

The parametric studies for each city pair were analyzed using expected 1980 and 1985 origin-destination traffic levels. The Patronage Model Indicated that some city pairs could have a viable STOL operation in 1985 but not 1n 1980. Although there 1s a variation between city pairs, the minimum origin - destination traffic required in order to support STOL operations in competition with CTOL was about 275,000 annual passengers. For city pairs with greater traffic volume frequencies could be increased or in a few cases additional STOL airports could be used for more convenient service. In actual practice, the parameters investigated are not independent. If fares are based on costs, they would be lower with larger aircraft. The lower fare would stimulate the market while the larger aircraft with less frequencies would have a negative effect on traffic. Figure 5-6 shows the effect the combined parameters on aircraft requirements for the Los Angeles- San Francisco metropolitan areas. The passenger demand for STOL service was converted to aircraft requirements based on block time, 60 percent load factor and 2500 hours a year utilization. STOL ground travel capture factors from the auto, rail and bus modes were developed from the city pairs studied in Phase I. For example, parametric studies for the year 1985 in the Chicago-Detroit market reveal the following facts. A 200 seat STOL aircraft operating in competition with a 200 seat advanced CTOL aircraft not only captured the majority of the air market but also captured 17 percent of the traffic previously utilizing the ground modes. Ground capture has been estimated for this city pair for STOL fares ranging from 90 percent of CTOL fares to 130 percent of CTOL fares. Table 5-5 details these results.

103 1C0O (71 O j O

GC O.

(O ^ < o UaJ: a<.

< o

O 00

00 co

CJ < UJ - £ S 0° U. LU O < 00 LU I CO UJ UJ O < S5 < 3 CO

5 2 log z <

104 TABLE 5-5 CHICAGO-DETROIT PARAMETRIC MARKET STUDIES - 1985 (MEIGS - BERZ & DETROIT CITY STOL AIRPORTS)

STOL Ground Capture Ground Capture Fares From All Modes From All Modes (Ratio of CTOL (100 Seat A/C) (200 Seat A/C)

90 23% 22% 92 22% 21% 94 21% 20% 96 20% 19% 98 . 19% 18% 100 18% 17% 102 17% 16% 104 16% 15% 106 15% 13% 108 14% 12% 110 12% 11% 112 11% - 10% 114 10% 9% 116 10% 9% 118 9% 8% 120 9% 7% 122 8% 7% 124 7% 6% 126 7% 6% 128 6% 5% 130 6% 3%

Note: Measure impact of varying STOL fare upon ground capture.

105 6.0 NATIONAL DEMAND FOR STOL SERVICE

The national demand for STOL service is predicated upon the fact that this service offers time and place convenience to the short haul 0 & D passenger. A STOL system is intended to provide additional passenger convenience for a relatively modest increase in fares over, for example, a new competitive CTOL short haul aircraft designed to meet the more stringent noise requirements expected to exist in the next decade. STOL service is primarily designed to appeal to 0 & D passengers traveling less than GOO statute miles (966 Km). Where STOL airports are located close to the ground origins and destinations of surface passengers, the STOL service is expected to capture travelers pre- viously using the surface travel modes.

6.1 Passenger Convenience

One of the primary advantages of STOL service is passenger convenience. STOL airports can be located near the ground origins and destinations of short haul intercity travelers currently using both the air and the surface modes. There has been an unabated trend to the suburbs in most metropolitan regions of the United States and this has led to the development of a satellite system of airports in many areas. The California Corridor is an example of this trend.

6.1.1 Satellite Airports. - Satellite airports are now in use both in the Los Angeles and the San Francisco metropolitan areas. In fact, most of the growth in this market over the past few years has occurred between the satellite airport pairs. The trend toward the use of satellite airports has also occurred in Miami-Fort Lauderdale, Houston, Long Island, New York City and Chicago.

107 6.1.2 Value of Time. - The use of disbursed suburban airports for STOL service benefits the passenger not only from a geographical convenience standpoint but also through real time savings. Time has a dollar value to business and non- business travelers alike. This is usually measured as a fdnction of a person's annual income expressed in hourly terms. The value of transit time used in the Douglas Patronage Model was $7 per hour. This sum is equivalent to the hourly income of the average air passenger. A different value of time was used in certain specific applications. For example, empirical investigations have led to the conclusion that air passengers place a higher value on delay time. In view of this fact, the value of delay time was determined to be

$9.35 per hour. These value of time factors were, of course, used as inputs to the Douglas Patronage Model.

Appendix 11.7 contains a parametric analysis of the Chicago-Detroit market for the year 1985. The value of time figures discussed above were used in this analysis. This appendix also contains the values used in estimating out-of-pocket costs such as parking and baggage handling.

6.2 Level of Competition STOL service must charge fares which are comparable to those of the competitive CTOL system. It should be specified that a competitive CTOL system includes an Advanced CTOL Aircraft designed for the short to medium haul and meeting more stringent noise criteria expected to be in force in the next decade. Cost generated fares for typical short haul city pairs have been calcu- lated for both the baseline STOL aircraft and an advanced short haul CTOL air- craft. The results demonstrate that the proposed STOL service could charge fares competitive with those of the CTOL system. This is especially true con sidering that STOL service will offer the passenger savings in ground travel

108 time and expense.

It should be pointed out that the STOL service must offer competitive flight frequencies with the CTOL service. In fact, markedly higher STOL fares would have to be offset by higher STOL flight frequencies.

This is also important if the STOL service is to capture traffic from the surface modes. Adequate flight frequency and convenient location are the two factors which govern possible STOL ground capture. When STOL airports are conveniently located, as in the case of the Chicago-Detroit city pair, substantial ground capture results.

109 7.0 NATIONAL DEMAND FOR STOL AIRCRAFT

Prior to determining the national demand for STOL service and related aircraft, it was necessary to prepare a traffic forecast, select city pairs, and derive a modal split procedure. These intermediate steps have been taken and it is now possible to determine the domestic market for STOL aircraft.

Stage lengths of from zero to 600 statute miles (966 KM) were selected for purposes of calculating the baseline demand for STOL aircraft. This was done because the data output from existing computer programs is in terms of 100 statute mile (160 KM) increments. This was as close as it was possible to come to the 575 statute mile (925 KM) range used in the balance of this study.

During the course of the study, a target load factor of 60 percent was used. This load factor was used to convert forecast passenger miles into seat miles. The STOL 1985 market demand was calculated using the modal split procedure described in Section 4.0. Table 4-17 contains a forecast of STOL 1985 market demand. It includes the 0-600 statute mile (966 KM) range category.

The STOL passenger mile demand at this range is 16.193 billion (26.060 billion passenger KM). At a 60 percent load factor this converts to 26.988 billion seat miles (43.433 billion seat KM).

The seat mile/kilometer productivity of the selected STOL aircraft is calculated below. Seats Yearly Utilization Block Speed Annual Productivity (Millions) (Hours) MPH KPH Seat Mi 1es Seat Ki1ometers

150 2500 300 483 112.5 181.1

Using these aircraft productivity values, it is possible to estimate the

111 domestic market for STOL aircraft. When the 1985 seat mile/kilometer demand is divided by the annual aircraft productivity an estimate of the U.S. domestic market for STOL aircraft is provided. This calculation indicates that there is a potential base market for 240 STOL aircraft in 1985.

It will be noted that the STOL passenger mile demand identified in Table 4-17 is composed of city pairs with an annual origin-destination passenger density of 300,000 or above. This volume of passenger travel was considered the minimum necessary to consider a dual STOL/CTOL air transport- ation system. City pairs with an annual traffic volume of less than 300,000 origin-destination passengers are potential candidates for dual STOL/CTOL service when traffic growth brings them to this point.

An estimate of the U.S. domestic market for the baseline STOL aircraft was also made for the year 1990. The traffic growth rates used are consistent with those used in the official annual Douglas publication, "Passenger Air Transport Market." Accordingly, in 1990, there is a demand for 320 STOL aircraft.

It was a requirement of this study to investigate the effects of designing the aircraft to fly extended ranges beyond the design range. The impact of this provision upon the market for the baseline STOL aircraft was accordingly ascertained for range categories up to 1200 statute miles (1931 km), In each extended range market study the basic modal split procedure described in Section 4.0 was used. These estimates are shown below.

112 U.S. CIVIL MARKET FOR 150 PASSENGER STOL AIRCRAFT 1985 & 1990

YEAR STARE SEGMENT s rrn 0-600 0-900 0-1200 km 0-966 0-1449 0-1931

1985 240 375 535 1990 320 500 715

It should be pointed out that the market demand for STOL aircraft increases over 50 percent when the stage segments of interest are expanded out to 900 statute miles (1449 km). When stage segments up to 1200 statute miles (1931 km) are included, the baseline STOL market more than doubles.

There was also a need to examine the sensitivity.of the baseline market to different modal split assumptions. A high estimate was prepared for both 1985 and 1990 for the three range categories of interest by allocating all short haul market growth after 1970 to the STOL system. The CTOL system was held to its 1970 level. Similarly, a low STOL market estimate was prepared by assuming that the 1970 base level of CTOL short haul traffic would expand by four percent per annum. The residual level of forecast growth was assigned to the STOL system. These estimates are shown in Table 7-1

113 o •— o co LO LO in o m o CM •sf CO 00 r— r— IO in CO cr> in I I O O

cr> o o **• o o o o *d- t~-s o VD cr> •— c\j LO CO i i o o o I/O «=C o: co LU O O O O LO O O Lf> O> <* S. CM CM CO C\J CM i— •* CO Cvl Q_ r— i—• O o25 i in r^ •— in oo CD o; cr> 1C Lul i— O i— C5 OO 3: I-H < O i-i «C O 3T CO —I a: CQ _J i^ cr: a: o

o

oo

LO o CO

114 8.0 FOREIGN AND MILITARY MARKETS

In order to determine potential STOL aircraft production levels, it is necessary, not only to define the national demand for STOL service, but also to estimate foreign markets and possible military sales. Selection of city pairs to determine the foreign market for STOL aircraft followed the approach used for U.S. city pairs to the extent possible considering data availability. Possible U.S. and foreign military sales of STOL vehicles were also estimated. Potential commonality between military programs and the commercial program was then estimated and longer production runs were used for common components and assemblies when computing commercial STOL aircraft unit costs.

8.1 Foreign Civil Markets

The procedure for estimating the non-U.S. market for STOL aircraft was intended to be as close as possible to that used for the United States. In general, differences can be traced to greater data availability in the United States. For example, the U.S. Civil Aeronautics Board publishes detailed origin - destination passengers statistics that are not available elsewhere in the world. However, where possible, as in the case of the modal or traffic split analysis, a similar analytical approach was adopted.

8.1.1 Selection of City Pairs. - Detailed passenger traffic is not avail- able for all foreign city pairs although seats flown between any city pair can be determined. Therefore, seats flown were used rather than passengers to estimate the traffic density. For U.S. city pairs 300,000 annual passengers were considered necessary in 1985 to offer adequate flight frequencies. The city pairs meeting this criterion averaged approximately 100,000 annual

115 passengers in 1970. Ninety-six U.S. city pairs with a 1970 origin-destination passenger density of 100,000 or more were identified between 0 and 600 statute miles (0-966 km). Interrogation of the Official Airline Guide (OAG) computer tapes established the equivalent annual volume of seat miles flown between each of these city pairs. Conversion of the OAG seat mile data into passenger miles at a 55 percent load factor (the U.S. average) allowed comparison with origin-destination passenger mile data. It was determined that 54 percent of the total traffic on these city pairs was origin-destination traffic. This ratio of origin-destination to total traffic was used to establish one of the criteria for the selection of non-U.S. city pairs. Non-U.S. routes require an annual base seat volume of 279,000 or 764 seats per day at 0-600 statute miles (0-966 km). For extended ranges, a criteria of 275,000 annual seats or 753 seats per day was used.

Using an existing computer program, the foreign city pairs with a potential for STOL service were determined by selecting from the OAG tapes all city pairs with one or both cities outside the U.S. and with respectively 764 and 753 non-stop seats per day for the base and extended range case.

This was done for range increments from 0-600 statute miles (0-966 km), 0-900 statute miles (0-1449 km) and, 0-1200 statute miles (0-1931 km). The number of city pairs which resulted from this procedure are, respectively 200, 225, and 235. These city pairs are contained in Appendix 11.8.

8.1.2 Competing Travel Modes. - Transport development in the twentieth century is becoming dominated by the automobile. In most countries of the world, it is the roads that carry most of the passenger traffic and growth is expected to continue at a rapid rate. The attraction of door-to-door service

116 at effectively infinite frequency and at a competitive cost is, of course, the main reason behind the dominance of automobile transport.

In the United States, automobile transport has become highly developed and its growth has become stabilized at an average rate about equal to the combined growth rates of the population and the gross national product. About 88 percent of all U.S. person-trips, currently defined as overnight or in excess of 100 miles (161 km), are made by auto. Likewise, 88 percent of Intercity passenger miles are accounted for by the auto. In the short haul, up to 500 statute miles (805 km), better than 92 percent of O.S. person trips are made by auto.

In most other countries of the world, automobile transport is not yet as highly developed as in the U.S. and its current growth is, therefore, more dynamic. The dynamic growth of road transport makes it highly competitive with the public modes of transport, especially in the short haul. Japan is a good example. The expansion of superhighways and automobile ownersfiip in Japan during the late 1960's significantly raised the automobile's share of total intercity passenger transport, most of which is under 500 statute miles (805 km). See Table 8-1.

Road transportation in Europe is more highly developed than in Japan, although not as highly developed as in the U.S. Road transport in Great Britain might be considered as representative of Europe. In Great Britain, which has a well developed road transport system, 50 percent of the families currently own one or more cars versus 80 percent in the U.S. In Great Britain It 1s forecast that by the mld-1980's theee will be more than half again as many vehicles as now and trend extrapolation suggests that demand

117 CT> V0| ro o VO e\j co • o CM 00 00 eSn i

CD u cu

to <4- -O 3 <* ro r— c vo i. 3 c: i i— Cn *± LO •»-> O •i- C O> O cu u

O ro

CL. ro ^f CO r>- r— O 4-> • • • LU VO CM i^x-^ en co sc C£ CO O o O o o OJ • ct c • >,-l-> X VO* LO OJ p^ 3 s: o c 03 ^co CM co 1— ^~ E o: ^ 0- ^- r»» CM 1— O E rt n LU r— *\ * O CD -r- LO co co CM CO CJ 2: s: CU LU T3 o> I— CO E O E 1 00 •!- E •i — CO «=£ -a CL. co ^. 3 cu v^- ^— ^— >- "ro rO (J _Q 1— +-> r— i- X (O t~. O (Q LO •* o O CU L_ Oi_ _i_ * •— £_ r i +^ r_ I o co CD CD O n C£ J- 1— LO ^co r"* 0 M- • LU CU a> h- cn &« +-> • 2: E ro •r— C i — i CU ^± .C O 4-> M CO VO • ^B 0 co cn >, +j t—i ro O o o OJ CM 01 4-> ro • • • h- 0- • +J ^ tU 4^ OO — - X LO 00 cn in r^ ro t. LU ro LO r»- r-^ ^— +J S- o g Q- O co co CO CO 0) u M a. *• ^o i/) Q LO CO cn co E CU r^o J L> •=£ iJ CO • •i— CO 1- fe si 0) l(_ 1— O ^ — "~O g" 0 i- O -4-» CU E >. ^_ 3 a. C ro CO ,__ o r_ o • • 0. 0 t-~ i/) O o !— 00 o 0 ra 1— VO CO o CU >4- E r— ro +J i. •r- 3 S« o; *£*y. CT> jc: co LO ^-» 3 CU CTv ro s_ CO t— E E CU CU o o C3 '— i — 0 O -E c •r~ -4-* rO X CO CO LO ,_! CM 4-> -!-> 0 Q. to co r~ ^_ VO ro ro ra O- cn o LO •z. +-> O p^ *t «*M S- -4-> CO CM VO cu O CO Q.-0 • • cu CO CU CU E E -i- tj p— ro ro i — t. OJ ^_ ro Q. i- 0- 3 -o .p.. cn t- i- -(-> ro 1— 0. o o ro 3 ro •r" 0 ro co C£ ca CJ

118 will not be saturated until there is between one half and one car per person, a situation which will not be reached before the end of the century at the earliest. And despite gloomy predictions about the intra-urban situation, British road experts believe that road improvement programs aimed at doubling capacity by the late 1980's will allow higher speeds and less congestion that at present on inter-urban road journeys.

In Europe road transport is more competitive than air transport for business travel out to a distance of about 200 statute miles (322 km). See Figure 8-1. For pleasure travel, road transport would be more competitive for longer distances because of personal travel's lower priority on time and greater priority on costs.

Generally speaking, automobile transport in Europe and Japan still has years of dynamic growth ahead and there is no question but that it is competitive with the public modes of transport in the short haul. And in countries less developed that Europe and Japan, future growth rates of auto- mobile transport are potentially greater even than those currently being experienced in Europe and Japan.

In recent years, in some areas of the world, rail transport has become a significant competitor of short haul air transport. In Japan and Europe railways are having a significant effect on short-haul aviation which may not be checked by air technology until the 1980*s.

The 250 statute miles (402 km) between Tokyo and Osaka is Japan's largest domestic air traffic route. In 1964 airlines transported 1.5 million passengers over the Tokyo-Osaka route, representing 28 percent of the total number of passengers carried by rail and air. During the fiscal year

119 m f-

o o

o o

o cr o H

o o CM

O) U. Q. o z: o oe

120 1964 to 1966 period high speed rail service, the renowned new Tokaldo Line, was Introduced and rail passenger volume increased by 152 percent while air passenger volume decreased 43 percent. Air's share of the total air and rail market shrank to a low of 8.0 percent in 1966. To date, the airlines have recovered only half of their former (1964) share of the total common carrier traffic although air passenger traffic has experienced a healthy growth (Table 8-2).

In Europe high speed trains and the English Channel Tunnel (proposed for completion by 1980) are expected to restrict the growth of conventional short haul aviation during the late seventies and into the early eighties.

In Great Britain, the Advanced Passenger Train (A.P.T.), capable of speeds up to and exceeding 155 miles (249 km) per hour is expected to be competing with all trunk air routes by the early 1980's. On the routes within the British Isles, the time saved by air as compared to rail in 1980 is expected to be about two-thirds of the current savings. This means that air should come close to maintaining its market share. However, on the routes to Europe the air time savings might be one third of the current savings, which has serious implications for the future of conventional short-haul air transport. The following shifts in air's share of various routes between 1971 and 1980 resulting from high speed rail advances and the Channel Tunnel are estimated:

121 Table 8-2

TOKYO-OSAKA CORRIDOR Total Passenger Market Air and Rail

Fiscal % Year Rai 1 % Air % Air/ Rail+Ai r % (1) (000) (000) Total (000) Actual __ __ 1963 2,801 «._ 1 ,428 33.8 4,229 1964 3,978 42.0 1 ,520 6.4 27.6 5,498 30.0 New Tokaido Line Oct. 1, 1964 1965 7,233 81.8 1 ,248 -17.9 14.7 8,481 54.3 1966 10,032 38.7 872 -30. 1 8.0 10,904 28.6 Full Effect of Rail on Air 1967 12 ,831 27.9 1 ,310 50.2 9.3 14 ,141 29.7 Rail in Full Capacity Restores Air Volume 1968 15 ,153 18.1 1 ,343 2.5 8.1 16 ,496 16.6 1969 16 ,774 10.7 1 ,875 39.6 10.1 18,649 13.1 Pre-Osaka Fair Preparation Rail Capacity Almost Doubled Estimated

1970 19 ,793 18.0 2,862 52.6 12.6 22 ,655 21.5 Osaka Fair (Expo 70) 1971 21 ,970 11.0 3,311 15.7 13.1 25 ,281 11.6 1972 23 ,728 8.0 3,831 15.7 13.9 27,559 9.0 1973 25 ,152 6.0 4,433 15.7 15.0 29,585 7.4 1974 26 ,158 4.0 5,129 15.7 16.4 31 ,287 5.8 1975 26 ,733 2.2 5,898 15.0 18.1 32 ,631 4.3 1976 27 ,215 1.8 6,754 14.5 19.9 33,969 4.1 1977 27 ,487 1.0 7,699 14.0 21.9 35 ,186 3.6 1978 27 ,762 1.0 8,738 13.5 23.9 36 ,500 3.7 1979 29 ,500 6.3 8,825 1.0 23.0 38,325 5.0 Rail Capacity Increased, Jan. 1, 1979 1980 30,944 4.9 8,914 1.0 22.4 39,858 4.0

Source: Douglas Compiled from Data of Japanese Ministry of Transportation.

122 Air Percentage of the Market

1971 1980

London to Newcastle 34% 27 - 30%

Manchester 14 13-14

Glasgow 60 38 - 43

Dublin 99 90 - 94

Paris 73 17-19

Brussels 60 17-19

Amsterdam 85 38 - 43

Dusseldorf 99 38 - 43

Hamburg 100 84 - 89

Zurich 100 72 - 79

Train technology advances on the Continent are expected to follow closely behind those in Great Britain so that the above implications should apply to the Continent as well. But as noted above, the primary threat to short haul air comes from high speed trains in conjunction with the Channel

Tunnel which will dramatically cut train times between Great Britain and the Continent. Intra-British Isle and intra-Europe rail time savings are not expected to have near the impact on air's share of the market as the rail time savings between the British Isles and Europe.

Despite the competitiveness of road transport and the threat of high speed trains in Europe and Japan, short-haul air transport is expected to maintain good growth. Despite heavy competition from ground modes on some major trunk routes, short-haul air transportation is dispersing. Where,

123 for example, air traffic between Tokyo and Osaka was 58 percent of total Japanese domestic air traffic in 1960, it is only an estimated 12 percent today. Moreover, within six months after the Tokaido Line opened it was operating at 100 percent capacity at peak hours and it is expected to be growth limited by 1974. Air traffic experienced a rapid recovery beginning in 1967 and it is expected to grow vigorously during most of the seventies until anticipated rail capacity increases late in the seventies at which time there may again be a temporary slowing of air traffic growth.

Despite continuing improvement of European rail over the last decade intra-European air traffic has grown at a healthy average annual rate of 12 to 13 percent per annum. Except for the cross channel routes, rail time savings should not dramatically affect air's share of the intercity market on the continent, just as it is not expected to dramatically affect air's share of the intercity market within the British Isles.

Although rail might restrict short haul air travel to smaller growth rates in Japan and Europe during the late 1970s and early 1980s, it is the Douglas position that the 1980s may see air overcome these difficulties with new environmentally acceptable forms of short haul aviation allowing shorter journey times while the railways face rising costs and congestion.

8.1.3 Modal Split Analysis. - The annual Douglas "Passenger Air Transport Market" publication projects a non-U.S. traffic growth rate of 9.6 percent between 1971 and 1985. A literature survey and a review of Douglas experience indicates that air and ground congestion is not projected to be as severe in most areas of the world as it is in the U.S. For this reason, the 1971 level of passenger traffic for the range categories of interest was

124 assigned to CTOL and allowed to expand at a rate of 4 percent per annum. The remainder of the growth or 5.6 percent per annum was assigned to STOL. A similar procedure was followed to estimate the non-U.S. STOL aircraft market for the year 1990. In this instance, the forecast traffic growth rate between 1971 and 1990 was 9.2 percent. After allocating 4 percentage points to provide for continued CTOL growth, the remaining 5.2 percent was assigned to STOL.

8.1.4 Non-U.S. STOL Civil Market. - The estimated foreign civil market for 150 passenger STOL aircraft as a function of stage segment is shown below.

NON-U.S. CIVIL MARKET FOR 150 PASSENGER STOL AIRCRAFT 1985 and 1990

YEAR STAGE SEGMENT

st ml 0-600 0-900 0-1200

km 0-966 0-1449 0-1931

1985 320 415 475

1990 545 710 810

It should be noted that these figures represent the base case. Sensitivity variations from this base case have been developed to depict the upper and lower market demand boundaries.

The upper or high STOL market demand boundary was developed by holding assumed CTOL growth to a rate of two percent per annum as opposed to four percent per annum in the base case. The remainder of the growth, in the case of the 1985 forecast, or 7.6 percent was assigned to STOL. A lower STOL market demand boundary was created by postulating a CTOL growth rate of six

125 percent per annum. As before, the remainder of the growth was allocated to STOL. Table 8-3 shows the high, base and low cases for the years 1985 and 1990. 8.2 Military Markets It has already been pointed out that a separate study has been con- ducted to determine the areas of commonality between civil and military STOL aircraft. Those portions of the two aircraft which were determined to be common were identified and given the benefit of the cost reductions normally associated with a higher production run. Military sales estimates have been prepared for both the United States and for foreign countries.

8.2.1 U.S. Military Market. - The domestic military market may account for 300 STOL transports between 1980 and mid-1985. Douglas studies indicate that an additional 168 STOL transports may be delivered between 1985 and the year 2000, for a total of 468 units. Estimated deliveries for each 5-year period between 1980 and 2000 are shown in Table 8-4. The first column in this table includes six initial production deliveries in the year 1980. 8.2.2 Foreign Military Market. - Douglas also examined the current and projected inventories of over 50 foreign nations which now have C-130 or other airlift aircraft and estimated potential STOL transport sales. An analysis of the past procurement policies of these foreign nations, and the age and compos- ition of their current and projected 1980 aircraft fleets, indicated: 1. Which foreign countries have been U.S. customers for airlift aircraft and which foreign countries have previously purchased European aircraft (such as the consortium, France and Germany, produced C-160 Transall);

126 O r- O CO in in o LD o o e\j

o co o: UJ o 0 5 o ^f in in O o o in LiJ CO CTi ^_ 0 r_ O in o CO 1 1 in CO 00 r|*—^ LO CO O O o ^^ < O^ 0- O1 O "~ LO O

CO o in o vo evj co in ^r cr> i i ro ro cvj vo in PO IB o o a: u_

Of. I—I < ts co 3 HI «a: o CJ CQ or CD -J

• CO

in -

127 to en CM 00 en o CM CM LO * en

o o o «*• o o ^f CM CM r— ^o^o en CM Q 1 I— ^~ CM O

LO en vr> oo en oo ^^ i Cn 00 f^ CM ^™ ^^ CM en >- CQ oo LU o ? en ^* oo o oo *«o CM LO oo en f^ Di CO CM

§ 5

LO CO C£ LO LO o LO CO o o 1 1— r— LO CL. oo CM CM _LUl 00 00 CQ ro oLU LU

00

oo

in CD

£= oo -2- (O C CD CU (/) • CT> 1 — 1 a. cu oo •!- LU O •— • CD f>* i- (0 => S- 0 3 00 . O LU 1 i | ^^ LL_ £ fl3 a •— D C i— 00 ^g^ ro T- O fO LU -4-> S- -t-> O • C O ••- H- ^^ oo ^— CO to "O 1 00 "Z. 4-> C (O -Q "~^ CJ3 O O S- 3 Q t—i Q- O h- OO LU _J 1 LL1 I J1 r^ CtL 1—1 h- CZ) "Z. CD U_ 0 0 13 I—

128 2. Which countries have traditionally purchased new aircraft (sometimes early in the production cycle, as 1n the case of Australia, and sometimes in rather small numbers, as in the case of the smaller oil producing nations); 3. Which countries because of financial circumstances will be likely to procure new C-130's now and defer the purchase of a military STOL transport until after 1995; and 4. Which countries are likely to have only military assistance program used aircraft in their inventories.

The results of this examination of the timing and magnitude of the foreign military market for the military STOL transport are presented in the upper half of Table 8-4. Potential European consortium sales are indicated separately inasmuch as it is not likely that this market would be available for the STOL transport if the Europeans ultimately produce a consortium aircraft. While it is difficult to estimate the total number of C-130 sales which were lost to foreign produced aircraft, 169 potential C-130 sales were lost to the Transall C-160 alone between 1967 and 1972. The C-160 is essentially a two-engine C-130 produced by the Transall consortium.

As summarized in Table 8-4, 528 U.S. and foreign military STOL sales may be anticipated by 1990 without the advent of a European competitive aircraft. With European competition, this number would drop to 399 aircraft. Over the entire 20-year time span of this estimate, 979 STOL transports may be delivered with no European competition versus only 730 if a European aircraft materializes.

129 In light of political and economic uncertainties, a gross estimate of the sensitivity of these market estimates is plus or minus 50 and 100 aircraft by 1990, with and without European competition, respectively, and plus or minus 100 and 200 aircraft on the same basis by the year 2000.

130 9.0 CONCLUSIONS

o There is a United States civil market for 150 passenger STOL aircraft operating between 0 and 600 statute miles (0-966 km),

When city pairs from 0-900 statute miles (1449 km) and from

0-1200 statute miles (1931 km) are considered, this market could more than double. Although a detailed systems analysis of these city pairs was not made, it is important for short haul aircraft to have range flexibility. A high and a low market is shown in the table below.

U.S. CIVIL MARKET FOR 150 PASSENGER STOL AIRCRAFT 1985 & 1990

YEAR STAGE SEGMENT s mi 0-600 0-900 0-1200 km 0-966 0-1449 0-1931

1985 HIGH 290 445 645 BASE 240 375 535 LOW 175 270 385

1990 HIGH 420 645 940 BASE 320 500 715 LOW 235 360 560

o The foreign market is growing faster than the U.S. market.

By the 1985-1990 time period, the foreign market for STOL aircraft will be markedly higher than the U.S. market. High and low market estimates have been included in the following table.

131 FOREIGN CIVIL MARKET FOR 150 PASSENGER STOL AIRCRAFT 1985 and 1990 YEAR STAGE SEGMENT s mi 0-600 0-900 0-1200 km 0-966 0-1449 0-1931 1985 HIGH. 390 505 575 BASE 320 415 475 LOW 230 300 340 1990 HIGH 655 850 975 BASE 545 710 810 LOW 390 505 580

o The preferred seating capacity for a STOL aircraft, of the configuration studied, is 150 seats.

Operational and economic factors dictated this result. Aircraft with larger capacities were not able to offer sufficient frequencies at economically acceptable load factors. Aircraft with smaller passenger capa- cities did not possess competitive economic characteristics.

o Market demand showed the greatest sensitivity to fares.

The parametric analyses performed during this study show that frequency, airport location, and market size are important factors in establishing a viable STOL system. Fare variations produced the greatest changes in market demand. It is very important that any potential STOL service offer fares comparable to those of a competitive CTOL system.

o There is no direct military market for commercial STOL aircraft.

In view of the specialized military requirements for the STOL mission and the unique commercial requirements for safety, economy and low

132 community noise, there is no military market foreseen for off-the-shelf civil STOL aircraft. There are significant commonality benefits which apply to both military and commercial designs in the propulsion, wing, and operating sub-systems which could reduce the overall program cost.

o STOL patronage is directly related to the relative convenience of STOL and CTOL airports to the traveler.

Community acceptance factors prevented the inclusion of more than a few centrally located or downtown STOL airport sites. As a result, the potential time savings on the ground portion of a short haul trip utilizing a STOL aircraft has been impacted.

133 10.0 BIBLIOGRAPHY

Air Transportation Modeling

Stroup, J.W.; Gerrard, J.P.D.; Sawhney, M.D.: Airport Transportation Simulation (APIS). DAC-68524, Advanced Transportation Concepts, Douglas Aircraft Co., May 1969.

Simpson, R.W.; Neuve Eglise, M.J.: A Method for Determination of Optimum Vehicle Size and Frequency of Service for a Short Haul V/STOL Air Transport System. (DOT C-136-66), Dept. of Aeronautics & Astronautics, Massachusetts Institute of Technology, May 1968.

Anon.: Mitre Multi Mode Transportation Model - A Summary Description. M71-24, The Mitre Corp. Jun. 1971.

Clarkson, W.; Bunyan, J.R.: A Simulation Approach to Transportation Modal Split Analysis. Draft Paper No. 84, Systems Simulation and Analysis Dept., The Aerospace Corp., Jul. 1970.

Holligan, P.E.; Coote, M.A.; Rushmer, C.R.; Fanning, M.L.: Study of an Intra- urban Travel Demand Model Incorporating Commuter Preference Variables. NASA CR-114418, Dec. 1971.

Stroup, J.W.; Gerrard, J.P.D.; Shube, D.P.: Transportation System Simulation (GETSX). Cl-808-81-88, Douglas Aircraft Co., Aug. 1971.

Kollo, H.P.H.; Sullivan, E.C.: Trip Generation Model Development. Tech. Rpt. 229; Bay Area Study Commission, Berkeley, Calif.:, Nov. 1969.

Aviation Research and Policy

Anon.: Civil Aviation Research and Development Policy Study. DOT TST-104(5) and NASA SP-265 (266), Mar. 1971.

Anon.: A Historical Study of the Benefits Derived from Application of Technical Advances to Civil Aviation. DOT TST-10-2(3) and NASA CR-1808 (1809); Booz, Allen Applied Research, Inc.; Feb. 1971.

Anon.: Institutional Factors in Civil Aviation., DOT TST-10-1 and NASA CR-1807, A.D. Little Inc., Jan. 1971.

Periodic Statistics Report/Statistical References

Commuter Air Carrier Traffic Statistics. Bureau of Operating Rights, Standards Division, Civil Aeronautics Board.

Intrastate Passengers of Scheduled Air Carriers. Rpt. 1511, Transportation Division, California Public Utilities Commission.

Origin-Destination Survey of Airline Passenger Traffic: Domestic. Otrly. Rpt., Civil Aeronautics Board.

135 Report on On-Line Origin and Destination of Traffic. CAB Form 298-C, Sen. T-1, Civil Aeronautics Board.

Scheduled Passenger Air Transportation System Statistical Digest Based on the Official Airline Guide for August 1970. Cl-808-72-99, Douglas Aircraft Co., Apr. 1972.

Regional Transportation and Airport Studies

Kimbro, H.: An Analysis of the Origin and Destination of Projected Airline Passengers in the Nine-County San Francisco Bay Area. United Aircraft Corp., Redondo Beach, Calif.; Apr. 1968.

Anon.: Air Travelers 1969. Interim Rpt. 2 to The Metropolitan Dade County Department of Traffic and Transportation, Miami, Fla.; Simpson & Curtin; Sept. 1969.

Anon.: Air Travel Study.. Job 4305: Indianapolis Regional Transportation and Development Study, Indianapolis, Ind.; Mar. 1967.

Anon.: Analysis of Demand for Commercial Scheduled Air Transportation Out of Ontario International Airport. United Research Inc., Jun. 1964.

Anon.: Bay Area Study of Aviation Requirements - Airoort Access. Wilbur Smith and Associates, Jun. 1970.

Gillfillan, W.E.; Spiegel, P.O.; and Other Authorities: Bay Area Study of Aviation Requirements - Airport Inventory. (San Francisco) Bay Area Study of Aviation Requirements, Association of Bay Area Governments and Wilsey & Ham, Jul. 1970.

Anon.: Bay Area Study of Aviation Requirements - Aviation Forecast. Systems Analysis and Research Corp., May 1970.

Anon.: Bay Area Transportation Report. Bay Area Transportation Study Commission, Berkeley, Calif.; Sup. 1, May 1969 and Sup. 2, Jun. 1969.

Anon.: Cleveland Hopkins Airport Access Study - Survey Results. (DOT & UMTA); Regional Planning Commission, Cuyahoga County, Ohio; Jun. 1970.

Anon.: Land Use - Transportation Study. Southeastern Wisconsin Regional Planning Commission, Waukesha, Wisconsin; 1968.

Anon.: The Los Angeles Air Traveler. Los Angeles Times, Mktng. Rsch. Dept., Apr. 1968.

Anon.: Los Angeles Regional Transportation Study (LARTS) - Base Year Report. Vol. I. California Division of Highways and U.S. Bureau of Public Roads, Dec. 1963.

Northeast Corridor VTOL Investigations. Docket 19078, Civil Aeronautics Board, Dec. 1968.

136 Anon.: 1969 O'Hare Passenger Survey. Chicago Dept. of Public Works, Sept. 1970.

Miller, M.; Cheslow, M.; Ebersole, N.T.; and Other Authorities: Recommendations for Northeast Corridor Transportation - Final Report. Northeast Corridor Transportation Project. Dept. of Transportation, Sept. 1971. Vols. I, II, III and Appendices Rpts. NECTP-209, Apr. 1970; NECTP-210, -211, -212, -213, -214, -215, -216, -218, -219, -220, -221, -222, -223, -224, -225, -230, Dec. 1969.

Anon.: Regional Airport Systems Study - Final Plan Recommendations. Association of Bay Area Governments, San Francisco, Calif.; Jun. 1972.

Anon.: Site Survey Study for a New St. Louis Regional Airport. Vols. I & II, Northrop Airport Development Corp., Aug. 1971.

Tatem, J.B.: STOL and the Los Angeles Megalopolis: A Comprehensive Study of an Advanced Means of Relieving Air-Ground Congestion Generated by the California Corridor. C1-804-SD924, The Douglas Aircraft Co., Nov. 1968.

Tatem, J.B.: STOL Passenger Demand Potential in the San Francisco Bay Area 1970-1980. C1-804-SD 1098, Douglas Aircraft Co., Jan. 1969.

Rushmer, C.R. and Other Authorities: Study of Aircraft in Intraurban Transportation Systems - San Francisco Bay Area. NASA CR-11434, The Boeing Company, Sept. 1971.

Anon.: Survey of Airport Scheduled Air Passenger Market. Study of Los Angeles International. Landrum & Brown, Mar. 1967.

Anon.: Travel Patterns and Characteristics of Airline Passengers - Detroit Metropolitan Airport 1968. Detroit Regional Transportation and Land Use Study (TALUS) and Wayne County Road Commission, Nov. 1969.

Anon.: Twin Cities Airport Transportation Study for the Metropolitan Council. Bather-Wolsfeld Inc., Jun. 1970.

Short-Haul Air Transportation/STOL System Studies

Schriever, B.A.; Seifert, William W.: Air Transportation 1975 and Beyond - A Systems Approach. The M.I.T. Press, 1968.

Anon.: Airline View of STOL System Requirements. DOT-OS-10075, American Airlines Inc., Feb. 1972.

Burstein, M.H.; Kaylor, D.M.: Air Passenger Traffic in Short-Haul Markets. CAB-202-382-6081, Civil Aeronautics Board, Mar. 1971.

Lansdowne, Z.F.: Analysis of Intercity Transport Improvements - Forecasting Demand and Evaluating User Benefits. RM-6255-DOT (DOT Contract 3-0008), The Rand Corp., May 1970.

137 Anon.: Analysis of Short-Haul Air Transportation. MTR-6209, The Mitre Corp., Jul. 1972.

Cohen, A.; Hoxie, P.; Vialet Jr., J.; Dyson, P.; Brown, R.: Final Report to the Aviation Advisory Commission - Short-Haul Air Transportation Study. (CON-AAC-71-01); Vol. I, Rev. I, Nov. 1971; Vol. II, Sept. 1971; Vol. Ill, Rev. II, Feb. 1972.

Asher, N.J.; Wetzler, E.; Horowitz, S.M.; Bartz, Schneider, W.: The Demand for Intercity Passenger Transportation by VTOL Aircraft. IDA HO 68-8873, Series B, Rpt. R-144; Institute for Defense Analysis; Aug. 1968.

Anon.: The Improvement of Short-Haul Air Transportation - Program Definition. DOT-FA72-WA-2816, Urban Systems Research & Engineering Inc., Oct. 1972.

Solomon, H.L.: Interim Report - Study of Short-Haul High-Density V/STOL Transportation Systems. NASA CR-114466 (2 vols.), The Aerospace Corp., Jul. 1972.

Sommers, A.: Nondemographic Factors in V/STOL Business Travel Markets. Ph.D. Thesis, Purdue Univ., Jun. 1969.

Morrissey, 6.R.: STOL System Feasibility Study - Demand Forecast Report. J0866, Douglas Aircraft Co., Sept. 1970.

Nelson, S.C.: A Study of Factors Affecting Short-Haul Transportation. Cl-808-046, Douglas Aircraft Co., Apr. 1971.

Hinz, E.R.: Western Region Short Haul Air Transportation Program - Definition Phase Report. ATR-71-(7190)-1, The Aerospace Corp., Jul. 1970.

STOL Aircraft and Technology

Schuld, E.P.: A Brief Review of V/STOL Aircraft Present and Future. MDC-J0690/01, Douglas Aircraft Co., Mar. 1970.

De Leeuw, J.H.; Reid, L.D.: An Assessment of STOL Technology. Rpt. 162, Institute for Aerospace Studies, Univ. of Toronto, Nov. 1970.

Plaignaud, J.: The V/STOL Transport System - The Aircraft, Flight Control, Infrastructure. 1971/7-E, Vols. I & II, International Transport Association, 1971.

Meister, R.K.: VTOL and STOL Aircraft. Rpt. 354, Stanford Research Institute, Aug. 1968.

Transportation - General

Anon.: National Travel Survey - 1967 Census of Transportation. TC67-NI, U.S. Bureau of the Census, Jun. 1969.

138 Anon.: National Travel - 1963 Census of Transportation. Advance Report TC63 (A)-P4, U.S. Bureau of the Census, Nov. 1964.

Anon.: The Passenger Air Transport Market 1972-1981. Cl-804-2775, Douglas Aircraft Co., Jul. 1972.

Anon.: The Tokyo-Osaka Air Corridor - Traffic Projections and Aircraft Requirements to 1980. Cl-804-2311, Douglas Aircraft Co., Aug. 1971.

Anon.: Transportation Facts and Trends. Transportation Association of America, Washington D.C., July, 1972.

139 11.0 APPENDICES

11.1 CITY CODE LIST (ENCODING) 11.2 CITY CODE LIST (DECODING) 11.3 CITY PAIR ORIGIN-DESTINATION TRAFFIC TIME SERIES 11.4 ORIGIN-DESTINATION TRAFFIC TRENDS 11.5 1985 CITY PAIR TRAFFIC FORECASTS 11.6 AIR PASSENGER GROUND 0 & D SURVEY DATA 11.7 CITY PAIR PARAMETRIC ANALYSIS 11.8 FOREIGN CITY PAIR FLIGHT DATA

MARKET STUDY TEAM

The Market Study Team drew upon the resources of the entire

McDonnell Douglas Corporation. Personnel were assigned to the team based

upon prior participation in on-going commercial short haul transportation studies. The following personnel contributed to the study effort as

indicated:

J. A. Keel an Computer programs

D. B. McCaughey Competitive modes

W. J. Richards Market demand

141 APPENDIX 11.1 CITY CODE LIST (ENCODING)

CITY NAME CODE Abilene, Texas ABI Akron/Canton, Ohio CAK Albany, Georgia ABY Albany, New York ALB Albuquerque, New Mexico ABQ Allentown/Bethlehem/Easton, Pennsylvania ABE Amarillo, Texas AMA Anchorage, Alaska ANC Asheville, North Carolina AVL Ashland, Ky/Huntington, W. Virginia NTS Aspen, Colorado ASE Atlanta, Georgia ATL Augusta, Georgia AGS Austin, Texas AUS Bakersfield, California BFL Baltimore, Maryland BAL Bangor, Maine BGR Baton Rouge, Louisiana BTR Beaumont/Port Arthur, Texas BPT Billings, Montana BIL Binghamton/Endct Jhnsn City, New York BGM Birmingham, Alabama BHM Bismarck/Mandan, North Dakota BIS Boise, Idaho BOI Boston, Massachusetts BOS Bradford, Pennsylvania BFD Bridgeport, Connecticut BDR Bristol/Kngsprt/Jhnsn City, Tennessee TRI Buffalo & Niagara Falls, New York BUF Hollywood-Burbank, California BUR Burlington, Vermont BTV Casper, Wyoming CPR Catalina Island, California CIB Cedar Rapids/Iowa Ci$y, Iowa CID Champaign/Urbana, Illinois CMI Charleston, South Carolina CHS Charleston/Dunbar, West Virginia CRW Charlotte, North Carolina CLT Charlottesville, Virginia CHO Chattanooga, Tennessee CHA Chicago, Illinois CHI Cincinnati, Ohio CVG Cleveland, Ohio CLE Colorado Springs, Colorado COS Columbia, South Carolina CAE

142 APPENDIX 11.1 CITY CODE LIST (ENCODING)

CITY NAME CODE Columbus, Georgia CSG Columbus, Ohio CMH Corpus Christi, Texas CRP Dallas & Ft. Worth, Texas DAL Dayton, Ohio DAY Daytona Beach, Florida DAB Decatur, Illinois DEC Denver, Colorado DEN Des Moines, Iowa DSM Detroit, Michigan DTT Dothan, Alabama DHN Duluth, Minn./Superior, Wis. DLH Elmira/Corning, New York ELM El Paso, Texas ELP Erie, Pennsylvania ERI Eugene, Oregon EUG Eureka/Areata, California EKA Evansville, Indiana EVV Fairbanks, Alaska FAI Fargo, N.D./Moorhead, Hinnesota FAR Fayetteville, North Carolina FAY Flint, Michigan FNT Fort Lauderdale, Florida FLL Fort Myers, Florida FMY Fort Wayne, Indiana FWA Fresno, California FAT Glens Falls, New York GFL Grand Forks, North Dakota GFK Grand Junction, Colorado GJT Grand Rapids, Michigan GRR Great Falls, Montana 6TF Green Bay/Clintonville, Wisconsin GRB Greensboro, High Point, North Carolina GSO Greenville & Spartanburg, South Carolina GSP Harlingen/San Bern'to, Texas HRL Harrisburg/York, Pennsylvania HAR Hartford/Sprngfld/Westfld, Connecticut BDL Hilo, Hawaii, Hawaii ITO Honolulu, Oahu, Hawaii HNL Hoolehua, Molokai, Hawaii MKK Houston, Texas IAH Huntsvilie & Decatur, Alabama HSV Hyannis, Massachusetts HYA Indianapolis, Indiana IND Indio/Palm Springs, California PSP

143 APPENDIX 11,1 CITY CODE LIST (ENCODING)

CITY NAME CODE Islip, Long Island, New York ISP Ithaca/Cortland, New York ITH Jackson, Mississippi JAN Jacksonville, Florida JAX Juneau, Alaska JNU Kahului, Maui, Hawaii OGG Kailua, Kona, Hawaii KOA Kalamazoo, Michigan AZO Kamuela, Hawaii, Hawaii MUE Kansas City, Missouri MKC Keene, New Hampshire EEN Ketchikan, Alaska KTN Knoxville, Tennessee TYS Lafayette, Louisiana LFT Lake Charles, Louisiana LCH Lansing, Michigan LAN Las Vegas, Nevada LAS Lexington/Frankfort, Kentucky LEX Li hue, Kauai, Hawaii LIH Lincoln, Nebraska LNK Little Rock, Arkansas LIT Long Beach, California LGB Los Angeles, California LAX Louisville, Kentucky SDF Lubbock, Texas LBB Madison, Wisconsin MSN Manchester/Concord, New Hampshire MHT Medford, Oregon MFR Melbourne, Florida MLB Memphis, Tennessee MEM Miami, Florida MIA Midland/Odessa, Texas MAF Milwaukee, Wisconsin MKE Minneapolis/St. Paul, Minnesota MSP Mission/McAllen/Edinburg, Texas MFE Mobile, Alabama MOB Moline, Illinois/Davenport, Iowa MLI Monroe, Louisiana MLU Montgomery, Alabama MGM Muskegon, Michigan MKG Nashville, Tennessee BNA New Bedford/Fall River, Massachusetts EWB New Bern & Morehead/Beaufort, North Carolina EWN New Haven, Connecticut HVN New London/Groton, Connecticut GON

144 APPENDIX 11.1 CITY CODE LIST (ENCODING)

CITY NAME CODE New Orleans, Louisiana MSY Newport News/Hampton, Virginia PHF New York, New York NYC Norfolk, Virginia ORF Oakland, California OAK Oklahoma City, Oklahoma OKC Omaha, Nebraska DMA Ontario, California ONT Orlando, Florida MCO Oshkosh/Appleton, Wisconsin OSH Pasco/Kennewick/R1chUnd, Washington PSC Pensacola, Florida PNS Peorla, Illinois PIA Philadelphia, Pennsylvania PHL Phoenix, Arizona PHX Pittsburgh, Pennsylvania PIT Port Angeles, Washington CLM Portland, Maine PWM Portland, Oregon PDX Poughkeepsie, New York POU Presque Isle/Houlton, Maine PQI Providence, Rhode Island PVD Raleigh/Durham, North Carolina RDU Rapid City, South Dakota RAP Red Bluff/Redding, California ROD Reno, Nevada RNO Richmond, Virginia RIC Roanoke, Virginia ROA Rochester, Minnesota RST Rochester, New York ROC Sacramento, California SMF Saginaw/Bay City/Midland, Michigan MBS St. Louis, Missouri STL Salinas, California MRY Salt Lake City, Utah SLC San Antonio, Texas SAT San Diego, California SAN San Francisco, California SFO San Jose, California SJC Santa Ana, California SNA Santa Barbara, California SBA Santa Maria, California SMX Sarasota/Bradenton, Florida SRQ Savannah, Georgia SAV Scranton/Wilkes-Barre, Pennsylvania AVP Seattle, Washington SEA

145 APPENDIX 11.1 CITY CODE LIST (ENCODING)

CITY NAME CODE Shreveport, Louisiana SHV Sioux City, Iowa SUX Sioux Fall, South Dakota FSD Sitka, Alaska SIT South Bend, Indiana SBN Spokane, Washington GEG Springfield, Illinois SPI Springfield, Missouri SGF Stockton, California SCK Syracuse, New York SYR Tallahassee, Florida TLH Tampa, Florida TPA Toledo, Ohio TOL Tucson, Arizona TUS Tulsa, Oklahoma TUL Utica/Rome, New York UCA Washington, D.C. WAS Waterloo, Iowa ALO Watertown, New York ART West Palm Beach, Palm Beach, Florida PBI White Plains, New York HPN White River Junction, Vermont LEB Wichita, Kansas ICT Wichita Falls, Texas SPS Williamsport, Pennsylvania IPT Worcester, Massachusetts ORH Yakima, Washington YKM Youngstown, Ohio YNG Yuma, Arizona YUM

146 APPENDIX 11.2 CITY CODE LIST (DECODING)

CODE CITY NAME

ABE Allentown/Bethlehem/Easton, Pennsylvania ABI Abilene, Texas ABQ Albuquerque, New Mexico ABY Albany, Georgia AGS Augusta, Georgia ALB Albany, New York ALO Waterloo, Iowa AMA Amarillo, Texas ANC Anchorage, Alaska ART Watertown, New York ASE Aspen, Colorado ATL Atlanta, Georgia AUS Austin, Texas AVL Asheville, North Carolina AVP Scranton/Wilkes-Barre, Pennsylvania AZO Kalamazoo, Michigan BAL Baltimore, Maryland BDL Hartford/Springfield/Westfield, Connecticut BDR Bridgeport, Connecticut BFD Bradford, Pennsylvania BFL Bakersfield, California BGM Binghamton/Endct/Johnson City, New York BGR Bangor, Maine BHM Birmingham, Alabama BIL Billings, Montana BIS Bismarck/Mandan, North Dakota BNA Nashville, Tennessee BOI Boise, Idaho BOS Boston, Massachusetts BPT Beaumont/Port Arthur, Texas BTR Baton Rouge, Louisiana BTV Burlington, Vermont BUF Buffalo & Niagara Falls, New York BUR Hollywood-Burbank — Burbank, California CAE Columbia, South Carolina CAK Akron/Canton, Ohio CHA Chattanooga, Tennessee CHI Chicago, Illinois CHO Charlottesville, Virginia CHS Charleston, South Carolina CIB Catalina Island, California CID Cedar Rapids/Iowa City, Iowa CLE Cleveland, Ohio CLM Port Angeles, Washington CLT Charlotte, North Carolina CMH Columbus, Ohio

147 APPENDIX 11.2 CITY CODE LIST (DECODINR) CODE CITY NAME CMI Champaign, Urbana, Illinois COS Colorado Springs, Colorado CPR Casper, Wyoming CRP Corpus Christi, Texas CRW Charleston/Dunbar, West Virginia CSG Columbus, Georgia CVG Cincinnati, Ohio DAB Daytona Beach, Florida DAL Dallas & Ft. Worth, Texas DAY Dayton, Ohio DEC Decatur, Illinois DEN Denver, Colorado DHN Dpthan, Alabama DLH Duluth, Minnesota/Superior, Wisconsin DSM Des Moines, Iowa DTT Detroit, Michigan EEN Keene, New Hampshire EKA Eureka/Arcata, California ELM Elmira/Corning, New York ELP El Paso, Texas ERI Erie, Pennsylvania EUG Eugene, Oregon EVV Evansville, Indiana EWB New Bedford/Fall River, Massachusetts EWN New Bern & Morehead/Beaufort, North Carolina FAI Fairbanks, Alaska FAR Fargo, North Dakota/Moorhead, Minnesota FAT Fresno, California FAY Fayetteville, North Carolina FLL Fort Lauderdale, Florida FMY Fort Myers, Florida FNT Flint, Michigan FSD Sioux Falls, South Dakota FWA Fort Wayne, Indiana GEG Spokane, Washington GFK Grand Forks, North Dakota GFL filers Falls, New York GJT Grand Junction, Colorado GON New London/Groton, Connecticut GRB Green Bay/Clintonville, Wisconsin GRR Grand Rapids, Michigan GSO Greensboro/High Point, North Carolina GSP Greenville & Spartanburq, South Carolina GTF Great Falls, Montana HAR Harrisburg/York, Pennsylvania HNL Honolulu, Oahu, Hawaii HPN White Plains, New York HRL Harlingen/San Benito, Texas

148 APPENDIX 11.2 CITY CODE LIST (DECODING) CODE CITY NAME HSV Huntsville & Decatur, Alabama HTS Ashland, Kentucky/Huntington, West Virginia HVN New Haven, Connecticut HYA Hyannis, Massachusetts IAH Houston, Texas ICT Wichita, Kansas IND Indianapolis, Indiana IPT Williamsport, Pennsylvania ISP Islip, Long Island, New York ITH Ithaca/Cortland, New York ITO Hilo, Hawaii, Hawaii OAN Jackson, Mississippi JAX Jacksonville, Florida JNU Juneau, Alaska KOA Kailua, Kona, Hawaii KTN Ketchikan, Alaska LAN Lansing, Michigan LAS Las Vegas, Nevada LAX Los Angeles, California LBB Lubbock, Texas LCH Lake Charles, Louisiana LEB White River, Junction, Vermont LEX Lexington/Frankfort, Kentucky LFT Lafayette, Louisiana LGB Long Beach, California LIH Lihue, Kauai, Hawaii LIT Little Rock, Arkansas LNK Lincoln, Nebraska MAF Midland/Odessa, Texas MBS Saginaw/Bay City/Midiand, Michigan MCO McCoy AFB Orlando, Florida MEM Memphis, Tennessee MFE Mission/McAllen/Edinburg, Texas MFR Medford, Oregon MGM Montgomery, Alabama MHT Manchester/Concord, New Hampshire MIA Miami, Florida MKC Kansas City, Missouri MKE Milwaukee, Wisconsin MKG Muskegon, Michigan MKK Hoolehua, Molokai, Hawaii MLB Melbourne, Florida MLI Moline, Illinois/Davenport, Iowa MLU Monroe, Louisiana MOB Mobile, Alabama MRY Salinas, California MSN Madison, Wisconsin

149 APPENDIX 11.2 CITY CODE LIST (DECODING) CODE CITY NAME MSP Minneapolis/St. Paul, Minnesota MSY New Orleans, Louisiana MUE Kamuela, Hawaii, Hawaii NYC New York, New York OAK Oakland, California OGG Kahului, Maui, Hawaii OKC Oklahoma City, Oklahoma DMA Omaha, Nebraska ONT Ontario, California ORF Norfolk, Virginia ORH Worcester, Massachusetts OSH Oshkosh/Appleton, Wisconsin PBI West Palm Beach/Palm Beach, Florida PDX Portland, Oregon PHF Newport News/Hampton, Virginia PHL Philadelphia, Pennsylvania PHX Phoenix, Arizona PIA Peoria, Illinois PIT Pittsburgh, Pennsylvania PNS Pensacola, Florida POL) Poughkeepsie, New York PQI Presque Isle/Houlton, Maine PSC Pasco/Kennewick/Richland, Washington PSP Indio/Palm Springs, California PVD Providence, Rhode Island PWM Portland, Maine RAP Rapid City, South Dakota ROD Red Bluff/Redding, California RDU Raleigh, Durham, North Carolina RIC Richmond, Virginia RNO Reno, Nevada ROA Roanoke, Virginia ROC Rochester, New York RST Rochester, Minnesota SAN San Diego, California SAT San Antonio, Texas SAV Savannah, Georgia SBA Santa Barbara, California SBN South Bend, Indiana SCK Stockton, California SDF Louisville, Kentucky SEA Seattle, Washington SFO San Francisco, California SGF Springfield, Missouri SHV Shreveport, Louisiana SIT Sitka, Alaska SJC San Jose, California

150 APPENDIX 11.2 CITY CODE LIST (DECODING) CODE CITY NAME SLC Salt Lake City, Utah SMF Sacramento, California SMX Santa Maria, California SNA Santa Ana, California SPI Springfield, Illinois SPS Wichita Falls, Texas SRQ Sarosota/Bradenton, Florida STL St. Louis, Missouri SUX Sioux City, Iowa SYR Syracuse, New York TLH Tallahassee, Florida TOL Toledo, Ohio TPA Tampa, Florida TRI Bristol/Kingsport/Johnson City, Tennessee TUL Tulsa, Oklahoma TUS Tucson, Arizona TYS Knoxville, Tennessee UCA Utica/Rome, New York WAS Washington, D.C. YKM Yakima, Washington YN6 Youngstown, Ohio YUM Yuma, Arizona

151 APPENDIX 11.3 CITY PAIR ORIGIN - DESTINATION TRAFFIC TIME SERIES

The following appendix shows the origin - destination traffic for the top city pairs in the United States based on passengers. The data was com- piled from the Civil Aeronaut!ce Board (CAB) table of top city pairs for the years 1959 through 1970. The CAB listed the top 500 city pairs for the years 1959 through 1967, and the top 1000 thereafter. A city pair is included in the Appendix if the annual traffic volume in a given year exceeded the following levels: NO. OF CITY YEAR TRAFFIC LEVEL PAIRS EXCEEDING TRAFFIC LEVEL 1959 12,680 500 1960 12,550 ' 500 1961 13,030 500 1962 14,360 500 1963 16,720 500 1964 18,700 500 1965 22,100 500 1966 25,910 500 1967 31,440 500 1968 15,800 1000 1969 17,880 . 1000 1970 17,720 1000

For city pairs which exceeded the given levels between 1959 and 1967 a twelve year time series was constructed. For the remaining city pairs a three year time series is listed.

152 APPENDIX 11.3 (Continued)

The numbered column headings in the Appendix are explained below. 1 City pairs listed alphabetically by three codes. 2 Code for type of air carrier $C = A1r carriers CAB regulated (if not listed $C = $T) $P = California Public Utilities Commission (CPUC) regulated air carriers $T = Total of $C + $P 3 Data Source CABOD = CAB PUCOD = CPUC C&POD = CAB + CPUC 4-7 Data Retrival Codes 8 Date of Data Y = Annual Data 59 = Data Appearing in Column 9 is for 1959; Columns 10-18 are 1960-1968. 68 = Data Appearing in Column 9 is for 1968; Col. 10 & 11 are 1969 & 1970. 69 = Data Appearing in Column 9 1s for 1969; Col. 10 contains 1970 data. 9 City pair traffic data for year appearing in Column 8 10-18 City pair traffic data for additional years (maximum 10 years). For twelve year time series, data continues on next line. SEQ NO Computer sequence number for correcting entries.

153 i - o UJ v. o o o o o o o o o o o O o M r- *

o o o o o o o C o o O o •c — • o o o> -«

o C;' o o o o o o in •C 3 en m tn •4

o & o C o O O C. C. c, c, O CD in o- O •4- r^ -4- c. co ^

c o o o C O o o C o * OD •4 (M •o O r^ •* in o -—o O •*. § a m OD o o- O C in oo o N •t IN (M cv «

O o o O o c. a m * m •*• o •o •* oc oo o> o- rg (N o in rg oo — u in 4- a UJ M o o o o o o o o o> •*• 00 in •o o oo in1 •o CO o m ** -o o m co •c •o »-i r- -o in in a -•

o o oo oo o oo oo o o o o ooo o o o o ooo oocoo oo o o o •_* 4)^4 pb cj ao in o* Q o **t CM «•* u^ rf^fio mm aor- O UJ —I 9^*^ in (M CD CD o»O<** m o 43 o r^rgcg ooor- rorg 4> »^ 41 N oinrn o> m ^> *4 tnmr- rA-H r>g ^-< ^4 ** rg^4«N eg rxi ^^ (Mrnco ^H^ rgrg CM-HOC a o- X U. ooooooooooowoooooaoc______i o o__ o G_O < ______O O O O O O O o o ^ino>O43»«Orginoo»* rg o> uj Ji < oe i

09

« in

ooaooooooooaoaoooooouoaooouoaoooooooaooooaoocjocooo COOQOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOO O'O O aDa3cOaoopcpoDoOapcDcDtfcDcDODaDcoa3oQQDCDooaDaoaocoaoapo3o3coaOflDeDcoaococOopooaooOQDCDaOflOaDxoDo3 ououoooou

l-t->-l-»-t-l-t-l- (M «»«%«I4A1A«A«»4A4*«»«»«I'

rg o X _i —:

154 i s o Ul O O O O C- O O cv, o CD o- ITC.. cO* IT. in CD r*- in

c o o c ocoooo o o c o o o IT. m^-^^h-h-corja o in *-4 ir rg o ra in «*> ci i«-i -« 4 cc it IM a o o pg IM CD « «

coe-oco e oc rg

rvjec

cce t. cc- c • c. o * o *-*>^ f^ r^oL -4 wj*4 Q. cj~* co •* a cc m to

o o o c o c o o o o c oo o o ai O ao po o Cv rM C/ fi 'M o m cr rg a —

oo o rgto rsj in « r- c>

o o o o o o o o o o- o- -«5 ^^ Oi

. o coc/o oo coo c-ooc ooo o «->o h-^^l r-r>.-*(Nj u\ CD O1 c\* cs- s (A O O) O O 0 IT* 9- 0 O) O^ m CSJ -^ if* fO fNJITt^; O OC m * — ' ^c ^ o o -o -»

O o*- l.l In. OOOOOOOOOCtSOOOOOOOCOOOOC'OOCO OOCOOOOOOOOOOOe^OO ft o ' " ac.

UJ (X h

oc <

r\jr^ f^

pgc^^gr^|pg^g(^^rorg^ oooouaooaouoooouoooouocoaoooooouocooouooooooouooau oooocoooooocooooooooocoooooooaaooocooooooocooooooo eDeDoOGDaDCOcocceDaDcoaDcocDaDCDcoflDaOflQaDOOcDflOaocDaQcoaDcDaoaDaDcoaccDCDOmaDCDaDaDOQcDcoaDQDaDfD

in M K UJ _| _J _l _l . CC IO t- *- t- I O <<<<«•

155 o 1/U1J O O o o o o O CI OO O O OD 0> •? m CD -4 o o* in CM f- CD to * •0 OD O o- o- in •*• in in o •* CM o IM

ccooo o oo C O o o O C O C r*- C* cn o^ in oo <£4- cn r- IT IT, in

o C O ^, C. O o O O O c O O c O O o r- a o ^CM cr 00 C- tfv •o oo cn a cn cn 4 in in CD ^P^ r- in ^4 •* •* r-*- sO O CM .o •4- in •c CM CM cn CM «c 0> m m •o -• •O CM •* m in •O CM CM r- « m it en -1- cn o> ^ ^•^H CM

o o c o O O c O o c. o o O O c, O •* h- fb o *4 o •e co o o •* in Ci O ** O 00 IM ^tf cn a* a a. a a. cn in in cn •a cn in CM r- V* CM CM •4 •o •M -H in c •4- o in -o ir. cn CM cn in CM ^4 CM v> cn in CM cn CM CM CM CM cn ^ CM

O o o C C C; O o O & o o O C C C o c o IT. o CO in •C in o- •o r^ IT. o -< •^ cn CM CM O CM OC cn cc i* 00 ^* o cn r- CM CM <0 CM 'CM CO CD O> cn CM CM CD in cn CD cn ir. -< h- cn •1 CM CC o CD cn cn •r v-4 C7 CM o •*• CM CM CM CM CM in in CM i^ CM

o o O O o o 0 o O O o o O O oe cn ^•O in o o- CM h- c. CM r- •o CD •o in o DO -• (^ *^ •HI c> in in o •J cn tn cn a- •< r- •o in O K o- o- eo •*• CD -< o co r- cn •- z CM CM m 0> •^ •4- •o CM CM r* i—n CM in ^ CM o •* ^4

O o 0 o 0 O o o o O O O O O o o o o ft* <^f r- cn CO o in r- cn <-l o cn co in co -4 CM in 0- cr o f o sO r^ O cn CM * CM CM f\J m o CM •^o CO •0 (7* m •a i~« o> * CmM -*o o- CM CM en CD »4 cn cn — CM •^

O c t. O O O ^, o o 0 0 — o o o1 o o o o c> o o o c/ o oo oc> o o o (7* f m cn >ot~ -<»< eo « cn f~ ^> o- Cf t- in «o ao in ^H »o *^ rn c^ ^ «o C- CO CM •- O CM CM-t O>f- 00 C «* CD •4 •£ O CM in *o cn CM o CM O *0 K ^l o in CM r- cn K a ot~ o-sO o * cn r* CM CM »^ 00 cn -H cn fn (*> cn CM CM »* CM •»! cn CM •+ •-• CM cn CM

ooooooooooooooooooeooooooooooooooooooooooooooooooo i-

1/1 LU UJ a: t- >- KO UJ '''''O-4 cn oo o" cn * ^ cn ^ <

• >• >• X > >

oooocaocjaooaoooooaooooooooooooooooooooaoooaoQooooCMrgrMCMCMCMCMCMCM(NJCMCMCMNCMCMCMrMCMNCMCMCMCMCMCMCMrMCMCMCMCMrNjCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCoM ooooooooocoocooooooooccooooooooooooooooooooooooooo

CM ^ o

156 § o UI «/> o O o o o e O O O o o o o c o o CO CO o co r> 5 CO m CM o •* CM CO in m in co o o CD CM o •o K CM CM E m m O>

o oo oo o o o o o oe«oooeee IM oo p- a ce

o oo oo c o o c. o o oo c. cc 4- m a «

O O OC C, O O OOC.COOCO a,

O OO O C O C O COOC.CC m pg co ce o- <-< (M •* c o cr -j m CD cor- a> « a x. a, M -4- o m c

o o o o o o oooooooo tc. m in f-

o o o o oo o o oooooooo m UN^ m m.*o>a>.«r-in-*mm eo « o mir> M(Mr-coinr- oo o occ oc o ooc oo o c c. o o o o o o -< IM cr w co mmo m tor- v\ •o«\ co -t *> o *or- *o -i r- •* -^ -o •» r~ m •-> O ui — " rgoK9 moco m OK •* mrjcom « -o *« co — > r- ir. a co IT. ^m^tf^ (MCMK o ^fM m ^4mo>

X U. OOOOOOOOOOOOOOOOOOOOCOCOOOOOOCOOOOOOCOOOOOOOOOOOOO o ^cD<6'*

I/J UJ ui c£ H- OOOOOOO OOOOO^OOOOOOOOC-oOOOOO a: < I

M r^

ooooooooooooooooaooooaoooaoaooooooaoaooc.uoQooooaoo OOOOOOOOOOCOOOOOOOOOOOCOOOOOOOOOO3OOOOCOOCOOOOOOOO ICa3aDaDaDCDCOaDCDCOCCaDCOaDCDffiCOCOCOCOCDCOCOcOCDCOCOCOCDCOCOCDCOCOCDCCCQCOCOeOCDCDCOCOCOcOCOCOCOCO '

IM V O

157 o o c o co co m K co ~« o ^-* in co •* ro m a in

o o o o o o o o o o .c _« »* m oo o- co »*• c <£> co c o r- r- com a* r- in o o CD CD P»J in IT. ir\ *-* ^ C c rg r-

O C" C O O C C C C C' C *cao*o ^ir a ir. ^ m »o

c c c c co c c/ o c- c. f- •-• *\J if. c »f-

c c c • o o o c -4 c ^t O —* «NJ »-4 f. r-tf^h- CO fO CO

O O O O oc rsjao •*

OO O O C O O t'OCJO i-ico c ooco ^- oo j-o^mm o ^ in ^- u\r*^tr CD -I" O1 •-< h- O i O

O C O O O O 0 CJ O O O C C O C *-> C iu> •-« oo o o cc ao 4 o in *>* >o f\i <£ 0-4- oc^*^ ^)^-^i *o o*otn in ^o- i*^ a- m h- Cc.rg o CD o* cc

OOOOOC'C'OOOOOOCOOCOOOOOC'OOOOOCOOOOOOOOOOC'OCOOCC'COOC-

et r- h* co co UJ —i •-> •—

CO

4rsJCMr\jCXJfNjCNjf\jr\jrg(MCMCMCM^^(MCMCNJ<\jf\irsJ(VCMfXj^CMNCMCMrMCMC^ CM^rxifMiCNJ^lCM^CM^CMCNJCMfMCNjCM^CMrMCMCNjCNJCMCM^^^^C

<;

in ^4" rjrgpgrgAJrNj{\|{\jr\j^raruo^r^fvjrjrjrs;rgrsirgrj*NirsjrMP^^rgc^ oocccoooccooocooocoooooooccoocoocoocoaococoooooooo ------__ _ - - _ oo to CD co a co co as m co . . _ -

in —'

v, ^l^^^t^^^t-^^OOOOQOOOOQOOOOO O.O OOOOOOOOOOOOOOOUV IL U.U.U.U.OOO

158 o o o o c- o o o in o o * GO o- »rf »4 in in in O CO co a pg t- o <* pg pg

o c- c- o o o o o o o O 0 p"* p^ co •o r- -o a a IM pi ^i g) 0* (M CD •a •*• in •c rj -i in m—I p0g0 pg pg in in •*• 00 IM m *

o O c e C- c. c o o O O c pg pg CO t^t in <-t a- -o d •4- •o •o m o 4- -C r- pg a CM n o CD f^ O pg pg 4 00 CM rg

r. C- O O c j- o c, t. «M a O' 00

o o o c> o c O o o a r- — co oo •o in p- o o in pg /•* -o pg *4 in ro -» •*• — o in o

o o c. o O o o Z o » m >» O r» P- < l tn O 43 03 0» OS <*> >- u ooooooo o c- cooocu O O O O O O O O O O C' O 00 o o o c> o oo ir> — f- -< tM IN -J- « o- pgpgacr-VP- inp**^ocop* o^-in «^pgfO •c pg PI p- -i oo in oo IT. ^ >c o IN m a) p- — « ^ in pg *p-co ocoin o- o P, « «• P> o> p-p-^-pgpgpg ~>ooo —p-co oo pg o co CM p- m pg — m pg fn P~I f>pgm ft ** ~< pg pg -« -H pg pg — QC- OOOOOOOCOOOCOOOOOOOOOOOOC'OOOOOUOC^ OOOCCC' o Q-< a

Hi an t o c. c j r- ij o o o o o o <> c> o o c. o c o o i^ c- u u o c.- i •i «p-pgo-^p"cnpging3»Hf>p*ig3«j-fn — aoo'in^gSpg^ o-pg*^^Hpgoooc>go — ^•o*oinpg.^»*».4gjg3Opgp-p< r~ IT. -^m^-avpg — »^-^^«pg--pg-^mmoo-^pgpg^^—*pggj-^-^i

CD

K pgpgcMPg(Npgpgpgr\jcMr>jpgpgpgpgpgpgpgpgpgcMPgc\jpgpgpgpgpgpgpgrMPgpgr\jpgpgpgpgpgpgc>jpgpgpgpgpgp^

•o

in

^ uoc^aoooooddooooadoooocSdcSLjdoiJouooadocjdoooooocioaoooo ccoopcopopopppooooocpc-poocpcpc3ogooopoppc3popogc3qqpo u o oo i

K»-h-K-^.>->-K->->->->->-^-t-»->->-H't-l Pg 4»4A4ft

V) O o ** *•* ^ ^ X X X 4 CU CC ^ ^ o (J ^ O ^* ^ I Z 4 ^ 4 4 uj ^M f~- ^ i/i i/> ^ ^ ^ in •-« ^ oooixiixriiiiziiri— — — zzzzzzzzzzzzrzzzzzzzzzzoooooo o oaoDeceoDmmoacomoaioaiecoQcoaicoicoo ca ID mmaieDODmcDcoaaoDaatoiDoOffiiDaJcococDmaaeacaoamoocD

159 i CT lu V) o O O o o o o o O o O O 05 o o OD § O> eo *•> ~* O ^4 ^- -4 O «M * co 1-1 OD f» IM m in * * * in CM

o o O o O e> eo eo 03 CM oo 1 ^4 o t~ r- CO CM oo O 00 co o- •* CD CM in CM 10 IT, (M

O O O O O O O O o o o o o o o O _! 4- CD in in .N O- •o OD •t •t o m ^ OD O O f- «4 O r- -i -o OD CM *M ** <0 r*- o CM «0 i- mo- —M CM -4 03 c. o o o o o oo o o o c. in o c,ph.^aooo*>« ooo 40D ODO* co in CM CM »< in co oo CM CM CM C o CM

o o o o o o c o o o O o o m ir. >-i -< in co ec m OD «M o> a CM O * * •" «M oo

o O o O o o o o O O oc 00 in CM »* CM in •t 00 ^< o- o o •o m CM CM N f»- (O 00 (0

o o o o o o o o o o o o o O o o 2 CD CM o -* < 1ft eo oo CM r» r» in ,0 O» -« •£ M •» in CM 4- CM OD o •* in f- •* oo O> CM O —^4 r^^- ^^ -^ < o

O o o e> o o o o o O O C- o O O O O O O U OOO COO <-><-> O S eo •o in CM m r- t- eo h* ^cO'HO'O incNjcMO*4 iMt_io^ ininco >^m

oooooonoooooooooooooooooooooooooacioooooooooooouooo • tn \ : < a. 2

CMCNJCMfMCMCMCMCMrMCMfSJCMrMCMCMCMCMCMCMCMrsJCMCMCMCMr^CMCMCNJCMCMfMCMCNlCMCMCMCMINICMCMCMIMCMCMCMC^

CMtMCM

nj«MC UOOOOOOOOOOOOCIOCIOOCIQOOCJOOOOOOOOOOOOOOOCIOOCIOCJOOUOOO oooooooocooooooaooooooooooooooooooooooacoooooooooo

CM ^. OOOOOOOOOOOOOOOOOOOOOOOODOOOOOCOOOOO O

160 o UJ to o o o 0 0 0 0 O o o O o o o o o •4 & S e- o •o •o e- 00 ^B en o CM o- in CM CM O> •O - » m o a- CO en 04 en •o 0^0 00 in

o e o o e O O o 0 o O o O c o o o •c o in 0> en •o •* 00 OD m oc ao o o OD in $ m 00 8 CM c 'o 04 O> en en CM o 00 •4- en OD in a •C CM CO en m in r- cr CM in

o 0 c o G O o c O O o c O c o o en 01 en ej- en 0- r- 04 00 •e «c O 00 2 o en in in en •c en e^n o IN r- a o> er CM IT. 04 OD 04 a- en en in en « 00 lt\ •or et 0< a oo o CM en 04 o> en •^t en t- en t- CM in CM en oo ITi en

C o o Cj 0 c O 0 C c- o o O O O CM en o O r- o- O r-

O o o O o o 0 C o o o o c oc en o- 00 o o in s S O OD o •o c •* Oo -• in CM IM CM 03 in f4 e\j f4 •o in O o- 04 in r- •o ^^ f4 ^ o CM in 04 -o CM en en o ^ eg CM o- en "* CM

o o O o C 0 o o o o o o o O w 2 CM •o en f- » 04 en e- N in o t~ m CM CM f~ O < l/> 0* 04 in r- 00 in •0 in oo o o in * en ^ 0= in in •4-

o o O O O O CO O a C O o 0 c o o o o o o o o c •" - .* CM in * in r- in CM en CM -o en O* en en r- » t- CM en o » •a oo en 'Oiu 0< o -o oo in o in CM o o> •^ CM •o IT. CM m o- •« *O *4 |4^ CM o O er, * oo oo o- oo en O -« c CM O r- 00 s en 0400 oc o> in r- o CM ir. en CM c\j in CM en 04 04 CM CM in CM CM CM 00 0* CM CM 04 04 in CM *t CM 04 •»•

•AUJ* Xo U. o OOOOOOOGO&OOOGGOC-OOC'OC'OOCOOODO O O O C C O O O O O O C A*OL •-»

. OOOOOOO

CMCMCMCMCMCMCMrgCMeMCMCMCMCMCMCMeMCMCMCMCMeMIMCMCMCMCMCMCMCMCMCM CMCMCMCMCMCMIMCMCMeMCMCMCMCM

CMCMCMCMC\ICMCMCMCMCMCMCMCMCMnjeMCMCMCMIVICMCMCMCMCMCMCMCMCMCMC>JCMC\lCMCMCMC\lrMlMCMCMCMCMCMCMCMCMCMCMCM ooooooocooocoooooooooooooooooooaooooooooooooooocaOOOOOQClOOOOOaOOOaOOOOOOOOOOOUOOCJOOCClOQOOOOOC-iOLlQOOoO

CM ^ o

161 O 111 I/I no o oooooo co •* f- to m m m

o o o c e o o o

.',% ' O O O C. C C, C O O ir, o ec t- -a m o o

C. O O UCGOOO o r- m r-. •«• <, K

C CO COOOOO H^ « in-O ^cic-*--*!? O 40B (rOIMCM(OO

o o c ooo oooooo >*• « r- ovr- ai o ID m oo o • •*^-c> IM fO

o o oooooo oo t- tsi in o

oo oo o o o o o oo ooo o o o o a> -< mo —> w -t tx> r~ r* ir> •* eo o IT. ir> IN IM ^i _i ^. r\j M ^ oo oo CO foe1

coo* Q- ai ir\«M-^-^(^ooo>o^4^(^ino^^^f^^v^i^(N400<4'>o ^v>o^rr>oo<£*o w^r^ h-cc ^eoacor^rsi<^i^-ir\r

(NJr4

•o in

OOOOOOOOOOOOOOOOOOOOOOOOOClOOOOOOOOOOOOOOQOOOOOOQOO CJOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO oQcD

cOff>oDoOcDoDocaDaDflDoDcDoDaQoDeDao0eoaDfit)cDecooouoijoo

162 o ui o o o o o o o o o o o o o o o c o o »•*€»• o in m ao o co CD m r- •o •* m « IM * * r- m C -H •o w\ en o> CM ** r- m M CD * (M o- m CM oo * m m »* »4 in •* CD eo m in •* m r- (M •» * •» m m

o e o o o 000 o o o o o> m •o -* a m r>- «n •o -o -t m o m a (M r- ir> -o e> * IM in p- co -- * o o o o> "« o> in o> in a- o p- * IM o •o m o S m 03 m m o v IM —i in

o o O o 000 o o c c C m• *4 »4 r- in -t «•> m 00 00 00 o •» m -H o QO a -* in •o 00 ^4 IN rvi in (M •O o -C in s in

o o o o O C O o o O O

O C o O O o O o o o o c •4 00 CD (M O prf •t o m o a f- •» IM r^ in IM oo r- P- or m in m 8 o- « in oo o> O o (M -< CO o •* N -l *

0 o o o O Ci o o o 8 •c o § ? S o in § t~ o a 00 OO -> m .in o- m «M in m m S In in •-Z or- •a •o o tn

O O O o o o O o o o o o o IM in 03 O •o (M 00 o in -» •-• r- CM o> in in m •» in «M in m CM r~ o «n in o o OB ^^ in r\j o f- oe IM -^ «% oo (M

o o o o o o o o o o o o o O C O O OO O O CC C» U u O m m co h- IM mm OK in in in m r- -o IM ^ in ~* -f p-o* ^ ^ P-m IM ^^ m ^>1 OUI -4 ooo m «« o-oo mm o-.tm.cr- o* m in ^ coco c- —i «4> o P- —' - O>

(/) UI IU 0£ I- OOOOOOOOOOOOOOOOOOOOOOOC. OOOOOOOOOOoOOOCOOc,O

IMIMIMIMIMIMIMIMIMIMrMIMIMIMrMIMIMIMIMIMIMIM IM IM IMIMIMIMIMIMIMIMrMIMIMIMNIMIMIMIMIMIMIMlMIMIMIMIMCM

IMIMIMNNIMIMIMIMIMIMIMIMNIMIMIMIMIMIMlMIMIMIMIMIMrgrMIMIMNIMIMINrMIMIMNlMIMIMIMIMIMrMCMIMIMIMIM QOOOOQOOOOQOCOOOOOOOOOOOOCIQOOOOOQOOOUOODOOOOOOOOCia oooooooocooooooooocooooooooooocooooooooocoooooooco ooaDasaQaQcDcoaDaDiDaDtocDfloaocDcDODflaaDaDoQaDeQaDaDfiOflQaDaQaDaDaQflDaDcDffiaDeDcoaOcQaDaDaQaOaDaDaDflD

m -4 IM xxiiiiixxixiiiii

163 o z

o o o o o c o O «M CM in o en o> CD IP. -a in CO o- r- CM CM oc 4- C- » CM >»•

o o o o o o c c e o o o o c C O •o -t in o oc o ,e 00 CM C IM * -t i" CD c CM in o f~ m o <4 r*- r- IT r- -o .c « o If. «* oc o »•* r«" >* op *c CO o oo -o — in r- f c- CM v cu 4- r~ IM

cooooocc o c. C C C O COCO O C* Or IT «O CM <4 IMK IT oc 1 c c -< er. *^ ^- Ifi r- •om.0 —«or*-iM* •c m -< C 00 « -I — in « ir. oocncMoocnoc a ~> -c a. en CM r- o en *c IM in ft c — -4 or oc IM

o c/ c. o o c c, O C c. c C- C c F3 0s CD O- -» *"* ^ o in •C en CM O in ^^ in ^ OL •4 c. IM

C c O o o C C o c o c C O C en CM CM c o O -I •4- « c. o oc O- IT. m in o- CM CM r- o in a: if' IM u -I 00 C^O -c o- •C oc c CD in o tr M in 4 CM CM m IM fM •C m « •* * INJ

o o o o o o o o o ct O CT- 00 0* 0* m — ^ o c oo lf\ fM t- O- •- CO IN* IM in in -4 m IM O O ft

o o o CJ O c o 00 J- ft ^ < M CM O in -J- •O •* •* IM CO * c rg (C 2 S IM (M CM CO

_Q O O O O C O C O C C O ^ t-1 C. t C. C C' O t; U O C^ C C O O O ^ (-itHir^o^t^ •^cniOinmo''4CfccD»4 •-•cw*-t^mctinincMCMintfsif»c rnCMO en ^ >c CM oo CM IM if! cc in Q- mo h- Cf^ co r^ *-< co r~ -^ o OCM m IM CM *^ f? IM cv e\4 *^ en •"* IM m ^ ^ <~* in IM ^^ eM ^o ^ IM IM esj ^^ ••H CM ** CM oo ^-» ^ QO- ^X U. O O C- O C» O O O O C- p C C C- O O O O O O O O O O O O O O C- O c O C. O C O p O O O C p O O C C- O O C' O •T'o o ^•f\ifi-<'4>i"inoi

Uj -. OL ft- cj c. «_i o t_ o c. o C'- i- o c. c- o o €• o o u o cr. o c. o i"j ri o --i r- o r> c. t^* o i. o c^ <'* c_- o t. LJ ^- r» o C- C o c- e__

CO

•o in ODOOCOOOOOOOCCOOOOOOOOOOCOCOOOC-. ooocooococooooocooo

I— ft-ft— ft— ft-ft-ft-ft-ft-ft-^-^-ft-ft-f— ft-Kft-ft-ft-»-*-ft-ft-ft-Kft-Hft-ft-ft-ft-ft-ft-K»-^-ft-ft-^K-ft-ft~ft-ft-ft-K*-ft-H-

H- «M •• t- _l ^. in ^ «» XXXXXXXXXXXXXXXXXXXXZXXXX.XXXXXXXXXXXXXXXXXXXXXXXXX O OOOOOOOOoOOOOOOOOOlJtJOl-'OlJOOOOOOOUOUOUOU^JoOOOO'

164 o UJ c< o o o o o o o ooopoooo m IM o VI CO 00 O F* ff en w CN; *M **

o o o o o o o o o o c o o o o Vl in r- X IM O fn r- o * o> •* r»- CD a CD o- 4 4 Ci CD en »\ m r- CM «M m ^> cr •+ m 1C CM cc IM .< CM m »< «M m tn e~ in in CM 4- m -r f\

c. o c, c- c O c O O O 0 0 s §- a a IT £ 8 S S CO O

o C c. c e. G. O O OOOOOClOO m IM o a »4 ^ en o* CD fft o* *^ ^ *4 O IM C. a <0 — tnir, co r- o — -i »M in if- cn i-« f. •c«ce^r>.aDr-r-o IM in IM O 4fneM IM IM CM

O C C O O O O o o o ocoocooo K) 4 rg in m o> ft 00 OD en QDO4tf^'O4O> e~v m CM f^ IM m fnrncoiMiM*4^4«M IM IM IM

o o c o o o O o OOOOOOO1 O oc en « ce o CD CO r- in in cn 09 4" O 9 *O eo 00 - o •H ao -* in IM 4- r- o> »• m 4- in m— K P £ o o- in CO r- -o ? S 4 m in r^ in r IM IM IM CM CM •< oa -< s CM UJ *•«

^ K o o o o o o O o o o O o o o O O O O O 4) o> IM in CD 10 < - •o oo o m CO IM r- CM in in 4 o* *o in -* *c CD CM 4 o o IT —' •o 4 in x O O -• -O CM .CM CM CM m — -P

•2 C> Cl u C O C O O C O COOO OO 00 (i O O o o o o o o o o in OD -< in eo c O co o> cno-mo- OIM ma> ** -< CM o- in 4 •t co — > m f- m o- -t »< tf* CD «-*O"*C' ^^ C^f^ 4 in CD in in CM « K OS tf o — i * ct r- 1 4 CM O en O O en •-< o co _< mm —i CM 4 in ^pHm*-* IMCNJ IMF"CM IM en CM CM -< ~> CM ^ =-- 55" ooooooooouooecjoooocooooooooocoooocoooooooo&ooooooo

u< a

OtJOOOtiOOCJC-OOOeOOC'OOOOOC'OOOOOOC'OOtjOC-OOOOOOOOOOOOOOO

CMIMCMCMIMCMCMIMCMIMIMIMCMIMrsJCMIMIMfMCMCMCM CM-CM CMCMCVJCMCMCMCMIMCMCMIMIMCgiMCMCMCMCMCMIMCMCMCMCMIMCM IMCMCVJCMIMCMCWIMCMIMCMCMCMIMCMIMlMIMINllMIMIMCMCMrgrwIMCMIMCMCMlMINIINJCMCMlMCMCMCMCMIMIMIMCMIMCMCMCMCM fMCMIMCMIMCMCMIMCMIMI>lCMIMIMCMCMCMIMCMCMCMCMIMlMCMCMIMIMIMIMCMCSJIMCMIMI>Jf>IIMCMCMINJIMCMCMCJCMCMIMC^

in 4- uoocjaooooooocoooooooouaoooocjooaoLjooooooauooouooooo oooooooooooooocooocccoooooooocoooooooooooooooooooo

in IM xxxxxxxxxxxxxxxxzzzxxxxzxxxxxxxxzxxzxx: • I U U O O O O U U (J O Ci U O O O O O O O O O O O O O U O I

165 S

o o o o oo o o o co r- r-4>«o r-^ K ao cM -« rx « m * « o m CD o o CM

o o o o o o oo oo o o o *• £ m o o CM <• m m coa <»• «• •«• — ' O rg •>

O O OCOO o OO •c in ^ co ^ N a- rg tr« in m rg cc IM

O O OCOC O C GO GO O CiO |(\ «^ ••"CO CO O- O~ O -C Q f* tt:-< ir>O [i\ ~* CM mO>>*cc M (M « r\i n * o o o o o OO O "• in •t •C CM CO — m m in ^4 m

* p O O o O O o O ct O -o o^-

O O O O O rgo>-^^ o IM m ^ o- Ktt\ f— O O C O OOOOO O O O OO OCC OO OO OO C f O OO O O OO C. O ^" co*>^ ^>aonrnoo M CD c NO raium oocu mr- IMIM CM «ir\ f-m r-m in-* r-in Oui r*t -t -a r- ir> ao co « in in •* •- oc * •» — O>CD * m in<» ~f -^r~ ino m>i inr- — c v£ eo o f~ r-o>corucM o- a c m^- coinm o r^ ^ m CMC CMI*> en c\j^^ »-i«o (sjfi »*** •^

ui ec >- or, oooooooooooaooooooooooooooooc- onooooo coo oocci ooooo

IN o -.

•O

m ooooooooooooQoooooooooocooooooooooaouoooaooociooooo oocoocooooooooooocoooooooocoooooooooooooceocGcoeoo £DfDaDaDCDcoc0oQcoaDc3aDcOaDCOflDaDaDCOaDflDflQaDCDaDCDcocDaCioDODCDcocoaococOQDaDcDcocOaOflOaDcQGCacaDco m <<<<<««t<<<<<<<<<4«

fM

*w m — o

166 o UJ

o o O O o O o o o o o O «M CO eo m o CM - a m O" O CD a- m CO O •* •o OD o CM c CM cn •O O in in « -* CD

c- o o O O o O o c O o o CO IT. —i en o co in •« o- CM en co o f- o- en CO

o o c o o o c- o c o V o co cc cc 1-4 a K C er m c r- o- r- o* or co <*> a •4- in in a> M o o CM (M * in h- CO r- en 4- cc CM CM o m m CM * -•

O O o o o Ci c C o O (M o- o t, Ci a~ •e c. a

o c o o O O O O O C o c O <0 CO ft) a OD o -4 (M C CO I*) •« CO o "i * •o •a IT. C» Ift cr •»•

o o o o o o O O O o a >M in eo

o o O o o O o r- CO J- IM •»• o> o 5«, 2 « c- • o c; o o c o o o o c- •-* IT. o in c" co a- CA

O O C- O C' O O C' O O O O O O O O C' O C• C' O O & O O O O O O O C C C> O o O O O O & O O O O O O O O C'

t/> l^« «-4 CM CM UJ cc t-

OD

>•>•>->>-'>->->•>•>>•>•>•>>•>>>'>•*•>>>>>•>>•>>•»->•>->->•>->•>>•>•>•>>>•»•>>•>•>•

eMfMCMCMCMCMeMCMCMfMCMCMCMCMeMeMCMCMCMeMCMCMCMCSjeMCMCMCMCMCMeMCMCMOJ CM*CSJ"CM CMCMCMCNJCMCMCMCMCMCMCMCMCM f- CMCMCMCMCMCMCMCMCMCMniCMCMCMNCMCMCMCMCMrMCMCMCMCMCMNCMCMeMCMCMCMCMCMCMCMIMrMCMCMCMeMCMIMeMCMCMCMCM CMCMeMCMCMCMCMrMCMCM

-C

m 00000000000000000000000000000000000000000000000000 coooooc2cooaoococcoooooooooncoooooooooooooooooocooo

•-r-h-KKh-H-H'h-t-l-k-t-J-W-h-^f-k-k-^t-K-t-t-KKh-h-K^f-t-^^-Kh-Kf-t-H-k-Kh-t-l-^H-t-H-

CM OLuu_u.t-h->-a.o.<-». — >>ii—oo — <<<^-t-z«i<"- — ">>>-li — — e u.^a.<<>-uj-i->-»-i->->-i-KKiillliiilxillIiiirxii'-i<«i'ioi:oc v. -J_i_)-J-i-j-ij_j_i_)_i_i-j_j_j_j_)_i_i_j_i_)_ii:i:i: z'z zzzzzzczzzTZzzzzzooao. I O O O O O CJ O O ^j O tJ O O O O O O O O t) O ^^ O W tJ tJ W O dj O ^ O O O O O O O O O O

167 IS 00 tt —"

C o o O o o c o O O O O c cvj m in O •4- CO in o- en o- o •*• S en C •c t- CD •C *•• •o oo m e- rt C e- 00 o rsj

o C O c o o O o o c> c. IM M CM •c -o o fO o a- (M m •Cr c in o- a- r- S •*• a "N cr •* o O en in lf> e- INJ «M m a •t eM m

o c oo C o o O O O O O O O O en en en in <\i to CM CM -> O- c oc 00 a oo in — CD •* o- • 00 O "• in « m in « CM CM i-l l»> CM en ••«

ooo o e*- co ^j oo in m

o o o cj o c ooo O O O O o o o t) O O O1 C C CO O- o- r- -» CO f^ O* CM C f- O O o- CM m CM •or- co ^* ^^ (O «-* CO CO CM ^ CM CM CM CM ^^ CO •-« «-^ CM ^- CM CM ^4 »4 CM

OCiC'OC'OOOOOOOoOOOOc.C'OOOOOOOOOOOOCOCOC/OOOOOOOOC'OOOOO — cM-ocMCMinoooor~or--MCMOt--tircoocoO'-

OC-OOCOOOOOOOO'OOC'CiOOOOOOOOCCJOOOOOOOCOOOOOOOOOoOOOOO

CMCMCMCMCMrMCMCMCMCMCMCMCMCMrgCMCMIMCMCMCMNCMCMCNlCMCMCMCMCMIMCMCMCMCMCMNCMCMCMCMCMCMCMCMtMCMCMCMCM CMPgCMCMCMCMCMracMIMCMCMrgCMCMCMrvJCMCMCMCMrM^CMCMCMCMlMCMCMCMCMCMr^CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM CMCMCMCMCMCMCMCMeMCMCMCMrJfMCMCMCMCMCMfMCMr^CMCMCMCMCMCMCMlMCMCMCMCMCVlCMCMCMCMCMCMCMCMCMCMCMPJr^

OOOOOOOUOOOOOOOOOCUCUQOOUOCJOOOOaOQOOOOOOOOOOOOOQOO oooocoooocoocoooooooocoooaoooooooooooaooocoaoooooo

CM •s^ O O O O O O U O O O O O O Q

168 i o vIU> o O o o o o o o o o o o eo IM m •«• 2 ? S g en * oo M in in -o -j CM o -o IM in a; o- a> CM en o e> -i tCoM —* o •* -< CM — — CM — o o o o o o o o c o c o o o o « CO CO CM oo en •*• OD a) in 9 «M in in o ••« c»i en in in — 4 o- 5\ -O CM 8 O * — * * ex m-4^O o ot- IM — CM o o O O O C c C O 0 O O IT M ft IT-J N -< m IM -i 4- o o en P- *o m 8 S 00 * a •-" CO OD —I IM !•) IT CD 4 ^ CM in — e> O» in 01 C. -< IM ac h- m in en « CM o CM eo ? CM _> o> «n — CM

o c o o o o o c O O f CM l~ If, » « m « o IT. <• in «- eo •* «o -c, cc co -• o s * in o •a o •• 4- 06 CM •-« « CM co e> •C * CM co —CD CCDO in « •J CM r- r- m o r- CM in O O — IM « IM O CM CM •-" -o o> m a> o •o CM rn en CM * — — O -4 O-

O O O O O O O O O o O 00 0 OD O O K — •* CM O- O IM o •O -I CO IM CM o en o CO * m o O in co r- o> r- •«• O m o <-i — in co -o m IM —i in o O — r> •«• CM * oo r- oo e\i -o -o r- co o c o o tn CM en in -< •-« en co CM 00 a -t o OD * — co CM o in m — 00 O -C en « in o r- IM — -i •O o- o r- IM o o> -> o -a -a >e XS 2 IM M oc en •* en S CM CM CM " r- CM en »—I O •« — en — iru. ooooooooooooooooooooopoc-pooooooouppooooooopoouooop oal_.« i Ul ~*- uj — en CM — — — fM— ** ~* ac K oooooooooooooooooooooooocoouociooooooooooonoooooC'Oo i- i« iu * <

lMeM CMCMIMCMCMIMCMCMCMIMCMCMCMCMIMCMIMIMralMeMINCMCMeMCMCMCMIMCMCMIMCMeMCMCMIMCMeMCMeMIMeMCMfMIMIMfMlMtM

m

•4 CMCMIMCMCMCMCMIMCMeMNCMCMIMeMCMeMCMeMIMIMCMIMIMIMIMlMIMIMIMIMCMIMCMeMIMIMeMIMeMeMIMIMIMIMeMIMeM'MtM OOOOOOOOOOOOOOOOOOOOOOOUOOOCJOCIOOOCICOCIOOCIOOOOOOOOOC ooooooooooocoooooooooaoooooooooooooooooooooooooooo

in CM oo o o o.oo oooooooooooooooooooooooooooooooooooooooooao

169 o z o

o o G o 0 o o- CMaor-- in in c -c ^>O4 o r~- in CM »* 4- o

O O O C OO do 'O K & «c o or o or in co f- or arm 4 e * co —o O *** o in in QD CM m 4 rg CT ~* -400 •o -D IT. -r

O C O Oc OO O a m t- -4C ir tr. CM O

O O O OC O C O r* CM O' *. o fM IT. ^J •£ 4 O a^ ro o »M o 4 co o » irt ~ m csj CM CM CM m oo

c. o o c o o o o o CM Ocn oo CN, a o en 4- CMO CM *n o frv CM tr\ -1 C»-. CM CM *

o o oo-oc ooo c o e; oo o o o o 4- CM o «* ininr- CM in r--» o-

O O C- o O O O O O >O 4 CM O «M O i—n• co CO <

O C C C- C» C- o o «. cv o c o c c< t <-• c. o o o o o o o eon fsJ*^ oo o « C- CO tf* f~ 00 O 4 tfi o* m a 4- — IN 4> 4 IT. oo m in co

UJ I U. O O O C C- C* O C- - C O C O C • €•-• O O O O C O C C- O '

C1 c- o o c; c» r. o t; c> c r ? «• o c. o o o o c- c o r* o o r. o »_• o < • o c <" o r, o o <> c» o o o c tJ o o «^'f»rh-'*fn*o«-*

fNj^ r\j'Nir^ rgf^

pgrgrvjpvi(>jr^ OOOOOOOOOOOClOOOUOOOOOOOOOOOOOOOOOOOQOCJOOOOOOOOLjOOO coooooocoocooooocoocooooooooooooaocooccocoooooonoo

OOOOQCJODOOOOOOOOOOOOOQQOOOOCOOQOQDOOOQOOOOOOOQCJOOCI

170 o li> I/I r- O c o o o o c o o o o o •t in O O- IM OD IM o o in t- in ^ •o •* 10 f- •» m o r- fO «ftf *$" 10 IM

o o O C C O O c* 0 O c- o in so c IT in a as OD CB r» ^- IT in 10 o a in o •c o- o —" co IT. o in in m a CC cr 00 o- CM a •c CC st

c c- c. O c Ci o Ci c o o C O c. o •o a ^• O a M if. ^4 CM c 5 00 in o c •*• o- -* ** in .<*• in O O eo OD 8- * ^* o m IT. •o 10 m s I•M* IM IM ~4

c. O c. C c c- o C/ o c- o 4 IM IV; •j m <6 «-< si 1*4 in ••« IT. 4 IT. IM a o u. u. f. 4 X 00 CO a IM o> CO a a IT) in IM r

C/ o o c o o c c c o o o o o 00 IM h- ~•* o*c IM » e •«• O- It O •c IM ec o •* IM -- o o a 10 OD •» »c io c -o o> O 10 —1 (N -< O

o o o o c o o GC IO CT* o K •* in eo in oo O 15 <^ IO o -o — IM o in a- o h- O o -o in OD o oo oo IM o

Cl o O o O o o o o o z in o IM cs; t- a in ^4 f* OD •t 10 e> IO •o IM rg IM oa IM •O in •c sO CT -j in IM f> in IM, IM cn^I o u o o o o c- O C O C o o oo o o c o C o O o o ^^ IM o*r* oo IMU^ c IM o o CO •o — _. a or- «-o «tio o "< a c ui IM IM —i CO Q* IT. 0s IM IM IM -o IM -O fw m o oo in c^ IM in ^^ moo** ao OD*f IM 00 •o X o _, IM IM 00 10 IM -I —• «^ 10 IM-^^^ IM IM r-» ** I—i Q O- COOC.OCJOOOOOCJCtOOCOCt'OOOC'OC'OoOOOC'OOOOOOOCOOOOOOOOOO '

to iu LU OC h- C-OC'CVOOOOOOOOOOOOOOOOOcjOOOOOCjOOOOO >- IO UJ >^ < a. < z

IMIMIMIMIMIMIMIMIMIMIMlMIMIMIMIM«VllMIMIMf\llMIMIMIMIMNIMIMINIMIMINfMIM

m

st IMIMIMIMIMIMIMIMIMIMIMIMIMrvllMIMIMIMIMIMIMIMIMrMIMIMI\IIMIMIMIMIMIMIMNNNIMIMIMlMIMIMIMIMIMIMIMIMI>l OOOOOUOaCCiQOOQCOOQCOOUOOCOOOCJOOOOOCJOOOOOOOoOOOOUOC) oaoooocooooocoooooooooooooooooooooocooooocooooooo

IM ZZZZZZZZZZZZZZ2ZZZZZZZZZZZZZZZZZZZZXXZXZXZZZZZZZZX V. UJIUUJIJUUJUJUJtlJUJIiJUJIUUIlUUJUJIlJUJUJUJUJUJUJUJUJIiJUJ|UUJUIUJIiJtUiMUJ^'^(/>l/>l^l/>(/>l/)l/>i/)l/>V>l/>l/)*/) o OOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOCCJOOOOOOOOQOCOOOOO

171 ^ § O o

oo o ooooooo ooo o o o o o o«o f- PJ, in rg o •* r- o in rg ' o rg rj ** r- ra -*

o ooooooo oo o oo ooo rg m -4 o~> -4 ro o « in o> a ot> ~« •-« ••< m e> ~" r- en * -« r- •*• oo co eg « ro. m o> •*> ff> rvj ou o a- a>

oc ooooooc ^ CD

o -4- o o c. c o c ir\ (M in a> o r\j QD O' ^ o m

ooo oo o ooo c- o c o fO^>aD 9<(r rsj fM^O^ OflOC trt

oo oc. <*\ ^«£ oo •< •* in o

OO OOOOOOO Oo r-ifvi f*>-M'*>ir%^»-|O> o«o mrvir-KMr-o •o m a\ oo _ OD OOD -o -4 -t oo in •» rj h- irvO p^ in „•«

OOOOO O OOO O O O O OOO O OO O O o »J — a> o rnaoo — i o *-* o ^^rgo- *

OOOOOOOOOOOOOOOOOOOO OOOOO OOOOOOO COO OOO OOOOO OOOOOOO « u

OOOOOOOOOOOOO CCCiOOOOOOOOOOOOOOOOC-0 CO C. OOOOO CiOOOC-OC. O

fg^

oooooooooaoooooooooouoouooooaoooooooooooooocaooocirsjrNjrsjrar^ u ooooooooooooooooooooooooooooooooocaoooooooocDocoaci

>OO«J<->OoO«-><->U<->OtJ

172 i ?; «o r- co a- c; o 111 I/) c o o O o O o o c. o 00 — e>

O O O C O O o o O O o o o o r- C oc a * r- e oc « ^ fM •4 N -. (V ~* •* p~. * CM m a •4 •* <0 m o> m er O ^H CM « 4- CO * in in co « « o s s 4- in ru CD in m rvi S -4- r- CD CM

o O O O O O O c O c c « oc * a r- « CD ir. rg ••4 m o- rg —" 00 * <*• in oo in •0 CM * * m tr CO in -• •- en in rg CD in rg rg rg *

o o O o o o o o o r- a> rg a> o o in -O o- m IM «C in rg o CO a, f> O CO O in in rg o c o- rg rvj rg in -c

C C O c & O o c- o o

o o c o o o o o oo a. CO oo in •» eg <7^ CD 0> 05 * oo o> ra 03 ^ a in CO in 01 X CO o rg rg * •*

O o o o O o CM -4 •» o o o> r- i/> —i O CD CO rg o O o- in •o O o •o rg t- o rg rj m .*• CO*- J o c. o o o c o O o o o o O o coo c- o c> o o o oooooooocoo r- cr co -« t rg 0' CM o r—O uj —-« CcMc a- 4- rg o r- O — «o ^ C in fn o* o CM a rj ^ m »* CM a CM (M CM -^ CM ** ^ 55 OOOCiC'COCOOOOOOOOOOOOOOOOC- OOOeoOoOOOOOOOOOOO

a f- O <_> O C; p C. t Ci f 1 O C- O CJ C.- o O O O C O O p O O O o O '-i O t > O O O p U O O C1 vj C- O O O C* I— C. Cj O O ( i/> o* CM ^^ en CM * t in CM CM

< z -. rg' z

CD

I CM CM CM CM i rg rg

•o ,

in

oocpoppoooqqpccpcoooocespococoocooopcnoooooopcsooppQQOQOOOuOCQCJ.OCOUOOoaOOOOOQCOOC'CClCJOQQQOaooaQOCQaCJQQp en < < «i .

t-»-^-»~h-(->-V-H->-h-t-»->->-t-^>-t-.h-l

CM r- •v in -<

O OOOOUJUJUJIiJUJUJIlJUJUJIiJUJUJUJIiJUIUJIilliJUJIiJUJUJUJIiJliJUJlUU.U-11-llU.li.U.li.U.li.li.U.kLllU.LL.U.Il-U.

173 o ~4 z o OCOOC' OOOOOOOOOOOOOOOOOOOOGOOOOOOOOOOOOGOOOCOOOOOOO

C C'OOOC: OC o O r- mo-ir^o m « CD oo t- ,t> <*• m oo K> OD a iv 4- r- r- f- r- rvi o r- ec »v in m m in *j m «-• 1-1 m

o o o o o c o o o oo m o" iv cv in o* o rsj cc •* in *v cr m in rv »-i CM oo * m •*

O C CJ c O C O O O CO ^J «O OD f^ O> flt m *O iv •<• OB

O C O OO OO »- c. m

C' C O O C O CO OO IN cr o o c r- o oo o o h- -o

O O O <^ -^ rsj oo oo t^ IN OO cvm

O OO O f-) C?O 4> oo 0* o me

•o o uo c o o uooo o c oo c. o o ooooooooooooouoci ** -o *r\ «o m ~* m*^ rv^ <7> m ^aO'^4--4-«mir\'^ao-d9>^4mom -C u. o r^v r^*H rvm ^- o^ coDODr^ao^mr-eoof^^irt^om mm O>«ivoommo3ma)>4«o<-i mrvj >o

U- OOOOt'OpCiOoCJOOOOOOOOOoOOOOOOOOOOOOOOOOOOOCOOOOOCOOO _ico in e»

X "" —« m — m m CM iv

oo

•o in

ooooocjooooooooooooocaooaooouooooaoococoooociooooooo 00000000000000000000000000000000000000000000030000

ro

IN O<

174 -«cMm*in«i^a>'7o**cMm4'in«^oDO'O04cMm4tin«i^«i>O04CMen«ir'«'>co9O04(Mcn4-ino ininininininininin-r--r--'--h-h-r~r~e~r-oDoDODODoDooaooDoooDO>cr<7'Cr'O>a>ao>o> 04 m in m o 04 o o e> OF~ 04 in <*• *• -o «*• r- * 04 m 04 in en a* «$• ^ ^- 04*0 04 — CM -4 oooe o ooo oocooo oo f- «f CD *•- in o K oo 43 « en «fr o 04 en oen •4 m * • in f- in a 4f «?• 00 ew m 04 ^ m cc CM en f> o *0 CHCM CM 04 CM < 04 «• 04 >n «• en OD a *• en

oooo o ooo oooooo oo •f> o * m IT o o r- oo 04 •»• « CM 00 04 0i <>en«or>eno> covt ^m40*o CM t*-cn04 KO>oKeno ooo CM04CMen 04 eM^*en encM

OOOO O OOO OOOOOO o O m h>h-f^4t r- «^co oo«£>coioin04 c^ •H CM enenKC CM evince * 4 < o * >o o- -< CM CM CM en 04 O04N «neMinincMCM o +

OOOO O OOO OCOOOO O enccoo04 2 «m04 ocrcoincuen m 04 CM •« OD tft oc en o- inoD04inh-a a- r^c^eMin o «encM r^o^o^^^o 0404CMCM 04 e-04CM CM04CMeneMCM 04 04

0-00 o ooo oooooo oc § f*-^oo en CMf^o ot*O040Kcoo o1^ o 04 en04oin o> -4 <• 4)- m-to^-oocM 04CMeM eninoooo 04-4F 04Z 040404CM ^04CM CM040404CMCM inCM O -.04 u _• * t- OOOO O OOO OOOOOO OO z ^ 9 n f*& en ^ N m m *4 e^ o^ o^ en *o o *o «* i/> 04 r~o«o in m -- tr\ f- —' j- m CD 004 co rn o en t^ -o -o 4 o> -j- ocM«cnoincMcDr>inoenr>ino0'43aoinociO>r~4or~coai^ IU 04 CM PM Ul

OOOCOOC'OOOOOOOOOOOOOOuC. OOOOOOOtOOOOOoCocjOUOl-OOl-iO CO lu X « OC < X "4 04 CM

OD

* in ooaoaoooQQQoooaoaaocooouoQoooQUQQooauCjOoaocioooaoaN o ooooooooooaooooooooooooooooooooocooooocoooooooooco ffiaD t43:<

CM r> in -< CM _IZ-»»»>>>>V)IAlAZ4

175 c o

o o o o c» tn <-* 0s «c oc in ~* m in cr* GO m ^) o ^ m o CM in in in m in m r\j

0 C O 00 C O 0 h- CM CNJ m INJ ir. CD If, m m IT*. -4" O m — * O OC U" INJ ^4 •-* C Ift i*- f> <* CM «T *T f)

CC- C CCC C O OD^ ^C ^MC -4 IT. * oo -o ^ CM

Ci C- O -0 CO C t oL c. '-* r- i*- o . r^ tfk a, oo c o if c* o cr

O OOC O m o ir

r-o c^oooc o c o o o o c» QC f) fMfO fM^m.GOITi QfM^-* C C CO OO*-1 — »r*-a>'M^ ru-n^nr*- • CM rga-ooO

OOOC.-O OC. OOOO O **»-i(Mi-ts*- com oo so <\j *> QO -4 O1 oo

•Q o t. <.. a o o o <-> oooco o c* ooo o o c. <_> o oo o oo o <•• c

X U. O p O O o O Ci O O C O O O- O C C O t O C- C' O C C> C> O O O O U C it i ^ 0. UJ c/) UJ rNj UJ

tt I- 1 _ p O e- O o f~ CJ O O *.: w »-^ C. t-*_ t_ rj C V *_. ' t_- O. O O ^ C. ». • O^ O^ _C * *^.--.._ O l^ O t C_ *.' U..' C.' O e'- O. O O O ».j o »_•_ I- » O Cv t.' '

IV

00

nur>jrgrsjrMrNj.r\j(\j

•o

cjoooooooouoooocciOCOooauupLjpopcJOOCiOCiOOooociCOOoooooo

IM 4A 4A «* «* * 4*

C>>-J_I< ^ . ^ _ . _ . . ««< UJ1

Nfc.

rx XXXXXXXIXIt-1-t-t-Kt-t-Kt-t-OOOOCOOOOOOOOOOOOOOOOk-t-Q.XIOOZ:

176 o ,*iMm*ma3r-cocro**rgm*inwjr~cocrc> — «Mm*in'Or-a>»o^rgm*in«r-cuc>o**rgm**in*3r»-coo>o z mininmtnmtninin^>ui^g3g3g3gawDwj>*3r-f^p-rfcffcr-^r»^HooflDaDCDflcoDflDCOflDoDC>*^O'O'C^c>'O*O

u* i/> U OOO O O O OOOOOOOOO o 2 CD OD r- «f mo o o>o>«4>r"<4vrg«Ofrifn r- m ^ ft o* & c^ co OD if <£ 4° o M o o m m rg <4r rg

OOO OO O OOOOOOOOO O rgrgo o- -c iMinrginoino-r-mO' o> cr a — i*v o •* iMCooiniMOOD^m rn r-goc> w^r- cr> corgmo^r**Hf«>in cr crv mm

OO CO O O CO OOO OOO mm mr> m«ccir^rgir\ mg; ao> o> ->*co*^--o«m-< __ o> och **• mmm*4m- _, ODOD mrg CD xin4-4}^rg«mrg m

c. c> c- c, c- o c o o o c o o c o c, mr*jr- G>O ^^ a-oravt*4ir>mm^- K

OOO CO C- OOOOOOObO O * ^jiTi m cD«^tfi^r-o7in9< o* ^4r-r>- miv rg mmmmrgorg rg in -i

O C'O O OOOOOOOOO O c * — *t- noc oo o ooooooooo o 4

Ci OC> O UU OC-OC- O OOWO OOO O Ob O o C O OO OO C OOO&O ou« ^* rg** o O4}g3C9>«o «o** c om O'r-'O^ r- ^*inoor- r-om ^/ com mo o *^ 4*m oorg wj)gj-^wj>*4 o_j rg** * rgaj -*m**f\; -* rg****m mrg IM »* rgm rg ** rgwj) ~ •

OOOOOOCvOOOC/OC'C>C'LiC'C>OOO L:OOOOoOcjOOOOOOOCiOOOOOOOOOO

-Jm coror-rgrg

oi_>r>oi.'OC/ooejC'OocjC'ooocc _ _ ~_ .-,___--__ - __J_I _ -_ _ - — - - - _-_

4 r * i

CO

rgrgrgrgiMrarargrMrarvifM rgiMiMfMrgrgrargiMrgrgrg

•O in -» rgcMCMrgrgrgrgrgrgrgrgrgiM rg IM rgiMfgNrgrgcyrgrgrgrgrgrgrgrargrgiMrg(\irgrgrg(Mr

rg «••»«•

rg w>-uo — — ">>->-ocizo.a. r- izxTXixzzoo.a.1- >-- in •- rg . ^ O

177 O »ric>jfn N ui OOOOOOO OOOOOOOO fsltM o sf oj O ^ ^ p^cktf^f>j(nrNj^ comr'*co(t>v\ in f- O" r- •" r- CM M -O •* ir\ -o c vo r~ o- r- * c- ,-1 IT

OOOOOOO O OOOOOOO O •£ -C O O O ftm fn cDooooc>mcei»i co c co a c- tj- in m a r- rg o- o

OOOOOOO OOOCO IMIM—I^^OO iMC

C.COCCC.O o e o c o o ir> c. ui .t, *. o- .» pj

O o O O O C O OOOOOOOO O IM IM O O O o>mh-4-ooo'C — o OD o « i i^ oc o"im a>A m iS m f-ooo-tco-j-Mu-. * a^

ooooooo ooococo o t*~ 'f* oco^-m**! ir«Mesj'r' »*-*if>eD^O'O -»• m m o «> o o ocoar-f-o-o o^

O O O O O o O OOOOOOOO O<^ fNJm^ocDtMOo ^r^ocirtr- m tn •* ir\ o

o C O O O O O C OPIrOC-OOOUOOI. o O C. CD IE C. O C go-

U-II u. 0000000000000000-00^00000000000000000000-00^0000000s 1 s 0 Q_0 ^^<^^^^cr^

' OOOOOOOO tOOOQOaOoOOOOOOOr>OOOOOOOoO<-JOOfVJO^h-(7'O'* cooc^orgj-oo>tffio*t^ (rrfc4>ocrfn<)fsj<»o'Ct;»n -. co r- o — *r. a^i^-^^"

*\irsjf\jf^fN|fgf^r\jf\jf\jrj^<\jf\jf\jc\jr\jrsjfN*rg^ OOOOOOOOOOOOOOOOOOUOOOOOOOOQUOQCiOOOOOOOOOOOOOOOOOO oooooooooooooooocooonooooooocoooooooooooocioococooo

178 -' S in

o •? * otpvoo43*4'oDOOD«* in o « r- CM a> o N r» ooDrn m — in « ^ o- •-•Of- morgmoir. «P-in m w «r o m m

O m m OC'OOOOOOO O C O O o O « o orurvi -omineD mom o^iAcgeb ccirv^ <4-ac^>iA K ^ ao o ^ <• in _i ~4 •£> <^i IN m CD o «vj rg *^^^4 f>jfr>^4r\j rg *-< rsj *-• »^ fn

Ceo OCOCCOOUC O O C C' o C. in r- o >^ o 4>rgm ci * rj — > ^ m r- >n « •-< f- « fn & C m co IM r" •* c o * CM 4 ">{r«om ir>«r»M «M •-• o> IM m K r- rg »M it' rg to CM CM — — — «M O 00 CO OOCCOOOOO O C. O C o C 4- o-- « in o o*r- r-aoiM-fiitr- -- fi •^ov^io m^o t, •«- -< -o o <\J o 4- i a o inrn m 2|rarg« « rg in inr-^-O«org — — K ODmcMCM CM ^Of^iArgin^^ *^ oo «•! z -H fM ^ o ««r~ r--^*^rginfM rg — o ^ o o> ^H *rf -- IU *•* *^ Mri »: t- omm ooooooooo uooo c o ZrginaJ>«rfin inm^ 4>-4)'inmin(^a- m ^~ < 1/1 _< » oo^rvir- r- « «r -4- -- in -< -< en ^ .* —

r— u o o o oo o u c oo <-> <-> c o o o u ^_ ^« O1 o*

-> 43 IN o- eg >t o a>(\jcoo.t,r\4_ir, CM in rg ir. m rg oo P-rgm ^

O Ci !_. O- C ff1 O 1.3 O O ** u ^^ C; C'' Ci Cj O -* O «-t c> O *_• O O O C O O l_» O o Ci O O O O p** m O O O O

OOOOCOOOOOOCOOOOOOOODOOOOOOOOOOOOOC3OOOOOOOCOCOOOOO

179 , mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmin'ni'i'nmmrn o UJ in 0 o o o O o 0 0 o o O o o •o o p- m pg p- IB p- oo in a* oo in CO Of m C? OS CP 0 O 00 00 m a vri m m ff\ f» O1 P^ pg ^ in m )^M

O O O C CO 0 O o o O o o o o O o- c- o o pg m in cc m p- p- (M -o a a in* pg CO pg r- •c o f- a- s in a> .4 pg O m IT- -*• CO OC m a OC CD m PJ p~ m in o pg pg - O C 0 o o c. O o c- 0 c c a- x J| -

O O O ir, OL i*i o -c o- * GO ru rg C

o o o «-> o O O O O O O o o o o at m o •o m •*• m pg pg a- o pg co cr o o m Co -i «r o o O m pg o oo r- in o —mi —pig o

o o o o -> o OOOOOO Otj z o -• o O- r- a-mmmcba pgo m «-*p-*O'OO mm CO ma^pg^-m a-A PJ -< -" pg m m pg pg « CO r*

ceo o oo uoo o oooo oo c ooo ooo O u o <-> O O O ** mr-o o moo -^m** o pga^oo r-o P- mmo pg o m CO *^ in 00 -t -C X *^ coo*-' o oo mco4* in op-p-m p-p- in -jinm m -^ o pg « oo pg oo mo co OP~^ o m«>4 pgoP * oo or~o*in p-p- m o*mm pg «* o -t o- ** O o- — o m -^pgm m pgpg mmpj m mpgpgpg pg*^ -4 r\;pg*-> *^ ^ pg oo ** -* pg

OfOOC'OOCC'OOC'OOOOOOOOOOOOOOOOOOOC'OOOOOOOOoC'OOOoOOOO mm»-^--^pgc.»Clp-m^^u^oomlnOl-^comoc•com^p-moo*^•pgpgm*^O'tmmp-lnm^Jcmf^^pg^t<4•m•4• -^coocup-p-m*o-J-*opgO'in-<^mp-p*ococopgpg^«^ff**oxcfOxacP«jminp-pga>ooi'OOp-Op-pgp*p-p- a-^o^>^p-incopg* ^a>^oopgpgPK*-4'^CPinm^><4>ospgOooc>m'^oin-^*'^mp^Op-pgo^pgcoP^*^p1i ULs~. U«J -^mmomc|pJ»-<^mm*^mmOfnpgpgpj«opg«-t*v <™|pgpgpg«-«pg*H^-«-»mpjmmoxmoi*pg'^ •*-«inP"^'^**mpg -^ p^ o> o «^ pg p^

^

rsjrsj^ fNjf^iCN

o m

ocoooaoocooooocoaocoooooocooooooc^ooooooooooooooooOOUOOOOOOOOOOOOaOOOOOo

-JXZXXZXXZXXZLZZXXZXXZX...X z z .zzxzxxzxzzzxzzxzxzxxxzx

180 enrtmrninenmminmmeninenfnenenenenenenfncnenfnenenenenenenenenencnenenenenenenenenenenenenenen* g o Ui V) o o o o o o o o o o CD CM § •o •* •o ? 2 en &• CM e* u\ 1 o g m § £ r- r- CD o> in en in CM CM in CM r- >r « en r- CO CD en in a- 4- en

e 00 0 0000 O O O O O •o m co r- en PH - r- o f- « -C O) CM CD «• en en r- •* * O en » r- -« 16 »4 m in in m r* CM 4- in en -4 CM in p m co o> •o in m « m e» in en m o

O 00 o o o o o o o o •* "i o -o PH o e> co o m ° § ° en ^

o O o o o O o o o o o o in co en rg 0 ^ « r- en in o CM 01 •* in CM CM eM -i r- en CM

O O 00 c O o o c c e o O en

o. O o O o o oc en in cr o § •O § o en 00 m g oo -< en CM CM 0 O m * o- o CM 3 in •o ? en e» o •o -o "CM 4- o rn CD o- —

O o o O o o o o o o o o o O O Z V en in CO -- CO m -o .o •o -c o m a) in < I/I N m eM m CO (J. f- co 01 O in o- o o CD in O en 3! en

2 o o o o o o o o OC O1O O O O OQOC?OOC OC O O o ** CO CM r- at M CM in in CM-* C e- in in o in o N en enocc^cMmcM o> ir> o exi r- co in a> in en co -^ coco o> o> en rvj m -• m o o m »co o> 4- CM t- X vs j o- CMK ^^ en ** in cc

oooooooooooooooooooooo oooooooooooooooo & a o. « ot rfu **•«/! UJ UI DC t- o o o o o o <-> o o o o o c. o o o o o o o o o o o o o o o o c . o t. o o o o o c o ci o o o o o o r- o o o

t <( I t X [

CD

CMexjeMeMeMeMCMeMeM' *4«^«H»^M4*^vrfMt^4l

•O in ooaoooaooocaoacJoooaoQoodoodoodocQoooocSQoooooaoooouo OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOOCOOOOOOOOOO en <<««<<

l-t-t->-l-t->-K>-t-r-K>-k->-l-l-t-*->-t-l-

o o i ex o o < aauj u. i iVn. -< CM

181 z o&oc*&CtC>c*&^**^^^^^^^^t^^tvMWwrv^w^rtrtrtrirtrt^t^. ^&& <#•&&& *f^t*<4-*<***<*.*-*** *•.*» ** * <* * <» * * UJ

O C C C > O C • O O O O C- Of* O C C; r; CO ft ft «c ft (^ — ** ft *•* if. CD •<) (^ m%oo^ ••* o tri (M O1 *f< f) U"* ft «* iri Q «* ft r-ccr^c CD in if- *»• o h-

c c c c. o o c- o o c o c- c- o o c o f- f- f. *e *o rv. h- •«* <*f^ ^4 f\j i— "C c «t iri ir> ^if\J«NjO -*Ofh-«*^ ryC-»-^K»*OC •-• 1*1 If, O OC.-C.COC OCOC *c K o* c- if- h- ^ cr- ir -H ^-^ r- ^ »HcotfiCt ^-o-o-4 eto^(VJriJ^" ^»r. coir;

r. o o c*--oC- oc ucc/o oe c*c, ir. ir CM -« — h -j if- c. ^ f- ^ o. -4 x r- i*t ry •-I Csj O- * If. * C ^ f-^rr-c- if1. *M o ^ ^ "~* f^ffoco ^i ^

oc c. oooc- c ' c cocc oc G o ^ OCCIT. r-^o«* mo1 rr>—*c*j^j fnir cjr- _ _« K ir> o ITV

o o o c: o c- o c- o C- c« c o ri o o c Qt^trr^O'- fM-^ooo* r*t*Of^f»if*'io> o^oof^ O O «^ f-t (*t ^ ft fn ^^ ^-^ r*-o* ^jo^ oo o cj &f ^- rsjrt'n oif«(f.m o- f. iti m o •"• o»h-

^:»- oo o coc^o oc-c-o.c*o ooo o 2T f^ rg O ^ CD <* >o >O o 0*00 oo %c o ^ CD O CM O 00ft<^^ h" ^* f\j -^ (7s 00 mO

OO O C'O O O O C C* C O C C- C COO C; Ow C C/U O OCC* ^> CO C.C- *-«>o >» u>in -* cc rj *j a- m -* r«- OL ^ «of\im cr C1 «"• * >c m Is- r- m -4 CD r. co u> eo -^ <

cccj-cro orcrC'O'U'OCCrcr-crO'OoooCT-cro-o ct cr cr- a. cr

eM OOOOOOOCOOOOOOOOCOOCCOC3OOOOOO3COOOO3COOOOCOOC'

rg •** o

182 c- c O O C coo r- o- m cc -< oc o- o o — *rfi IM V in o c- cc o IM en o- cc o cvj o o c. — o « * in « cr rg u> ir. rg If -* IM If P-I c> wa rg

o c. cc. c o c o c. c. c o c/ c ir. -4 fl C1 -« ir.

O c, c o c. o c- t, I*. r* cr •M m o •fj •* a *- f. o t O •- C •t if, -O •c •* -c fvi 0 IM O •c rti rj f, IVJ O c». C m en -* tr a. — o C- C- O c c c O C c c •c a. o- •c a •t o •C -o it, -fi a, a o- -o o IT ff vfi -. a ^ o- -c

C C. O o o o o o o 0 0 CM •* ->• O o- o r- o O O- G—O oo •o t~ in •C •o o CO rsj (M CV. in

o O o o c o o o o •G •O a- -* o r^t in ^ c o •O CO f- — o O ^ in c> rg in CT- a 00-0 en O 00 -O — **> ^ - M M -O -t .* pg m m tr. r— c Ci O C O C-O C/c O O C C- C O O O — o -c rgm ^ IM ctpa rg en ?--** ^-i in rn •* X O i -- O CM -J-U*. C ^ -CCS. 43 IM co rg r-0- oc en if' o— f- o- z: o — UJ Q. I U- c- c o o c o o c> o o ci o c o o c o o c c.- o o o o o o o o o o o o o o c- o o

<5UJ a (/) UJ rg ^-- —i m .43 »« .^ »4 _< UJ OL t- O '7- O O t» O O C r-> Ci v-« C O *-4 O n 0 O O O O O C C- O O •-» O O O C. O O O O O O O < C- O O n O O O C- O C O ojoo»^^r*ocO'Ornor-ccrg*iu^fwcD <*O>-OCDO

rgrgrgrgN CMrgcMrgrgCMrgrgrjrgcMrgNCMrgrgCMCMCMrgrgrsirgrgrgrgrgrgrgrgCMCMrgrgCMrgrgrgrMiMiM^rgrgCMrgiM^ rgrgr^

rMrMCMrgracMfMCMrgrgrjrgrgrgrgrgrgrgrgrgrgrgrv^rgrgrgrgrgrsirgrgcMrgrgrgrgruCMrgrgrgCMrgrgiMrgrgrgr^ . OOOOOCOCOOCQOOOCOOCOOC3COOCOOOOOCCOGCGOCOOOCOOOCOOO

IM r- in IM rrzzzzrrzzrzrzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

183 § gl^ ininininihinininininininirvinininininininininininininininin^voininirinui^ininininininin

o o o o o o CD o O C> C x CD s eo o in O •O IT, oo PI PJ m o •o a> o CO O pi o» ao CD «t s CD co CD *O PJ •*• oo m t~ in «O CO

O O O O O O O O O O O O O O OO O -O OO o* in <4 ^> -o ••• <*• -« in m r- cm c «<•. in o- p-\ —i r- -* OD in ~< •* ~< CD M pi p* p- PJ en •or- •«• .* 4-

O O o O o c o V O c o c 4} m _• •» m IT. r- m m c. c —i >t co O O f\J -o OD t~ -t PJ * * in co ro in «M co PJ fo C N »-

c 0 O O O o c/ o c c •o c coo o ^ 00

C o o 0 O o o o C o o o o o o O r- p- o in c o -j in ifi m _-.ir 1-1 «j PJ PJ PJ in PJ PJ PJ

O o O o o o o o o o o c o ct cc § S •o O r- -o o- PJ o in p*i o ** PJ O in in IM in PJ -« i- o CO r- ^ o P^ o o oo INJ in in ^^ ft r- PJ co O P^ o CD •o PJ -I CO O pi PJ PJ PJ in o -O -i PJ

OO OOOCJOOO O o o z Oao •oO>p1\inaDPJPJ o PJ PJ < » P^P- Pj>O^«rf-j>>OO in •o -o CD PJO oop-oar--!)^ m PJ PJ -• r>- mm —i -c f- o> O -" PJ c

o o «J o o O O O O CO c- c 00 C o c o o in •* IT a/ o ^ occo •o j in * PJ 10 o <£ O OJ — 4- in — -j- -o -o m o o- r- mco PJ p- oo PM in fO -4 CO IT. PJ X in PI m m o

JjH XU. OOOOOOOOOOOOOOOC-OOC^OCC'OOOC'OOOOOOtJC'OOOC'OOC'CC'OC'OOC'OO

111 *^ EC I-

^. «/> 0> it:< _,^o-i moo —in -• in -• — inor-mr- —

Z M

00

p-

•c in

^- pgpJPJpjpgpjpjPjpjpJPjpjpjpjpjpjpgpjp.jpjpjpjpjpjrgpjpjpjpjpjrgrMPJPjrJPJPjr>jpjpjpjPJpjPgpJPjPJPJpJPJ ooooooooooooooooooooooooooooooooooooooooocoooooooo

^K»-»->-»->-^-*-h-t->-f-t-^-t-H-K>-N-t-H-h->->-t->->-^-l->->-^-KK-H-»->->-K-KKH->-»->->-lJO.>-

PJ

PJ >. o zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzooo

184 a. (_ — <\j m * «. •or-eoo-O'-rgm^i^^.r-coo'O' gjr-r-Kt-r-f-^c-t-^-eococoeocoeocoeocDeooi ir\mmtf\mmi/smmu%irvtf>irvir«mirtiAirm-irtir\ii%i

o C* CD CU u> CM »*•• IT (M Ut

O C c c. o «• if. c •M •1 c cc

c c o c- c c C' C' o o c> cc rv. m « o ry

c. c. c- «_ -i a. j j j o- o cc cc ^- v. ec rg

c o o o ir\ IT. ir. o -C -li -t cc cc

*-*Z O

o c o c> cr

QC- t- o c> o in f o t' o r- r- c o c. ^ o o o c o c o o c- r. o o- c o o o *< o m o -o •o c o o c o o c o o <_• o o c

o o o o in u> c- o < -< •- r- o tj «.j o o o <11-; c c- c. o i c c. c c c o p o <_• r. PJ N t.• o < > c> c: c- c. c- o o t o i

CO

pgjfMMrgrgf\jf\jfs*f\j(Mi>jryfN]rgf>iP«jrgrg rsjrgr^rMfxjfvjfNjfNjrxjfNjoijrgfMfvj^fM^^rsifNJfMojfNfrsjrNjcg rgfsjrsjrNjfNjfMOJNfgfMrNjfvjfsjrxjr^fNjrtjrvjrgrMrvcNjrvjr^jf^rNJ

•O

^ rgr\jrgf\jrurgfNjrsjrgr>jr>jf\jrgr^ r oocoooococoocoocoooooooooocooocoooooooocoooccooccO O O O O O O O O O O O O O O O ' '• O U O O CJ O O O Ci O O O D Cj C* O O O O O O O O O o o C * O Cj Oo O CJ

^. m "

O O O C O O'O OOOOOOOCOOOOCOOOOOOOOOOOOOOOCODOOOOOOOa.a.Q.tl.Q.a

185 c c

O Cl c. o o o o o o o o ao o o> r- in I- CD o •o 2 £ £ cj m cr 00 •O o -o IN •o IN o oo in in

O c- C O o O O C o o c o o o r- •* rvi or —« ro in ir. cc CT If a 00 en —I 00 •4 IT. IN oo •c oc 00 in o- •o i-« o OC C —i in •Ci o- m •M in IN 2

o o C c- o c. o e o e c o o ,0 -» C c- C\J —I or IT f- ^ _< a _• O >M "* -> a •t o o r\i cc -« o o- m CNJ m r- 00 4 •* cri m in ** I\J M — >f s *

c- <_ c. c. C; O e O (M IT. « r- r\j CO ii c £ u * a o- txj O IT fO 0 -t o M C it, C -0 ••< 01 O •c a o fNJ Cl •t tf< (M -I (M

C; o O o o O c. o O ro o a rr, a O o o -« c in o ou IN IN

c. o •o o O O O o O o a. -o o O- in r~ o co o> o o IN -« o- o o- m C IN IN in 00 in

O O C O G OO o o z fsj -O *NJ ro ^4 o (sji-i ao to < t —

o o o o t- c o o o c>c o ooo oo oo o o fO CO *^ 1 O O ULJ CO f"" f*" l/> ^~ IT1- O O Wi ^ >*• O -^ OC OO 00 O O O* f"- OC *O O O < rg C »^ fM(NJ<\;«-««\j rsjin fO rsj »-» ^^ Q c-

X a O O O O O C> O O O O ft O O O C* C' O O O O C C* O O O O O O O O C O O O C- O O C' O C- O C O O O O O O O O

UJ OC h- Cj «r:> c- o o o o o o c» t_> i.- o o o c> r» o o o o c o o o o r * o o o c_ c~, o o o o o C- <-; o o o o r» o o o c> o o

CO

rgrgfsjfvJrgfvjpgrvjrNjr^cutvjfNjrgrjfvjrgfvj^OsiPw^rj^ f*. (Njrg^rvjrsjf^jrMrvjrgr\jfNjJf^

-O

in ^

CM

r»» (/>i/)*/)tnto«nxaxxowcvaci.a.orctQCtfo£(/>t/)t/)4/)t/tt/)i/>«/>t/)t/it/>KK^3X>-Q. >v ^ oooooooxxxxxxxxxxxxxxxxxxixxxxxxxxxxxxxxxxxxxxxxix

186 § S!

o o o O O o o O O O O o o o » *. m CD o- o- CD OD <-• S o «4 O ct m o m O -? S rg CD m -J -O m o> rg »* M •- rg m m in •e (M

O c o O O o o O O C O O C o -O CD N •c IT g> in I- O r- S « (M S in in § f» O- -" •O o fi

o c- c o o o o o o o c o gj> o in o in v (M C » r- O CO —i in •a o ft tn .0 cc in gj o m * O in i»i m « * r- •* N •4 IM I" 00 rg m •*

o O O o rg o o c, c o c c c o in o rg co CO o "< m « IT. rg O- M CM CO -* in -* « in -« —' m O -* f # in •4- ra rg m m -< CM K f « a -» * m m rg ro

o o O C C O c o o o O o m in c f- r- m CO r- oo O p- r>- m. in f- o in •* * co rg ID in co o en CN rg o rg rg

o o O O C-COOOO CO O et «n •o rg O* CO m *^ co CD fg *^ «t o rn in O CO in ^ m — -i^imrg gj>g> rg CD «* rgomm^co *^o^ m O O — rg rg m_4rgrgg>-^ m^^ rg o 111 " o O o o O o O O O O O 00 O o •o m CD CO r- CO g> rg rg CD co r- m o- in -o m o o •o ~* o» g3 f. *c o o _- m •_ in o< o> Cf ^ o f^ 4 *o g^ r^ - S m —i rg rg rg rg o rg -J (M rg

O O OOOOOO O 00 o oo o C- O OO O o o o c oo o ooo o c, o <_••-> ro m rg in oo 4- rg •0 + ~o rg co r- oo _• o- rg _H -« rg rg rg p^ <-^ rg rg ra

O — OOOOOOOOOOOOOOOOOOOOO COC>OOCOOOOC'O uX U. - .. o ^- _-_-rg-.-Ji-i^

UI ec •- OOOC. OOOOOOO OOOOOOpOCOOOGOOOCOOOOCiCO o o o o COC>OC->OoOUOO K- V> - UJ -o pg in ^ < o in <-> « < X.

rgrgrgrgrgrg.grgrgrg<>jrgrgrgc\jrgrgrgrgrgi\irgrgrgrgrgrgrgrgrgrgNrgrgrg.grgrgrgrgrg.^ rgrg^NrgrgrgNrgi\irgrgrgrgrgrgrgrgrgrgrgi\jrgrgrgrgrgrgrgr\irgrgrgrgrgrgrgN

rgrgrgrgNrgrgrgrgf>jrgrgrgrgrgrgrgrgNrgrgrgrgrgrgf>jrgrgcN.rgrgrgr\jrocxjrgrgrg ooooooooooooooaoooooooaoooocoaooooooooocioouQOoaoooooooooooooooooooooacoooooooooooaoooooooooooccocoo OOoDCDflOffiOOI <««<<

rg >. o

187 CJOO OOO OO O OO O OO O OOOO CD <* o ^- o-^c> mo -» POI»- o a ^* o •* o M ^ •-< fC G CD «4 f«1 OU ^-t CD f^ 00 f*- O CD f> C" C. U"1 "4" OC ^- irv «o O •* 4- (N h- ~* rsj m fn in O1 rj

C5C-O* OOO OO O OO O OO O OCCO h- cc **• «M **- *o c- M cr * mm oo oo c o r^ -* 0» i»* m o c: a o^ ^- o -^ -4 h ro ^H u» cr> irrsj c- m IT. r*- m mf^mi^ ro <4- ^ ^t

c o c ooo oo c oo c oo o o o o o -o e c m m o — ^: «! ^ ^ r- u-' r- -- ^ ^ CD ^H^* •-* O CjCO-^^^-^f-fMfNJ-* fOO-C''© ^T •* «o ^^fsJf-ofWr-.if. r--^ a^crm & a rg ro^fororoi*rfi**^fO .rgfvj^irv + ~*

-c?oc ooo oc o oo o oo o o o c o ^•^ ^ a- t r- F~ r*- ao ocoo^tOaooooOao aof-Oir. \f\ m —* •-< .-(^M^irorM^-^i-i -- — • oo fo °^

OOO O'OO OO O C/O O CJO O OOOO ocm^ -^ «c >o in.*- a>«^o ^ ^ 1*1 u> motro^ 1 (r O O *-* f^ (M —• —* (MiCt ^ O 00 CT^ ON IT\ O—' t-irirsjtn

^ h- OOO OOO OO O OO O CJ O O OOOO zrvjtn in m tr\in h- O o s» ro xo ccrsi miMoo ao -o ao m o ao «^* --» m macor\j'4>u>«-iiA^)Ch o ^ o* -^ __ i« •#• *fr ^ ^-« ^ ^ O C C' O O O O ^^ •-! 1*1 ro r^ot^^co oo mcr g^ c- fitfr^tro u* oo^- 0*00 **• •-* o* O u- ^* ^— ir\jo — » co m -^ -^ o rg go- y lU. OO^'*O'4-C'r-I^OOOOOOOOC>OOOC'C'OC. OOC-O COO OOOO COOOOC- OOOOOOOO O. o o oc^ inopa-miT'OOf^^^) ^(r^^ir. (r4-h---<'4-4r<>copgOifori--^-if\r^Of*i'4O'p'*'-|i*'OO*f^^u't

oo cc r« c, c c m o fn c. o c_ o o o o C' o c- o o o o o o o r> o «.> o o o c o o ~j c- o» <_» o G *.-• o

jcg<\Jf\ir\if^rNj^f\jfvjn^

. coooaooooocooooodcoooooocooooooocoooooocoooooooooo CO OO O O Q- CLODOO-OCaCOOOOOvO. oOoCaQaDO3O3cDO3CCaDaDCDoOOQaQcOO3CDaQCDoOaDOQaQOQOOo3aDO^CQOCiiaOOQoQ

OOOOOOOOOOU.ILU-U.U-U. «*t/tt/>*/)i/»i/>OOO^.j<(/>t/lCO^-OOU.-J*/>*/>Z X O O U. U. u.u,u.u,u_u.-5-5->_jx3:xri:xK33<X*>->*^^^

188 § K; o Ul o o » o o o o c- o o o 1-1 «> r- •M CD O O It tt o CD 9. oo CO m a -> IM o< cc p it in f. »t o o> — oo it h- o in a o * «o It IM CM * •*

O O it fi o o O o o e> o p- «o o- r~ a IT. it in o CM c m «

o o ooo o o IT. IT. N •c C*D C•*M IMIt O -« It O- O- -t

O c c O O Ci C c, K C. CM CM <» f o V. ec o C- — IM IM « (M IM m It o o •< in to v. CM IM CM •a ct *

C O C o ooo c. CM a> it INJ cc •-< tu •c If. •4 CD *H ^ ^

o o O O O o o o o a it a co o o- m M -C CO •-* IM •o »- •e -< •• o ^4 IM O o — •* O f^ m co f- o — in co fM -^ m — CO -^ •-* in ct

X »- o o O O O O O O C z a> cc CO m l~ m v o- 4 IM *IM

O ClOOO O UC' O O U O in r-««ta> o ro -r -- ir, « CM co >o It INI CD in CJ* m iMmo>m IM a m •* o- IM -«< IM IM *4 CM IM «M o- I u

cc. t-

»- 10

•O

in ooooooooooooouoooooooooooooaoooooooooao ooooDooooocooooooaQOooocoooooooo^caooooo

of o

o OoOCOOOOOOOOOOOOOOOU-OU o

189 APPENDIX 11.4 ORIGIN - DESTINATION TRAFFIC TRENDS

Several examples of the city pair 0 & D traffic are shown on the following pages along with four trend fitting techniques for each city pair. These projections based on twelve years of data were examined along with other socio-economic data for each of the cities to arrive at a 1980 and 1985 forecast. Multiple regression techniques as well as data interchange between the Douglas Marketing Department and the domestic airlines were used to refine the city pair forecasts for the potential STOL market.

190 I «->.•*• CM *•* - o CM en •*• -i r- * CM O* r~ in en CM o< f- -o in r- *-111 as t- O xO o *o •$• CM in CM •o !• -f * t*\ en co en »^ o< CM ~4 •-< CM i-l as oc in 15 CM

o o o o o O O O O O O O O O O O O C O O O O O O O O 0 0 o o o o o o o u o o c; O O O OO o o o o o C t,' O Q O O I c c. o o o o o 'O O O C O O c- o o o c- 1.3 O O O O o o o o o o

OC Cr O O P- CO CM GO O C" O O O 0 C' O 1 O O . Or ci in m tj- r~ o PJ m m oo in CO 1-1 sC .C O en co CT in CM 1/5 r- in r- m —« m r- ^ i*> i cc t -*• so ff 00 OT* ff CJ> flC *Q %^ in1 *o m f> >o o %r a- ^~ -t o -o co m tv o- o 4- r- & CM GO f~ CO >}• O in en *-t K •-« (M fNJ f\l CO tn **• in in ,£ r*- co co w •t si" st in in o f- o- o fv in ^ r~ co

I o * eM — I ^ ~4 00 -J O f- O ev ,-n o CM CM •f CO CM P- en 0> -0 en r, cr vO * CM sO i l- O vC >t «o ^^ in in 0 -0 xtCM in CM o en ^ •t •* •* -o O< *-4 »>-! ^H CM •—* *~ • CM *H i-* a or

111 0 0 C' 0 O O f.i O C. (J O C> C' c- o O O O o o o 0 0 0 0 O 0 O 0

t' O o o o o o c; <_• '—*^ O O o o o o o o o o o o 0 I? o o o o O t)- o o o o o o o ;j o o o 0 0 o o o O 0 O o o O •:) o o o o

^- : Q 0 O o c- o o o o o o 0 0 a: in r- CO O* f* CM m vn o r- <> O -CMst < a> 03 eo O> O1 CO -O ^ in -oen en m e^ 1-4 a. CM & *O en C7» •o ro o P~ ee* C f- •^ •— i e*> UJ sj- sf ^ in in *o f^ ^ O CMin o *<. 00 O* -H CO -J- .£> CO fj d (T> in -o 00 O — < a -H t-* ~-4 *4 UJ »-* r~4 CM CM CM CM CM PO en en m en en *j- ^

T O vl- i- o r- o *••*••*• -J- I— U! o -o o ~o -4- CM m no no ro en co m m CA ro cr o < CM .-j —< pg ^i rsj or of CM •O

o o o c; o o o «_> O O O C o o c o o U O O O O O D. * < o c o o o o o o o o o o o o o o o o o o o o o o o o o o o a. XI O O o o o o o o o o o o c o a & o o o o o o o o o o o o o O O O o o o a o o o o o o OC f^ >*• •* in GO 4- o r- co o* in cxj a. o oo in in co CM ^i h- in o r~ o in O CM C> «K ^ in * m m o^ ro -< .o ci o^ 0s o CM ^ in o O ro in ^- r~ !• in in -o f~ a- o (M IA -c UJ co o ro -a o •*• oo « •-H (M CM rM CO m ro »4- in in •o r- co o- o

CM -^ •*• ~+ oo -^ O f- o O~> CM >~i -4 CM ^

O o o o o o o o o o ooo O O O O O o o o o o o o o o o o c o o o o o o o o o o o o oo o oo o o o o o o o o o o o r x o o o o o o o o o o o o o o o o oo o o o o o 00 O O O O O ill o o o o o o o o c> o o oo O~ GO « O~ CJ f- »< CM o -o z oo in CO •* -O -O O m GO o> m CM o co in -< h- -< in eo •* co in r~ co o> o> CM CM en in oo a- o> CM oo r- oo •f o> in tf> t-i in -j o 0s CM ^j rn -H CM m o f^ -o r~ o 01 s 4- in in « P- 0 o CM m o O co i_i m *o o m r- -H in o> i >t co eo GO •*• o. ^ CM CM CM »O fo en * •<• ^ in tn ^ -O r»

oC o> o -^ CM m ^ in ,0 r- o> o CM en oo o •-" CM en ^ m in -o * -a -o -o o> o> O O o o O >• o o o ac ac IU ui

191 X O CT CM 00 O 00 1- co cr ro in co «o c- rj in cr m o r- ~t -i oo o •*• CM o co r- ^ 1— UJ s jl t- 0 0 -t CO •!•CM in r*- o 0 oo cr o 00 co r~ in in in c < CM -H — CM r-l .-4 \ r-t CC Of cr IS ro

UJ -J 0 O 000 C- C1 O C O 0 O O 0 0 o o o a c> o o o O O O O O O 1 V < 0 O o o c-C' C c a o o o o O O o o o 0 C' 0O <-' 0 C 0 0 C 0 _J o c o c. c c- o o o o u o o o C' C) O C o o o o o o o o o o o

CC' of. Q o o 0 0 0 c:- o o o o c. o cr —I CM CO >o t-4 O ^ CO m m *c* ^o h* •z •-* cc cr 0 U- in oo o iTi cr ro in m rr. CJ in oo o o o

Tr 0 0 IT. CO CM CO CM cr (O ro co cvj K r- c\j r- CM f- iC •-* '-C ^^ *O UJ CM CM CM (M CO ro -4- >$• in *o *o *£ IO •o r- r~ or co £££ c —> ^ rvj fvj ro m

I c- a CM or c; oo r- oo cr ft' in or *o O ro CM -^ O1 TO ^~- -O ^O fSJ

1 o o *$• CO *t OM ITi r- >o o oc cr o O ^ «•> f\J CM fV (N. tM rO C

LLJ UJ C; O 0 O O0 O t O c.i o O O o o C' O 0 o o o o o o o o

i O 0 0 0 0 O 0 o o o o o o 0 O 0 o a 0 0 O 0 O o o o c- o o T I C' O 0 O Oo o 0 O O O O 0 CJ> 0 O o O o o o U 0 O O O C, C- C3 cc 1- O 0 O O O f- CT O •tf- m h- co cr o o o o o o o z: 1 :? -H oo a- o in ro CM OM--I O o^ ocs r** %o in CM ^ "O >O CM r*- •-* >f co o in o >f 0 -^ cr^ ^~ s- in oC' CMro CM cr co ro oc CM a cr CM >}• r- CT CM UJ CM CM CM CM re1, *t m ^o «o *o X K f^ CO 00 CC C UJ 8 6707 2 X c- cr CM CO I..- cc r- co or ro in co >o CO 9 6458 1 ] ao t~ *o o in in ^ f^ ro cvj r\i in 1 X (- O C' •4- ro >t CM in r~ -o cr oo cr o o ro co co ro ro ro ro ro CO ro rO f' ! ro PO ro r*^ ot of in X O i-^ a UJ LLt 0 <-• o o o C' U o o O O O o 00 O O O O <-> 0 o o o o o o o o *: t s f~~ 0s m QO ^ m cr a. r- CM co %o cc >t >>- 0 in co •* CM f^ *-l -^ 00 O in ^ ro -* r- C 0 O' CO CO CC CM Q -4 .fr CO >£} CM r\j *o ^ ^" m 8C50 C 7C72 C 7318 4 ] 4225 0 1 5260 2 ] CM CM 2521 0 ] 2868 C 1 3269 0 ] 3360 0 1 ^ in •£ %o >o UJ cr o ~* cr CM m co c\j ,0 ^i )EMAN O 13441 0 ]

X o cr CM CO O CO f- oo or co m co -o o ~H in f in o r*- ^ -* CO ^ *tf- r\j o oo t— <*• *— UJ o o "^ CO ^ CM in r- -c cr co cr o CO ro h- *o ^ ^ O CM oc of or 0 r«

UJ UJ o o 000 O 0 O O O O 0 0 0 0 000 o o o J O o o o o & o 0 0 o o o 0 0 o o o o o o Cj O o o o o o o 0 0 o o o o o o S X 0 O o o o 0 0 0 O O O O O 0 0 O O 0 o o o 0 0 o o o o o o

CO UJ Q 0 0 o o o o o o o o o o nr —4 CM ro ,£> -< o •$• *oor ro in m «c >o P"- Z <^ QO cr o in in co o m cr co in in ro O in co o 0 0 oo m «-^ ^ o X 0 0 m oo eg CO CM cr co co cc CM r- CM tv ^ ~* UJ CM CM CM OM CO CO * O r- ao co O -i •-t CM r\i ro ro

o o ~i CM 1*1

UJ UJ O a. of UJ UJ

PERIDO T <

192 I o -o o r- in ** m in o >o c\j o« >o •*• CM o- O» CO r— >O m in f-OJ 00 •o o r- in r- I CO OB

I o c O C O O O c c- c> c o o o o o o I o o o o o o o C' C. O C< O u O O O C' O O O O C' O o o o o o o I o o o c o o » r-4 CO ITl C\J O r CM CM •-I «-i >t *O —I (VI 00 O O f. in ao <-" m ^3 ON ^ ^ r- o j in co ~J UJ ••H ^ »* ^-< rv CM CM pn -t •* >j- ^- IT in in m >c -o >o r- r~ r- oc o

tr. o '- o U\ •-• O 1>- 00 * o f- in r~ o - CM -- C c< I CM —i CM

T LU O O o o c. o o CJ O <_' O O O o o o o o o o i— ec • • O O O O o o o t? o I * < c:, o CJ O O O O <_• t.i (~ O W O O O O o o o o o !J O O O O O X ? T O O o o o c- o O O O O O O f- «j- ^- m in in f ir. r- m CM tr\ ^H ^^ jn •O ao O CM ^ o CM -t •o a> o CM >»• ^^ iM ^ *O •—» x CM CM CM oo o O co a O> ir\ CM oo •*• o -o co (j1- in —l f- >»• CO -O ~4 ~* ~* w-4 (M x >* in -a -o l^ ao co a- o o -4 ^^ CM (*> fO

X o -c o f* in r* !<•, in o *o CM o ^ NO •C t~ r- t~ r~ CO 00 CO 00 0- (7- o- o- a a> oo 1 o o *o o r * in p- Nt f- -c co or. CM CM co rococo eo co eo co PO eo CO CO CO CO CO PO C£ 3C CO CM

UJ 0 fc ooooo o o o o o o OOOOO OOOOO o o o o o o o I *«* r> o ooooo o c o o o o OOOOO ooooo C 0 0 0 0 0 * X o o o o c o o O C OO 0 0 ooooo ooooo 000000 I < ca o ooooo C O 0 OO oc -i NO o o in a r- O r- O NO _. st a> o NO ^ fO *f\ >O M co ^ m ^* fo CM eo ^H .H eo CM O NO N^ eo p* NO eo CM PO (\l *^ U^ O^ O^ ^4 ** **• *Q 1-t CM 00 O O CO o N]N ^ pO CM CM Nf CM ~t -*

1201 0 1 1208 C 1 CM CM CO •* •* UJ N^ m NO r»- co ' o* o CM co m r- O eo NO O

OEHAN D M -^ «M r-l CM CM C\J PO

O r- in i in o NO CM c ^ CM o •-• CM in r>- * in o ^ o in -< N. ^ o en t-UJ Z»- C O NO o f- i •4* r— N•O0 co ioo CM O « in * o» PM ^ o o o> O> C7^ CO 00 CO «••< O <

T 111 o o O O OOO O ooooo o o o o o o o o oo o o KCC I V < 00 ooooo o o o o o o ooooo ooooo o o o o o o f T 00 o o c o o o o o o c o ooooo ooooo o o o o o o o UJ o o o ooooo OOOOO of pn o CD o in in ao >o r- •»• in -< CM o- o -l OO in m t- r- ^t• O o ^ -O r- ^ o in -< M oo o r- o co CM -« in •o a o m •* in h- m ro o -* o >O eo -o CM en CM •o oo o r>- -C in * * in r- o< CM in o> >>• o -o UJ ^ -. ^4 .-i CM in in o co o —' o _| ,4 ,4 (M CM

ae -< CM ci •»• in -o r- co o o -* CM PA •*• in ^4 CM m ^ in < in e o r- r- r- r- r- K at r> o> o> (r o> O^ O* O^ (7* O* f> o- o- o> o > UJ UJ a O o a oc Of UJ UJ aUJ

193 I O r+ o in •* -I oo in m co o eo r- in •*• K ULJ • • 31 H- O O m r- m M oo * •» •*•».» f\ fO (^ f\ < O 1 ~* f~ or. ec o O o > 111 O O o o o o o o o o o o o o o o o o o o o o o o o o o o o O t- or • • *• < o o o o o o o o o o o o o o o o o o o o o o o o o o o o o XI O O o o o o o o o o o o o o o o o o o o o o o o o o o o o ae 00 o o o o o o o o o o a PO ^ 03 r\j o'- CT * fO f- 03 l/> Cf ^ CO CJ IT 00 Ot IT O- — OS O> Pg •*• I/I er PO m m o 03 1-4 •«• in in ,t _. co m p- o cr -o r- oo -«cr •>*• co cr a o o o o a a oo p- 03 if\ .j- eg ii cr —I pg CD CM tn fi O r- ~< O> O iM in P- tr- >-4 PO 4- * oo e> Cg Of *O OD 0s 00 CD cr cr _< pg •« 03 03 00

m •-< o eo v •»• O O1 00 00 f- K- UJ • • — o •» I— O O co o> pi on o -*•*-» m CO 1 m PJ M

o o o o o o o o o o o o o o o o o o o o o o o o o o o be < 00 o o c- o o o o o o o o o o c> o o o o o o o C' o o c c» o I III/I O O O l_' O O O o o o o o c. o o o o o o ci o o o o o o o o o o 1 o o c .00000 o o o o o 0- o s o* o- O Z l^ CO co IT. cr —i -c ^ -o a- r»j «*• >c o- M if> oo ^ •*• h- o m o 0 rg m CD < —" ro o a —• r- oo •^ a -* M o- •-< m >c or^ o Ci in r- O ro •41 g3 O1 "^ fO I -H 0- (NJ CO fVJ l^ fl o h- ^ os o a o^ r^ IT f^t (\j O co -o ir. m -* O- r- * * LL CO CC O^ o t-« og «^ vC ^1 OC O- T X O- C. •* is: ro -»• .*• m >o p- co an o- c- -< ^H r\j rg rj c\j r>j rg rg r>j ro rg r\) ro c«^ f

*~* «4* CO O*" **^ pg K »-* in P- P- 03 03 03 03 in in in in in in ^3 X I r> —' o in. •* P- 03 03 •—« O Cl (** p" ro cr m oo PO O* O* ^ cr cr cr cr cr O 0 < V* •-4 •-< ^^ f—4I ^ X 1 p- or or in o CO o o c> O 0 0 0 O C- O Ci o o o 0 0 o o o o o o o o O O O C' O O 0 0 0 0 O 0 0 coo o o c> 0 0 000 o o o o o O C.i C> O O O I I 0 O O C 0 o o 0 0 C 0 0 C> O 0 000 o c, o o o o o o o o o < u ] O o o o 0 O or in cr ro PO oo in — o >r ^ p- in o a o -^ PO ro p- -< PO O x (o -^ in pn o o- ->p- 00 o ro c- o a? r- eo in o o- •*• c- PO 0 Pg O3 Pg ro pi a; 03 x

8115 0 ] 8938 0 1 u. in p- o (O »C tr (O P~ PO r^ rg co in 16C11 C 1 18149 0 1 19822 0 1 19C94 0 1 16796 0 1 DFMAN D L5 20948 6 ] 22978 7 ] pg (\i r*\ fO fO rt^ ^- J- in in 03 03 P-

o -• o in -a* *-t * ro O •£ ro o X in ro (N. O • • o o •c >c IT. in m in n -a p- ac or o o r--

c o o c c.« C 0000 C: o r. o o o O O O O O ' O C.) C_ C O f. O c o o o o c o o c. o c. o o c o c; o o o i o o eooo o c_- o o c- o O O C1 O C-' O O O C' O ' o o cj a. o - o c r o o o r- o o C' o or pg -t x cv. (T cr -» rr r^ a? in ^ ^^ po M z cc o& in O1 -• -o -< >c c- P»J •* O- PS) ro PO tj go ^H ^j- in in >^ ^^ cc pn h- o c- —• r- x -« cr •* PJ c- c- c- o o o cr o- x r- oj tn >*• pg ^^ O- (M x- r\j in ro o P- -< or c. ro in p- cr -H pg -t 05 CP C' Pg s}- -C X' O" (T J- _4 (\J ^ -o -o x o- o- c: O r* fNJ p-) IT or P- x cr —i (v ro -}• in *O Q- rg PO PO Pg pg pg pg (M Pg p";

-+ Pg fO ^ in cr o- o '•-" po («••$• in 03 p- on cr o —< PO fO •»• in * 03 xO -O -O 03 -c r~ r~ P. r~ r- p- p- p- p- p- cr co x oc co or> cr o- o- a- o a o u> C O o

194 APPENDIX 11.5

DOMESTIC PASSENGERS VS STaGE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS - DISTANCE

RANGE CATEGORY

CITY PAIR ST MI 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 3?2-482 483-643 644-804 605-965

ABE BOS 98S62 ABE PIT 116187 ABI OAL 647B6 ABQ DAL 210333 ABO DEN 259381 ABO ELP 134499 ABO LAS 165479 ABQ PHX 158172 ABY ATL 58120 AGS ATL 197483 ALB BOS 179366 ALB BUF 221477 ALB CLE 78066 ALB DTT 106587 ALB NYC 297428 ALB PHL 133185 ALB PIT 76018 ALB ROC 92175 ALB SYR 56317 ALB WAS 184466 ALO CHI 82123 AMA DAL 216258 AHA I AH 68783 ASE DEN 60366 ATL AVL 55066 ATL BAL 239223 ATL BHM 173879 ATL BNA 306485 ATL CAE 276279 ATL CHI 778460 ATL CHS 206933 ATL CLE 238357 ATL CLT 228583 ATL CMH H6693 ATL CVG 174631 ATL DAB 65093 ATL DAY 96364 ATL FAY 64496 173962 ATL FLL ATL GSO 218118 ATL HSV 82603 ATL IND 133079 ATL JAN 161468 ATL JAX 400738 ATL MCO 269982 ATL MEM 417277 ATL MGM 125836 ATL MIA 791473 ATL MOB 158767 388519 ATL MSY ATL ORF 141111 ATL PBI 127800 192157 ATL PIT ATL PNS 109049 ATL RDU 274751 ATL RIC 132832 ATL SAV 336176 ATL SDF 230622 ATL STL 242609 ATL TLH 89487

195 APPENDIX 11,5 . (CONTINUED) DOMESTIC PASSENGERS VS STAGE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS - DISTANCE

RANGE CATEGORY CITY PAIR ST MI 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 322-482 483-643 644-804 805-965

ATL TPA 441310 ATL TRI 63158 ATL TYS 108096 ATL WAS 594920 AUS DAL 370785 AVL NYC 64296 AVP PIT 60750 AZO CHI 73397 BAL 8DL 195322 BAL BOS 370899 BAL BUF 65522 BAL CLE 151275 BAL CVG 87136 BAL DTT 191946 BAL IND 63054 BAL NYC 599817 BAL ORF 131875 BAL PHL 193003 BAL PIT 235810 BDL BUF 111581 BOL CLE 214321 BDL DTT 241799 BDL NYC 193024 BDL PHL 250453 BDL PIT 185466 BOL ROC 89112 BDL SYR 64019 BDL WAS 386331 BDR BOS 68259 BDR WAS 65562 BFL LAX 64710 BFL SFO 80413 BGM NYC 90805 BGR BOS 179163 BGR NYC 82571 BHM CHI 137576 BHM DAL 93047 BHM IAH 63560 BHM MEM 84998 BHM MOB 81368 BHM MSY 103153 BIL DEN 101720 BIS MSP 57004 BNA CHI 241920 BNA CLE 87054 BNA CVG 52022 BNA DTT 73870 BNA MEM 178732 BNA MSY 71098 BNA PIT 56058 BNA SDF 51567 BNA STL 101493 BNA WAS 154145 BOI GEG 78103 BOI POX 148532 BOI SEA 134944 BOI SFO 1344A8 BOI SLC 107124 BOS BTV 68202 BOS BUF 309845

196 APPENDIX 11.5 (CONTINUED) DOMESTIC PASSENGERS VS STAGE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS - DISTANCE

RANGE CATEGORY

CITY PAIR ST MI 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 3?2-482 483-643 644-804 805-965

BOS CUE 421332 BOS HAR 86954 BOS NYC 6907105 BOS ORF 191084 BOS PHL 1707300 BOS PIT 404980 BOS POI 57258 BOS PWM 84224 BOS ROC 262728 BOS SYR 276658 BOS WAS 2453000 BPT DAL f)6542 BTR DAL 80167 BTR IAH 103541 BTR SHV 67262 BTV NYC 164159 BUF CHI 3122*9 BUF CLE 62060 BUF OTT 150949 BUF NYC 1227913 BUF PHL 316676 BUF PIT 101086 BUF MAS 231329 CAE MIA 82592 CAE PHL 78199 CAE WAS 135687 CAK CHI 177915 CAK NYC 112072 CHA CHI 68884 CHA MEM 54318 CHI CID 171281 CHI CLE 968940 CHI CLT 136868 CHI CMH 480830 CHI CMI 111353 CHI CVG 541012 CHI DAY 339171 CHI DEC 49747 CHI OLH 94121 CHI DSM 352393 CHI DTT 1651370 CHI EW 165395 CHI FNT 114330 CHI FSD 63377 CHI FWA 108703 CHI GRB 103796 CHI GRR 122662 CHI GSO J36253 CHI HAR 134094 CHI ICT 134590 CHI IND 538212 CHI LAN 118521 CHI LEX 76320 CHI LIT 106822 CHI LNK 81619 CHI MBS 163805 CHI MEM 464401 CHI MKC 887797 CHI MKE 94149 CHI MLI 104904

197 APPENDIX 11.5

. (CONTINUED) DOMESTIC PASSENGERS VS STAGE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS - DISTANCE

RANGE CATEGORY CITY PAIR ST MI 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 322-482 483-643 644-804 805-965 CHI MSN 160331 CHI MSP 1876763 CHI OMA 324412 CHI OSH 58368 CHI PIA 144415 CHI PIT 796667 CHI ROC 235503 CHI RST 156197 CHI SBN 93487 CHI SDF 417013 CHI SGF 60283 CHI SPI 125750 CHI STL 1540859 CHI SUX 81961 CHI TOL 170001 CHI TUL 155430 CHI TYS 94022 CHI WAS 1261159 CHI YNG 110286 CHO NYC 66013 CHS MIA 69907 CHS ORF 94319 CHS PHL 93398 CHS WAS 140873 CID MSP 67213 CLE CLT 66428 CLE CVG 131180 CLE DAY 93559 CLE DTT 407967 CLE IND 157410 CLE MKE 155881 CLE NYC 1522841 CLE ORF 54642 CLE PHL 473335 CLE PIT 97440 CLE PVO 53099 CLE ROC 93700 CLE SOF 117842 CLE STL 250873 CLE SYR 81398 CLE WAS 428466 CLT DTT 69782 CLT NYC 572060 CLT PHL 151944 CLT PIT 68458 CLT WAS 153963 CMH DTT 130419 CMH NYC 624804 CMH PHL 217083 CMH PIT 63395 CMH STL 97305 CMH WAS 274670 COS DEN 81181 CPR DEN 97385 CRP DAL 199666 CRP IAH 84571 CRW NYC 112152 CRW WAS 109769 CVG OTT 204866 CVG MEM 63723

198 APPENDIX 11.5 '. (CONTINUED) DOMESTIC PASSENGERS VS STAGE LENGTH - 1965 ORIGIN DESTINATION PASSENGERS - DISTANCE

RANGE CATEGORY

CITY PAIR ST MI 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 3?2-482 483-643 644-804 805-965

CVG MKC 65555 CVG MKE 50793 CVG MSP 62674 CVG NYC 60212? CVG PHL 177702 CVG PIT 85817 CVG STL 175606 CVG WAS 207437 DAL ELP 269618 DAL IAH 945267 DAL ICT 119263 DAL JAN 103401 DAL LBB 357891 DAL LIT 190018 DAL MAP 248220 DAL MEM 261210 DAL MKC 356629 DAL MSY 489430 DAL OKC 395414 DAL OMA 69798 DAL SAT 5429P8 DAL STL 368753 DAL TUL 297403 DAY DTT 59743 DAY NYC 411354 DAY PHL 152895 DAY PIT 95062 DAY STL 93642 DAY MAS 224038 DEN ELP 95734 DEN FSD 58657 DEN GJT 179175 DEN ICT 150371 DEN LNK 70200 DEN MKC 394916 DEN OKC 143235 DEN OMA 196002 DEN PHX 309198 DEN RAP 57194 DEN SLC 425691 DEN TUL 120429 DLH MSP 57230 DSM MKC 85436 DSM MSP 151048 DSM STL 117223 DTT GRR 54446 OTT INO 184835 OTT MKE ?24064 DTT MSP 334726 OTT NYC 2076400 DTT ORF 72180 DTT PHL 655940 DTT PIT 325334 DTT ROC 160924 DTT SDF 258395 DTT STL 422559 DTT SYR 109554 DTT WAS 611733 EKA SFO 1576B8 ELM NYC 130344

199 APPENDIX 11.5

(CONTINUED) DOMESTIC PASSENGERS VS STAGE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS - DISTANCE

RANGE CATEGORY CITY PAIR ST Ml 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 3?2-482 483-643 644-604 805-965

ELP PHX 89426 ELP SAT 92687 ERI NYC 86208 ERI PHL 66061 EU6 SFO 213152 EWN WAS 52150 FAR MSP 154232 FAT LAX 444000 FAT SFO 362000 FLL TPA 85893 FNT NYC 52961 FSD MSP 77868 FWA NYC Iftl438 GEG POX 206089 GEG SEA 451404 GFK MSP 89138 GON WAS 85009 GR8 MSP 622flB GSO NYC 497703 GSO PHL 86578 GSO WAS 163270 GSP WAS 64697 HAR NYC 148518 HAR PIT 207981 HNL 1TO 977217 HNL KOA 383451 HNL LIH 1036790 HNL MKK 166411 HNL MUE 138782 HNL OGG 899974 HPN WAS 55862 HSV MCO 50954 HVN WAS 70555 1AH LBB . 96111 IAH LIT 68645 IAH MAP 148297 IAH MEM 145294 IAH MFE 64077 IAH MSY 710135 IAH OKC 168729 IAH SAT 200901 IAH SHV 98597 IAH TUL 234225 ICT MKC 67985 ICT STL 213191 IND MEM 66209 IND MKC 83849 IND MSP 81169 IND PHL 194800 INO PIT 113813 IND STL 213190 IND WAS ??5768 ITH NYC 113373 ITO OGG 55354 JAN MEM 87549 JAN NYC 81375 JAX MIA 271975 JAX MSY 66489 JA.X ORF 58641 LAN NYC 59?35

200 APPENDIX 11.5

(CONTINUED) DOMESTIC PASSENGERS vs STAGE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS - DISTANCE

RANGE CATEGORY CITY PAIR ST MI 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 322-462 483-643 644-804 805-965 LAS LAX 3078439 LAS PHX 253710 LAS RNO 277046 LAS SAN 257298 LAS SFO 551750 LAS SLC 151035 LAX MRY 472715 LAX PHX 1362133 LAX PSP 89613 LAX RNO 234180 LAX SAN 2248000 LAX SBA 107385 LAX SCK 55037 LAX SFO 12613000 LAX SLC 394031 LAX SMF 1435000 LAX TUS 480051 LEX NYC 97338 LEX WAS 71735 LIT MKC 54916 LIT STL 96279 LNK MKC 58820 MBS NYC 87165 MCO MIA 144819 MEM MKC 108795 MEM MSY 217939 MEM SDF 98201 MEM STL 236?48 MEM TVS 91452 MFR POX 76893 MFR SFO 93420 MHT NYC 73004 MIA TLH 189672 MIA TPA 399011 MKC MKE 56926 MKC MSP 253258 MKC OKC 128020 MKC OMA 125869 MKC SDF 50624 MKC SGF 69271 MKC STL 357259 MKC TUL 63360 MKE MSP 345273 MKE PIT 75375 MKE STL 123330 MLI MSP 64892 MLI STL 57471 MLU MSY 69161 MOB MSY 65598 MRY SFO 107125 MSN MSP 106147 MSP OMA 226175 MSP STL 283474 MSY SAT 87217 MSY SHV 1780.13 MSY TPA 118079 MSY TUL 64063 NYC ORF 463601 NYC ORH 50775 NYC PHF 138527

201 APPENDIX 11.5 (CONTINUED) DOMESTIC PASSENGERS VS STAGE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS « DISTANCE

RANGE CATEGORY

CITY PAIR ST MI 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 322-482 483-643 644-804 805-965 NYC PHL 208000 NYC PIT 1725380 NYC PVD 328167 NYC PWM 109003 NYC RDU 623757 NYC RIC 309188 NYC ROA 100223 NYC ROC 1119154 NYC SYR 840229 NYC TOL 151132 NYC TRI 75307 NYC UCA 117427 NYC WAS 5473051 NYC YNG 160775 OKC SAT 72458 OKC STL 109573 DMA STL 97935 ORF PHL 218837 ORF PIT 83774 ORF PVD 71431 ORF WAS 192394 PBI TPA 77613 POX RNO 130053 PDX SEA 330454 POX SFO 863453 PDX SMF 61264 PHF PHL 63862 PHL PIT 941578 PHL PVO 162383 PHL RDU 76721 PHL ROC 187297 PHL SDF 138982 PHL SYR 131433 PHL TOL 55323 PHL WAS 291000 PHL YNG 51336 PHX SAN 270650 PHX SLC 135891 PHX TUS 58188 PIA STL 53248 PIT PVO 57877 PIT ROC 78000 PIT SDF 89362 PIT STL 165090 PIT SYR 78551 PIT WAS 414864 PNS TPA 50496 PSC SEA 89487 PSP SFO 81176 PVD WAS 238043 PWH WAS 52647 RDD SFO 61381 RDU WAS 218439 RIC ROA 50820 RIC WAS 61899 RNO SEA 138391 RNO SFO 375241 RNO SLC 66338 ROA WAS 100865 ROC WAS 1929S4

202 APPENDIX 11.5

(CONTINUED) DOMESTIC PASSENGERS VS STAGE LENGTH - 1985 ORIGIN DESTINATION PASSENGERS - DISTANCE

RANGE CATEGORY

CITY PAIR ST MI 0-99 100-199 200-299 300-399 400-499 500-599 KM 0-160 161-321 322-482 483-643 644-804 805-965

SAN SFO 1439000 SAN SMF 108000 SAN TUS 99425 SBA SFO 261184 SDF STL 149387 SDF MAS 198114 SEA YKM 72198 SFO SLC 454937 SFO SMF 204000 S6F STL 72017 STL TUL 97830 SYR MAS 163064 TLH TPA 90342 TVS MAS 197847

TOTAL PASSENGERS <141t879»984) 1853119 24987403 38658454 35221086 26645656 14514266 PERCENT OF TOTAL (100.0) 1.3 17.6 27.3 24.8 18.8 10.2

203 APPENDIX 11.6 AIR PASSENGER GROUND O&D SURVEY DATA

The following eight figures represent a sample of the data base required by Douglas in performing modal split analyses. For each sample city a map is shown which depicts air passenger ground origin and destination zones. Each ground origin and destination zone contains a number which represents the percentage of a city's total CTOL metropolitan airport traffic which either originates or terminates an air trip in that particular zone. The total of all the zones in a given city equals 100 percent. Due to space limitations some of the city maps do not contain all of the passenger origin and destination zones. This is especially true of cities with large metro- politan areas.

204 o O> a(VI a

O CO co co m CO 00 o N to to to q O) O) to «-« cvi in

205 in 10 o i-i j O

aCM a LU

O N

206 o rsi

o I- CQ OC t- 5 u

LU C3 <

LU

207 O in (VI . (K a.

LU z o N

O o

Q o

a

O a:

208 O Nl 2g

tz

HI 2 Q t aQL <

O a: o

209 LU z o N 2 1 m

o

^N

UJ o o Q

O o:

210 211 IO 10 o j 0

LU z o M

O 1 Si

o o LU iL «•- ?oC <"• IQ P

LJ O

oO: CD

212 APPENDIX 11.7 CITY PAIR PARAMETRIC ANALYSIS

The following Appendix contains an example of the parametric analyses conducted in Phase I for the 1985 Chicago-Detroit market. The parameters used in the twelve runs are as follows:

Run No. Aircraft Fare Multiple Seating Capacity (X's STOL Coach) 1 50 1.00 2 50 1.25 3 50 1.50 4 100 1.00 5 100 1.25 6 100 1.50 7 150 1.00 8 150 1.25 9 150 1.50 10 200 1.00 11 200 1.25 12 200 1.50

The modes referred to in the runs are as follows:

Mode No. Mode Type 1 CTOL 2 Auto 3 Bus 4 Rail 5 STOL A description of the terminals identified by number in the following tables are listed below. The terminals marked by an asterisk were used in this set of parametric runs.

213 APPENDIX 11.7 (Continued)

City 1 - Chicago

Terminal No. Mode Description

1* CTOL O'Hare International Airport 2 CTOL Chicago-Midway Airport 3* Auto Intersection 1-80 & 1-65 4 Auto Intersection 1-80 & 1-55 5 Auto Intersection 1-90 & 111-31 6* Bus Central Business District 7* Rail Central Business District 8* STOL Merrill C. Meigs Field 9 STOL Chicago-Midway Airport 10 STOL O'Hare International Airport 11 STOL Mitchell Field, Lombard, 111. 12 STOL Palwaukee Airport ^Terminals used for Parametric Runs 1-12

City 2 - Detroit

Terminal No. Mode Description

1* CTOL Detroit Metropolitan Wayne County Airport 2* Auto Intersection 1-94 & Mich.-14 3 Auto 1-75 at Monroe, Mich. 4* Bus Central Business District 5* Rail Central Business District 6* STOL Detroit City Airport 7* STOL Berz Airport, Birmingham, Mich. 8 STOL McKinley Airport, Fraser, Mich. 9 STOL Willow Run Airport 10 STOL Detroit Metropolitan-Wayne County Ai rport ^Terminals used for Parametric Runs 1-12.

214 APPENDIX 1,1.7

INPUT FOR CITY

CHICAGO

NO OF SECTIONS = 8

NO OF TERMINALS' 12

TERMINAL CONTINGENCY SAG RECL. BAG HAND. AVE. DELAY PARKING NO. MODE TIME TIME COST TIME COST (MINI (MINI • (DOLI (MINI (OOLI

1 i 20.00 5.00 0.05 3.00 2.00 2 1 2C.OO 5.00 0.05 3. OP 2.00 3 2 C.O C.C 0.0 0.0 0.0 4 2 0.0 0.0 0.0 C.O 0.0 5 2 0.0 0.0 0.0 O.C 2.00 6 3 20.00 5.00 0.05 3.00 2. CO 7 4 20.00 5.00 0.05 3. CO 2.00 8 5 2C.CO 5.00 C.05 3.00 2.00 9 5 20.00 5.00 0.05 3. CO 2.PO 10 5 2CVC3 5.00 0.05 3.00 2.0C 11 5 20.00 5.00 0.05 3.00 2.00 12 5 2C.OO 5.0C 0.05 3.00 2.00

TERMINAL NO. I 2 3 4 5 6 7 8 9 10 11 12 SECTION TYPE PORTION OIST OIST DIST OIST OIST OIST DIST CIST DIST DIST DIST DIST NO OF TRAP TIME TIME TIME TIME TIMg TIME TIME TIME TIME TIME TIME TIME

1 1 C.3300 16.0 12.0 38.0 46.0 37.0 1.0 1.0 3.C 12.0 16.0 21.0 23.0 35. C 25.0 53.0 62.0 52.0 5.0 5.C 12.0 25.0 35.0 4C.O 45.0

2 1 0.1590 10.0 10.0 42.0 46.0 34.0 6.0 6.0 1C.O 10.0 10.0 15.0 14.0 2C.C 2C.O 58.0 62.0 45.0 12.0 12.0 25.0 20. C 20.0 3C.C 28.0

3 2 0.1020 20.0 3.0 29. C 33.0 40.0 6.0 6.0 6.0 3.0 20.0 23.0 23.0 40.0 10. C 40.0 51. C 56. C 12.0 12. C 15.0 1C.C 40.0 45.0 45.0

4 2 0.1350 6.0 21. C 50.0 53.0 24. C 16.0 16.0 19. C 21.0 6.0 19.0 4.0 12.0 45.0 67. C 70.0 35. C 30.0 32. C 38.0 45.0 12.0 38. C 11.0

5 2 0.049C 15. C 30.0 65.0 55.0 3.0 26.0 26.0 29.0 30.0 15.0 12.0 13.0 3C.C* 45. C 82.0 72.0 15.0 52.0 52.0 58.0 55. C 30.0 24.0 26.0

6 3 O.C730 22. C 36.0 75.0 65.0 27.0 32.0 32.0 35.0 36.0 22.0 23. C 12.0 4<».Q 72.0 10C.C 87.0 36.0 64.3 64.0 7C.O 72.0 44.0 46. C 24.0

7 2 O.C8BO 18.0 19.0 51.0 28.0 25.0 23.0 23.0 24.0 19.0 18.0 6.0 25.0 36.0 38. C 68. C 37.0 33.0 46.9 46.0 48.0 38. C 36.0 12.0 50.0

8 2 0.0640 36.0 16. C 19.0 33.0 51.0 20.0 20.0 19.0 16.0 36.0 35.0 44.0 72.0 32. C 25.0 44. C 68.0 40.0 40.0 38. C 32.0 72.0 70.0 88.0

215 APPENDIX 11.7

INPUT FOR CITY

DETROIT

NO OF SECTIONS 12

NO OF TERMINALS= 10

TERMINAL CONTINGENCY BAG RECL. BAG HAND. AVE. DELAY PARKING NO. MODE TIME TIME COST TIME COST (MIN) (MIN) (DDL) (MIN) IDOL)

1 1 20.00 5.00 0.05 3,00 2.00 2 2 C.C 0.0 0.0 C.O C.O 3 2 o.c C.O 0.0 0.0 0.0 4 3 20. CO 5.00 0.05 3.00 2.00 5 4 20.00 5.CC 0.05 3.00 2.00 6 5 20.00 5.00 0.05 3.00 2.00 7 5 2C.OO 5.00 0.05 3.00 2.00 8 5 20.00 5.00 0.05 3.00 2.00 9 5 20.00 5. CO 0.05 3.00 2.00 10 5 20.00 5.00 0.05 3.00 2.00

TERMINAL NO. 1 2 3 4 5 6 7 8 9 10 SECTION TYPE PORTION niST DIST DIST DIST DIST DIST DIST DIST DIST niST NO OF TRAF TIME TIME TIME TIME TIME TIME TIME TIME TIME TIME

1 3 0.0140 57.0 81.0 78.0 46.0 46.0 33.0 38.0 27.0 67.0 57.0 100.0 130.0 120.0 70.0 70.0 60.0 60.0 40.0 115.0 100. C

2 2 0 .0960 29.0 53.0 48.0 13.0 13.0 7.0 10.0 3.0 40.0 29.0 55.0 80.0 80.0 25.0 25.0 15.0 20.0 10.0 70.0 55.0

3 3 0 .C430 34.0 58.0 54.0 26.0 26.0 26.0 10.0 18.0 44.0 34.0 62.0 85.0 90.0 45.0 45.0 40.0 20.0 35.0 75.0 62.0

4 3 0 .0940 26.0 50.0 46.0 22.0 22.0 21.0 10.0 19.0 36.0 26.0 50.0 75.0 eo.o 35.0 35.0 40.0 20.0 35.0 61.0 50.0 5 2 0 .1340 22.0 46.0 40.0 13.0 13.0 13.3 5.0 16.0 32.0 22.0 45. f> 70.0 70.0 25.0 25.0 25.0 10.0 30. C 57.0 45.0

6 2 0 .0750 22.0 46.0 40.0 5.0 5.0 1.0 16.0 10.0 32.0 22.0 45.0 70. 0 70.0 10.0 10.0 5.0 30.0 20.0 67.0 45.0

7 1 0 .1240 16.0 40.0 35.0 6.0 6.0 9.0 10.0 21.0 26.0 16.0 35.0 65.0 65.0 12.0 12.0 18.0 20.0 35.0 50.0 35.0

8 1 0 .1230 18.0 42.0 35.0 1.0 1.0 5.0 14.0 16.0 28.0 18.0 40.0 68.0 65.0 5.0 5.0 10.0 28.0 32.0 55.0 4C.O

9 2 0 .1180 11.0 22.0 37.0 15.0 15.0 19.0 21.0 30.0 16.0 11.0 25.0 45.0 65.0 30.0 30.0 38.0 42.0 50.0 30.0 25.0

10 1 0 .0440 6.0 30. 0 22.0 13.0 13.0 18.0 22.0 27.0 16.0 6.0 15.0 55.0 40.0 25.0 25.0 36.0 44.0 45.0 35.0 15.0

11 3 0 . C 190 19.0 40. C 11. 0 26.0 26.0 30.0 38.0 40.0 22.0 19.0 40. 1 65.0 22.0 45. C 45.0 50.0 55.0 60.0 45.0 40.0

12 3 0 .1160 19.0 5.0 38.0 32.0 32.0 42.0 44.0 48.0 10.0 19.0 40. 0 10.0 60.0 b5. 0 55.0 65.0 65. C 7C.O ?0.0 40.0

216 APPENDIX 11.7

06/30/72 RUN 1 1985 CHICAGO - DETROIT W/0 HSGT CITY 1 STOL/CTIJL AIRPORTS NONE W/0 HSGT CITY 2 STGL/CTOL AIRPORTS NONE

AUTO DISTANCE = IS2.0 MI AUTO SPEfcD = 65.0 MPH

DE TIME FARE ( M I N ) 1 53. C 27.00 2 177.2 12.34 3 325.0 14.50 4 355.0 16.25 5 53.0 27.00

PROJECTED CTOL TRAFFIC = 1656760.PAX/YR

SERVICE FREQUENCY TIMFS (MINI

TERM TERM I NAL IN C ITY IN CITY 2 1 3 6 7 8 1 45.0 C.0 C.0 0.0 0.0 /-, ;> 2 C .0 0.G C.0 w . 0 O.C 4 C.C 0.(. 180.0 0.0 c.o r\ 5 0.C 0.r. 0.0 450 • V/ O.C 6 0.C C.\J 0.0 0• V 1 5.0 7 0.C 0.C 9.0" C .0 25.0

217 APPENDIX 11.7

08/30/72 RUN- 1 1985 CHICAGO - DETROIT W/0 HSGT CITY 1 STOL/CTOL AIRPORTS NONE W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE

WITHOUT HSGT

WITHOUT STOL WITH STOL PERCENT PAX/ PERCENT PA

MODE TRAFFIC YR TRAFFIC YR DELTAS

2 0.59 2931970. 0.44 2160444. -0.16 -771526. 1 0.33 1656759. 0.52 2559804. 0.18 903045. 3 0.07 362003. 0.05 230489. -0.03 -131514. TOT 4950745. 4950738.

PROJECTED TRAFFIC BY MODE

WITHOUT HSGT

WITHOUT STflL WITH STOL

PERCENT PAX/ PERCENT PAX/

MODE TRAFFIC YR TRAFFIC YR DELTAS I 0.33 1656759. 0.14 706608. -0.19 -950151. 2 0.59 2931970. 0.44 2160444. -0.16 -771526. 3 0.05 0.03 171967. -0.02 -99402. 4 0.02 90638. 0.01 58521. -0.01 -32117. 5 0.0 0. 0.37 1853185. 0.3? 1853185. TOT 4950745. 4950738.

TERMINAL LOAD IN CITY FACTOR

8 t 0.632 8 1 0.596

STOL LOAD FACTOR 0.619 21.17 A/C REO NIT = 5

PROJECTED TRAFFIC BY TERMINAL PAIR (lOOtOCO PAX/YR WITHOUT STm—WITHOUT HSGT

T6RM TERMINAL IN CITY 1 IN CITY 2 1 3 6 7 8 1 16.6 0.0 0.0 0.0 0.0 16.6 2 c.o 29. 3 C.O 0.0 0.0 29.3 4 0.0 o.c 2.7 0.0 0.0 2.7 5 0.0 0.0 0.0 C.9 C.O 0.9 6 0.0 c.o C.O 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 SUM 16.6 29.3 2.7 0.9 0.0

PROJECTEU TRAFFIC BY TERMINAL PAIR (100,000 PAX/YR WITH STOL—WITHOUT HSGT

TERM TERMINAL IN CITY 1 IN CITY 2 1 3 6 7 a 1 7.1 C.O 0.0 C.O 0.0 7.1 2 0.0 21.6 0.0 0.0 0.0 21.6 4 0.0 C.O I./ 0.0 0.0 1.7 5 0.0 0.0 0.0 0.6 0.0 3.6 6 0.0 0.0 0.0 C.O 11.8 11.8 7 c.o 0.0 0.0 0.0 6.7 6.7 SUM 7.1 21.6 1.7 C.6 18.5

218 APPENDIX 11.7

08/30/72 RUN 2 19B5 CHICAGO - DETROIT W/0 HSGT CITY I STQL/CTGL AIRPORTS NONE W/J HSGT CITY 2 STOL/CTOL AIRPORTS NONE

AUTO DISTANCE = 192.0 MI AUTO SPEED = 65.0

DE TIME FARE (MIN) 1 53.C 27.00 2 177.2 12.34 3 325.0 14.50 4 355.0 16.25 5 53.0 33. 75

PROJECTED CTOL TRAFFIC = 1656760.PAX/YR

SERVICE FREQUENCY TIMES (MIN)

TERM TERMI[NAL IN CI TY IN CITY 2 1 3 6 7 8 1 45,,0 o.0 0.0 0.C 0.0 /». 2 C,,0 C .0 r» • 0.0 C.C r. 4 C,,0 0.0 180 •0 V' .0 0.0 5 0,,0 0.0 Q .0 450 .C 0.0 6 0,,0 0.0 C.0 0.C 25.7 7 C,,0 0.0 o.o V .0 42.9

219 APPENDIX 11.7

08/30/72 RUN 2 1985 CHICAGO - DETROIT W/0 HSGT CITY 1 STOL/CTQL AIRPORTS NONE W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE WITHOUT HSGT

WITHOUT STOL WITH STOL PERCENT PAX/ PERCENT PAX/

Mone TRAFFIC YP TRAFFIC YP DELTAS

2 0.59 2931970. 0.53 26016C4. -C.C7 -330366. 1 0.33 1656759. 0.41 2046208. 0.08 384449. 3 C.C7 362CC3. 0.06 3C2923. -C.Cl -59080. TOT 4950745. 4950737.

PROJECTED TRAFFIC BY MODE

WITHOUT HSGT

WITHOUT STOL WITH STOL PERCENT PAX/ PERCENT PA

MODE TRAFF 1C YP TRAFFIC YR DELTAS

I 0.33 1656759. 0.20 995122. -0.1.S -661637. 2 0.59 29319 70. 0.53 2601604. -C.07 -33C366. 3 0.05 271369. 0.05 226596. -0.01 4 0.02 90638. 0.02 76326. -0.00 -14312. 5 0.0 0. 0.21 1051074. 0.21 1051074. TOT 4950745. 4950737.

TERMINAL LOAD IN CITY FACTOR

0.606 0.59'

STOL LOAD FACTOR = 0.602 12.35 A/C REQ NIT = 5

PROJECTED TRAFFIC BY TERMINAL PAIR UOOiOOO PAX/YR WITHOUT STOL—WITHOUT HSGT TERM TERMINAL IN CITY 1 IN CITY 2 I 3 o 7 8 1 16.6 0.0 0.0 0.0 0.0 16.6 2 0.0 29.3 0.0 0.0 0.0 29.3 4 0.0 0.0 2.7 0.0 0.0 2.7 5 0.0 0.0 o.c 0.9 0.0 0.9 6 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 c.o 0.0 0.0 0.0 0.0 SUM 16.6 29.3 2.7 0.9 0.0

PROJECTED TRAFFIC BY TERMINAL PAIR (100,000 PAX/YR WITH STOL—WITHOUT HSGT

TERM TERMINAL IN CITY 1 IN CI TY 2 1 3 6 7 8 1 10 .0 0.0 0.0 0.0 0.0 10. 0 2 0.0 26 .0 0.0 0.0 0.0 26.0 4 0.0 0.0 2.3 0.0 0.0 2.3 5 0.0 0.0 0.0 C.8 0.0 0.8 6 0.0 0.0 0.0 0.0 6.6 6.6 7 0.0 0.0 0.c 0.0 3.9 3.9 SUM 10 .0 26.0 2.3 0.8 10.5

220 APPENDIX 11.7

08/30/72 RUN 3 1985 CHICAGO - DETROI T W/0 HS GT CITY 1 STOL/CTOL AIRPORTS NONE W/0 HSCT CITY 2 STOL/CTOL AIRPORTS NONE

AUTO DISTANCE = 97.0 MI AUTO SPEED = 65.0 MPH

MODE TIME FARE ( M I N ) 1 53. f 27.00 2 177.2 12.34 3 325.0 14.50 4 355.0 16.25 5 53. C 40.50

PROJECTED CTOL TRAFFIC = 1656760.PAX/YR

SERVICE FREQUENCY TIMES (MIN)

TERM TERM1[M'AL IN CI TY IN CITY 2 1 3 6 7 8 1 45 .0 0. o 0 .0 0 .0 0 .0 2 c .0 0. Q o .0 0 .0 0 .0 /•x 4 0 .0 0. L' no.0 0 .0 0 .0 5 r .0 0. 0 C.0 450 .0 0.0 6 0 .0 0. o 0.C 0 .C 52 .9 7 o .0 0. o 0 .0 n • G 100 .0

221 APPENDIX 11.7

08/30/7Z RUN 3 1985 CHICAGO - DETROIT W/0 HSGT CITY 1 STOL/CTOL AIRPORTS NONE W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE

WITHOUT HSGT

WITHOUT ST11L WITH STOL

PERCENT PAX/ PERCENT PAX/

MODE TRAFFIC YR TRAFFIC YR DELTAS

2 0.59 2931970. 0.58 2858475. -0.01 -73495. 1 C.33 1656759. 0.35 17*3251. 0.02 86492. 3 O.C7 362003. 0.07 349008. -0.00 -12995. TOT 4950745. 4950735.

PROJECTED TRAF-HC BY MODE

WITHOUT HSGT

WITHOUT STQL WITH STOL

PERCENT PAX/ PERCENT PAX/

MODE TRAFFIC YR TRAFFIC YR DELTAS

1 0.33 1656759. 0.25 1253458. -0.08 -403301. 2 0.59 2931970. 0.58 2858475. -0.01 -73495. 3 0.05 271369. 0.05 261530. -0.00 -984C. 4 0.02 9063B. 0.02 87481. -0.00 -3157. 5 C.O 0. 0.10 489781. 0.10 489781. TOT 4950745. 4950735.

TERMINAL LOAD IN CITY FACTOR

8 t 0.589 8 1 0.631

STOL LOAD FACTOR = 0.604 5.73 A/C REO NIT = 5

PROJECTED TRAFFIC BY TERMINAL PAIR (100,000 PAX/YR WITHOUT STOL—WITHOUT HSGT

TERM TERMINAL IN CI TV 1 IN • CITY 2 1 3 6 7 8 1 16.6 0.0 n.0 0.0 0.C 16.6 2 0.0 29.3 0.0 o.0 0.0 29.3 4 c.0 0.0 2.7 0.0 0.0 2.7 5 0.0 C.O 0.0 0.9 0.0 0.9 6 0.0 C.O 0.0 0.0 0.0 0.0 7 0.0 C.O 0.0 c .0 0.0 D.0 SUM 16.6 29.3 2.7 0.9 0.0

PROJECTED TRAFFIC BY TERMINAL PAIR (100, OCO PAX/YR w ITH STOL — WITHOUT HSGT

TERM TERMINAL IN CITY I IN CITY 2 1 3 6 7 8 1 12 .5 O.C 0.0 C .0 0.0 12.5 2 0.0 26.6 0.0. C .0 0.0 28.6 4 C.0 C.O 2.6 0.C 0.0 2.6 5 0.0 0.0 0.0 c.9 0.0 0.9 & 0.0 0.0 0.0 0.0 3.1 3a 7 0.0 C.O c.0 c .0 1.8 1.8 SUM 12 .5 28.6 2.6 0.9 4.9

222 APPENDIX 11.7

08/30/72 RUN 4 1985 CHICAGO - DETROIT W/0 HS&T CITY 1 STOL/CTOL AIRPORTS NONE W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE

AUTO DISTANCE = 192.0 MI AUTO SPEED = 65.0 MPH

MODE TIME FARE (MIN) 1 53. C 27.00 2 177.2 12.34 3 325.0 14.50 4 355.0 16.25 5 53.0 27.00 PROJECTED CTOL TRAFFIC = 1656760.PAX/YR

SERVICE FREQUENCY TIMES (MIN)

TERM TERMINAL IN CITY IN CITY 1 1 45.0 C.O . o.c 0.0 2 c.o 0.0 C.O 0.0 0.0 4 0.0 0.0 180.0 0 0 O.C 5 0.0 0.0 D.O 450.0 0.0 6 c.c 0.0 O.C 0.0 29.0 7 r.o C.O 0.0 0.0 52.9

223 APPENDIX 11.7

08/30/72 RUN 4 1985 CHICAGO - DETROIT W/0 HSGT CITY 1 STOL/CTOl AIRPORTS NONE W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE

WITHOUT HSGT

WITHOUT STOL WITH STOL

PERCENT PAX/ PERCENT PA

MODE TRAFFIC YR TRAFFIC YR DELTAS

2 0.59 2931970. 0.44 2186610. -0.15 -745360. 1 0.33 1656759. 0.51 2529814. 0.18 873055. 3 0.07 362003. 0.05 234315. -0.03 -127688. TOT 4950745. 4950740.

PROJECTED TRAFFIC BY MODE

WITHOUT HSGT

WITHOUT STOL WITH STOL

PERCENT PAX/ PE1CENT PA

MODE TRAFFIC YR TRAFFIC YR DELTAS

1 0.33 1656759. 0.15 717995. -0.19 -938764. 2 0.59 2931970. C.44 2186610. -0.15 -745360. 3 C.05 271369. 0.04 174834. -0.02 -96535. 4 0.02 90638. 0.01 59480. -0.01 -31158. 5 C.O C. 0.37 1811810. 0.37 1811810. TOT 4950745. 4950740.

TERMINAL LOAD IN CITY FACTOR

8 t 0.601 8 1 0.612

STOL LOAD FACTOR C.605 10.58 A/C REQ NIT = <3

PROJECTED TRAFFIC BY TERMINAL PAIR (100,000 PAX/YR WITHOUT STOL—WITHOUT HSGT TERM TERMINAL IN CITY 1 IN CITY 2 1 3 6 7 8 1 16.6 C.G 0.0 0.0 0.0 16.6 2 0.0 29.3 0.0 0.0 0.0 29.3 4 0.0 0.0 2.7 0.0 0.0 2.7 5 0.0 0.0 0.0 0.9 0.0 0.9 6 0.0 C.O O.C 0.0 0.0 0.0 7 O.C 0.0 0.0 0.0 0.0 0.0 SUM 16.6 29.3 2.7 0.9 C.O

PROJECTED TRAFFIC BY TERMINAL PAIR (100,000 PAX/YR WITH STOL—WITHOUT HSGT

TERM TERMINAL IN CITY 1 IN CITY 2 1 3 6 7 a 1 7.2 0.0 0.0 0.0 0.0 7.2 2 0.0 21.9 0.0 0.0 0.0 21.9 4 O.U 0.0 1.7 0.0 0.0 1.7 5 0.0 0.0 0.0 0.6 0.0 0.6 6 0.0 C.O 0.0 G.O 11.6 11.6 7 0.0 0.0 0.0 0.0 fc.5 fe.5 SUM 7.2 21.9 1.7 0.6 18.1

224 APPENDIX 11.7

08/3C/72 RUN 5 1985 CHICAGO - DETROIT W/0 HSOT CITY 1 STOL/CTOL AIRPORTS NONE W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE

AUTO DISTANCE = 192.0 MI AUTO SPEED = 65.0 MPH

MODE TIME FARE (M1N) 1 53.0 27.00 2 177.2 12. 34 3 325. C 14.50 4 355.0 16.25 5 53.0 33. 75

PROJECTED CTOL TRAFFIC = 1656760.PAX/YR

SERVICE FREQUENCY TIMES (MIN)

TERM TERMINAL IN CI TY IN CITY 2 1 3 6 7. 8 1 45 » V 0.0 c.,0 0.0 0.0 2 0•0 c.c o,, 0 0.c n.0 4 0•0 0.c 180,,0 0.0 0.0 5 c•0 0.c 0«,3 450 .0 0.0 6 c •0 0.0 0,,0 0.c 52.9 7 0•0 0.0 c.,0 o .0 90.0

225 APPENDIX 11.7

08/30/72 RUN 5 1985 CHICAGO - DETROIT W/0 HSGT CITY 1 STOL/CTOL AIRPORTS NONE W/0 HSGT CITY 2 STUL/CTOL AIRPORTS NONE

WITHOUT HSGT

WITHOUT STOL WITH STOL

PERCENT PAX/ PERCENT PAX/

MODE TRAFFIC YR TRAFFIC YR DELTAS

2 0.59 2931970. 0.53 2629395. -0.06 -302575. 1 0.33 1656759. 0.41 2013698. 0.07 356939. 3 0.07 3620C3. 0.06 307642. -0.01 -54361. TOT 4950745. 4950736.

PROJECTED TRAFFIC BY MODE

WITHOUT HSGT

WITHOUT STOL WITH STOL

PERCENT .PAX/ PERCENT PAX/

MODE TRAFFIC YR TRAFFIC YR DELTAS

I 0.33 1656759. 0.21 1017481. -C.13 -639278. 2 0.59 2931970. 0.53 2629395. -0.06 -302575. 3 C.C5 271369. 0.05 230161. -0.01 -41208. 4 C.02 9C638. 0.02 77481. -0.00 -13158. 5 0.0 0. 0.20 996205. 0.20 996205. TOT 4950745. 4950736.

TERMINAL LOAD IN CITY FACTOR

0.597 0.581

STOL LOAD FACTOR = 0.591 5.95 A/C REQ NIT = 5

PROJECTED TRAFFIC BY TERMINAL PAIR (100,000 PAX/YR WITHOUT STC1L —WITHOUT HSGT

TERM TERMINAL IN CITY IN CITY 1 3 A 7 8 1 16.6 C.O C.O O.C O.C 16.6 2 0.0 29.3 0.0 0.0 0.0 29.3 4 c.o 0.0 ?.7 0.0 0.0 2.7 5 0.0 0.0 C.O 0.9 0.0 0.9 6 0.0 0.0 0.0 0.0 0.0 0.0 7 o.c c.o 0.0 0.0 0.0 0.0 SUM 16.6 29.3 2. 7 0.9 0.0

PROJECTED TRAFFIC BY TERMINAL PAIR (100,000 PAX/YR WITH STOL--WITHOUT HSGT

TERM TFRMINAL IN CITY 1 IN CITY I 3 6 7 8 1 10.2 0.0 0.0 C.O O.C 10.2 2 0.0 26.3 0.0 c.? 0.0 26.3 4 O.G 0.0 2.3 0.0 0.0 2.3 5 0.0 0.0 0.0 0.8 0.0 0.8 6 0.0 0.0 0.0 0.0 6.3 6.3 7 0.0 0.0 C.O 0.0 3.6 3.6 SUM 10.2 26.3 2.3 0.8 10.0

226 APPENDIX 11.7

08/30/72 RUN 6 .1985 CHICAGO - DETROIT W/0 HSGT CITY 1 STDL/CTOL AIRPORTS MINE W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE

AUTO DISTANCE = 192.0 AUTO SPEED - 65.0 MPH

Db TIME FARE. (MIN) 1 53. C 27.00 2 177.2 12.34 3 • 325.0 14.50 4 355.0 16.25 5 53.0 40.50

PROJECTED CTOL TRAFFIC = 1656760.PAX/YR

SERVICE FREQUENCY TIMES (MIN)

TERM TE*M]INAL IN CI TY IN CITY 2 1 3 6 7 8 1 45 .0 0•0 0.0 0.0 0.0 2 C.0 0•o 0.0 0.0 0.0 4 0.0 c •r 180.0 0.0 0.0 0 5 0.0 0% c .0 450 .0 c.c 6 0.0 n •0 0.0 0 .0 128.6 .7 0.c 0•o 0.0 c .0 300.0

227 APPENDIX 11.7

C8/30/72 RUN 6 1985 CHICAGO - DETROIT W/0 HSGT CITY 1 STOL/CTOL AIRPORTS NONE W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE WITHOUT HSGT

WITHOUT STUL WITH STOL PERCENT PAX/ PERCENT PA

MODF TRAFFIC YR TRAFFIC YR DELTAS 2 0.59 2931970. 0.59 2898946. -0.01 -33024. 1 0.33 , 1656759. 0.34 1695937. 0.01 39178. 3 0.07 3620C3. 0.07 355850. -0.00 -6153. TOT 4950745. 4950734. PROJECTED TRAFFIC BY MODE WITHOUT HSGT

WITHOUT STOL WITH STOL

PERCENT f>AX/ PERCENT PAX/

MODE TRAFFIC YR TRAFFIC VR DELTAS

1 0.33 1656759 0.26 1303613. -0.07 -353146. 2 C.59 2931970, 0.59 2898946. -0.01 -33024. 3 0.05 271369, 0.05 266704. -0.00 -4665. 4 O.C2 90638 0.02 89149. -0.00 -1489. 5 0.0 0, 0.08 392315. 0.08 392315. TOT 4950745, 4950734.

TERMINAL LOAD IN CITY FACTOR

8 6 0.620 8 7 0.649

STOL LOAD FACTOR =- 0.629 2.20 A/C REO NIT = 6

PROJECTED TRAFFIC flY TERMINAL PAIR (100,000 PAX/YR WITHOUT STOL—WITHOUT HSGT

TERM TERMINAL IN CITY 1 IN CITY 2 1 3 6 7 8 1 16.6 0.0 0.0 0.0 0.0 16.6 2 0.0 29.3 0.0 0.0 0.0 29.3 4 0.0 0.0 2.7 0.0 0.0 2.7 5 0.0 (T.C 0.0 0.9 0.0 0.9 6 c.o 0.0 0.0 0.0 0.0 0.0 7 c.o 0.0 0.0 0.0 0.0 0.0 SUM 16.6 29.3 2.7 0.9 0.0

PROJECTED TRAFF 1C BY TERMINAL PAIR (100,000 PAX/YR WITH STOL— WITHOUT HSGT

TERM TERMINAL IN CITY 1 IN CITY 2 1 3 6 7 R 1 13.0 0.0 0.0 0.0 0.0 13.0 2 0.0 29.0 0.0 0;0 0.0 29.0 4 0.0 0.0 2.7 0.0 0.0 2.7 5 0.0 0.0 0.0 0.9 0.0 0.9 6 0.0 0.0 0.0 0.0 2.7 2.7 7 0.0 0.0 0.3 0.0 1.2 1.2 SUM 13.0 29.0 2.7 0.9 3.9

228 APPENDIX 11.7

C8/30/72 RUN 7 1985 CHICAGO - OCTROI T W/0 HSGT CITY I STGL/CTOL AIRPORTS NONE W/0 HSGT CITY 2 STOL/CTDL AIRPORTS NONE

AUTO DISTANCE = 192.C MI AUTO SPEED = 65.0 MPH

MODE TIME FARE (MIN) 1 53. C 27. OC 2 177.2 12. 34 . 3 325.0 14.50 4 355.0 16.25 5 53.0 27.00

PROJECTED CTOt TRAKFIC = 1656760.PAX/YR

SERVICE FREQUENCY TIMES IMIN)

TERM TLHMINAL IN CITY IN CITY 1 167 3 1 45.0 0.0 0.0 C.O C.O 2 C.C C.C O.C C.O 0.0 4 C.O L/ . f 180.C C.O 0.0 5 C.C 0.0 0.0 450.0 0.0 6 C.O 0.0 C.O 0.0 45.0 7 0.0 0.0 C.O G.O 81.8

229 APPENDIX 11.7

08/30/72 RUN 7 1985 CHICAGO- DETROIT W/0 HSGT CITY 1 STOL/CTOL AIRPORTS NONE W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE

WITHOUT HSGT

WITHOUT STOL WITH STOL PERCENT PAX/ PERCENT PAX/

MODE TRAFFIC YP TRAFFIC YR DELTAS 2 0.59 2931970. 0.45 2214820. -C.14 -717150. 1 0.33 1656759. 0.50 2497437. 0.17 840678. 3 O.C7 3620C3. 0.05 238481. -C.02 -123522. TOT 4950745. 4950739. PROJECTED TRAFFIC BY MODE

.WITHOUT HSGT

WITHOUT STOL WITH STOL

PERCENT PAX/ PERCENT PAX/

MODE TRAFF1C YR TRAFFIC YP DELTAS

1 0.33 1656759. 0.15 730332. -C.19 -926427. 2 0.59 293197C. 0.45 221482C. -0.14 -717150. 3 0.05 271369. 0.04 177958. -0.02 -93411. 4 0.02 90638. 0.01 60522. -O.C1 -30116. 5 0.0 0. 0.36 1767096. 0.36 1767096. TOT 4950745. 4950739.

TERMINAL LOAD IN CITY FACTOR

8 t 0.608 B 1 C.610

STOL LI'AD FACTOR 6.83 A/C REO NIT * 5

PROJECTED TRAFFIC BY TERMINAL PAIR (100,COO PAX/YR WITHOUT STHL—WITHOUT HSGT

TERM TFKMINAL IN CITY 1 IN CITY 2 1 3 6 7 8 1 16.6 0.0 C.C O.C 0.0 16.6 2 C.O 29.3 0.0 C.O 0.0 29.3 4 •C.0 0.0 2.7 0.0 0.0 2.7 5 0.0 o.c 0.0 0.9 0.0 0.9 6 o.c 0.0 0.0 0.6 O.C 0.0 7 c.c 0.0 0.0 0.0 0.0 0.0 SUM 16.6 29.3 2.7 0.9 C.O

PROJECTED TRAFFIC BY TERMINAL PAIrt (lOOtCCO PAX/YR WITH STOL—WITHOUT HSGT

TERM TERMINAL IN CITY 1 IN CITY 2 1 3 6 7 8 1 7.3 0.0 0.0 0.0 0.0 7.3 2 0.0 22.1 0.0 0.0 0.0 22.1 4 C.O O.C 1.8 0.0 0.0 1.8 5 o.o 0.0 0.0 C.6 0.0 0.6 6 0.0 0.0 0.0 O.C 11.4 11.4 7 C.O 0.0 0.0 O.C 6.3 6.3 SUM 7.3 22.1 1.8 0.6 17.7

230 APPENDIX 11.7

08/30/72 RUN 8 1985 CHICAGO - DETROIT W/G HSGT CITY 1 STOL/CTOL AIRPORTS NONE W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE

AUTO DISTANCE = 192.C MI AUTO SPEED = 65.0 MPH

MODE TIME FARE (MINI 1 53.0 27.00 2 177.2 12.34 3 325.0 14.50 4 355.0 16.25 5 53. C 33.75

PPOJECTFD CTOL TRAFFIC = 1656760.PAX/YR

SERVICE FREQUENCY TIMES (MINI

TERM TERM]INAL IN CITY IN CITY 2 1 3 6 7 8 1 45.0 0.0 0.0 0,.0 0.0 2 0.0 0.0 0.0 0,,0 o.c 4 c.o o.c 180.0 0,,0 0.0 5 0.0 c.o 0. 0 450,,c 0.0 6 o.c 0.0 0.0 0,,0 81.8 7 0.0 o.c 0.0 0,,0 150.0

231 APPENDIX 11.7

08/30/72 RUN 8 1985 CHICAGO - DETROIT W/0 HSGT CITY 1 STOL/CTOL, AIRPORTS NONE W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE WITHOUT HSGT

WITHOUT STOL WITH STOL PERCENT PAX/ PERCENT PAX/

MODE TRAFFIC YR TRAFFIC YR DELTAS

2 C.59 2931970. 0.54 2659930. -0.05 -272040. 1 0.33 1656759. 0.40 1978062. 0.06 321303. 3 0.07 362003. 0.06 312744. -0.01 -49259. TOT 4950745. 4950737.

PROJECTED TRAFFIC BY MODE

WITHOUT HSGT

WITHOUT STOL WITH STOL

PERCENT PAX/ PERCENT PAX/

MODE TRAFFIC YP TRAFFIC YR DELTAS

1 0.33 1656759. 0.21 1043020. -0.12 -613739. 2 0.59 2931970. 0.54 2659930. -0.05 -272040. 3 0.05 271369. 0.05 234013. -0.01 -37356. 4 0.02 90638. 0.02 78731. -0.00 -11907. 5 C.O 0. 0.19 935030. 0.19 935C30. TOT 4950745. 4950737.

TERMINAL LOAD IN CITY FACTOR

8 6 0.538 8 7 0.588

STOL LOAD FACTOR = C.588 3.75 A/C REO NIT = 6 PROJECTED TKAFFIC BY TERMINAL PAIR (100,000 PAX/YR WITHOUT STOL—WITHOUT HSGT

TERM TERMINAL IN CITY 1 IN CITY 1 3 6 7 8 1 16.6 0.0 0.0 0.0 C.C 16.6 2 C.C 29.3 0.0 C.O O.P 29.3 4 0.0 C.O 2.7 0.0 0.0 2.7 5 0.0 0.0 0.0 0.9 O.C 0.9 6 0.0. 0.0 0.0 0.0 O.C 0.0 7 o.c 0.0 0.0 C.C 0.0 0.0 SUM 16.6 29.3 2.7 0.9 0.0

PROJECTED TRAFFIC BY TERMINAL PAI* (100,000 PAX/YR WITH STOL—WITHOUT HSGT TERM TERMINAL IN CITY [N CITY 1 3 6 7 8 1 10.4 O.C 0.0 C.O O.C 10.4 2 C.O 2

232 APPENDIX 11.7

08/30/72 RUN 9 1985 CHICAGO - OETROI T W/0 HSGT CITY 1 STOL/CTOL AIRPORTS NONE W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE

AUTO OIS TANCE = 192.0 MI AUTO SPEED = 65.0 MPH

MODE TIME FARE (MIN) 1 53.0 27.00 2 177.2 12.34 3 325.0 14.50 4 355.0 16.25 5 53.0 40.50

PROJECTED CTOL TRAFFIC = 1656760.PAX/YR

SERVICE FREQUENCY TIMES (MIN)

TERM TERM1INAL IN CI TY IN CITY 2 1 3 6 7 8 r\ 1 45 .0 0 • 0 c,,0 .0 0 .0 A 2 0 .0 J .0 0,,0 C' .0 0.0 4 0 .c 0 .0 180, ,0 0 .0 0 .0 5 0 .0 0 • 0 0,,0 450 .0 0.0 6 0 .0 0 .0 0,,0 0 .0 225 .0 7 0 .0 c .0 0,,0 o .0 450 . 0

233 APPENDIX 11.7

08/30/72 RUN 9 1985 CHICAGO - DETROIT W/0 HSGT CITY 1 STOL/CTOL AIRPORTS NONE M/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE

WITHOUT HSGT

WITHOUT STOL WITH STOL

PERCENT PAX/ PERCENT PAX/

MODE TRAFFIC YR TRAFFIC YR DELTAS

2 0.59 2931970. 0.59 2915196. -0.00 -16774. 1 0.33 1656759. 0.34 1676743. 0.00 19984. 3 C.07 362003. 0.07 358794. -0.00 -3209. TOT 4950745. 4950734.

PROJECTED TRAFFIC BY MODE

WITHOUT HSGT

WITHOUT STOL WITH STOL

PERCENT PAX/ PERCENT PAX/

MODE TRAFFIC YR TRAFFIC YP DELTAS

1 0.33 1656759. 0.27 1354696. -0.06 -302063. 2 0.59 2931970. 0.59 2915196. -0.00 -16774. 3 C.05 271369. 0.05 268933. -0.00 -2436. 4 0.02 90638. 0.02 89865. -0.00 -774. 5 0.0 0. 0.07 322044. 0.07 322044. TOT 4°50745. 4950734.

TERMINAL LOAD IN CITY FACTOR

8 t 0.606 8 1 0.509

STOL LOAD FACTOR = C.573 1.32 A/C REO NIT = 11

PROJECTED TRAFFIC BY TERMINAL PAIR (IQOtOOO PAX/YR WITHOUT STOL—WITHOUT HSGT

TERM TERMINAL IN CITY I IN CITY 1 3 6 7 8 1 16.6 o.c 0.0 0.0 0.0 16.6 2 0.0 29.3 0.0 0.0 0.0 29.3 4 c.o 0.0 2.7 0.0 0.0 2.7 5 c.c c.o C.O 0.9 c.o 0.9 6 0.0 0.0 C.O o.c 0.0 0.0 7 c.o 0.0 o.c 0.0 0.0 0.0 SUM 16.6 ?9.3 2.7 0.9 0.0

PRUJECTED TRAFFIC OY TERMINAL PAIR UOOtOOO PAX/YR WITH STOL —WITHOUT HSGT

TERM TERMINAL IN CITY 1 IN CITY 1 3 6 7 a 1 13.5 C.O 0.0 0.0 0.0 13.5 2 0.0 29.2 0.0 o.o 0.0 29.2 4 C.O C.O 2.7 0.0 o.c 2.7 5 0.0 C.O 0.0 0.9 0.0 0.9 6 0.0 0.0 0.0 O.C 2.3 2.3 7 G.O 0.0 0.0 0.0 1.0 1.0 SUM 13.5 29.2 2.7 0.9 3.2

234 APPENDIX 11.7

08/30/72 RUN 1C 1985 CHICAGO - DETROIT W/0 HSGT CITY 1 STOL/CTOL AIRPORTS NOME W/0 HSGT CITY 2 STGL/CTOL AIRPORTS NONE

AUTO DISTANCE = 192.0 Ml AUTO SPEED = 65.0 MPH

MODE TIME FARE (MIN) 1 53. C 27.00 2 177.2 12.34 3 325.0 14.50 4 355. C 16.25 5 53.C 27.00

PROJECTED CTOL TRAFFIC = 1656760.PAX/YR

SERVICE FREQUENCY TIMES (MIN)

TERM TFRM INAL IN CI TY IN CITY 2 1 3 6 7 a 1 45 .C C.0 0.C 0.0 0.0 2 0.0 0.0 C.0 C .0 0.0 4 0.0 0.0 180.0 0.0 0.0 5 0.0 0.C o.0 450 .0 0.0 6 C .0 C.0 C.0 0.0 60.0 7 0.0 0.0 0.0 0.C 1 12.5

235 APPENDIX 11.7

08/30/72 RUN 1C 1935 CHICAGO - DETROIT W/0 HSGT CITY 1 STOL/CTOL AIRPORTS NONE W/U HSGT CITY 2 STOL/CTOL AIRPORTS NONE WITHOUT HSGT

WITHOUT STOL WITH STOL

PERCENT PAX/ PERCENT PAX/

MODE TRAFFIC YR TRAFFIC YR DELTAS

2 0.59 2931970. 0.45 2241742. -0.14 -690228. 1 0.33 1656759. 0.53 2466546. 0.16 8097S7. 3 0.07 362003. 0.05 242448. -0.02 -119555. TOT 4950745. 4950738. PROJECTED TRAFFIC BY MODE

WITHOUT HSGT

WITHOUT STOL WITH STOL

PERCENT PAX/ PERCENT PAX/

MODE TRAFFIC vp TRAFFIC YR DELTAS

1 0.33 1656759. 0.15 7430"3. -0.18 -P1366IS. 2 0.59 2931970. 0.45 2241742. -0.14 -690228. 3 0.05 27136°. 0.04 180932. -0.02 -90437. 4 0.02 9P638. 0.01 61515. -0.01 -29123. 5 0.0 0. 0.35 1723445. C.35 1723445. TOT 4950745. 495C738.

TERMINAL LOAD IN CITY FACTOR

8 6 0.597 8 7 0.607

STOL LOAD FACTOR = 0.600 5.07 A/C REO NIT = 5

PROJECTED TRAFFIC BY TERMINAL PAIR (lOOtOOO PAX/YR WITHOUT STOL—WITHOUT HSGT

TERM TERMINAL IN CITY 1 IN CITY 1 3 6 7 fl 1 16.6 0.0 C.O 0.0 0.0 16.6 2 0.0 29.3 0.0 0.0 0.0 29.3 4 0.0 0.0 2.7 0.0 0.0 2.7 5 0.0 0.0 0.0 0.9 0.0 0.9 6 0.0 0.0 c.c 0.0 ?.o 0.0 7 0.0 0.0 0.0 0.0 0.0 0,0 SUM 16.6 29.3 2.7 0.9 0.0

PROJECTED TRAFFIC BY TERMINAL PAIR (ICOfOOO PAX/YR WITH STOL — WITHOUT HSGT-

TERM TERMINAL IN CITY 1 IN CITY 1 3 6 7 8 1 7.4 0.0 0.0 0.0 O.C 7.4 2 0.0 22.4 0.0 0.0 0.0 22.4 4 0.0 0.0 1.8 0.0 0.0 1.8 5 0.0 0.0 0.0 0.6 0.0 0.6 6 0.0 0.0 O.C 0.0 11.2 11.2 7 0.0 0.0 0.0 0*0 6.1 6.1 SUM 7.4 22.4 1.8 0.6 17.2

236 APPENDIX 11.7

08/30/72 RUN 11 1985 CHICAGO - DETROIT W/0 HSGT CITY 1 STOL/CTOL AIRPORTS NONE W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE

AUTO DISTANCE = 192.C MI AUTO SPEED 65.0 MPH

MODE TIME FARE ( M I N ) 1 53.0 27.00 . 2 177.2 12.34 3 325.C 14.50 4 355.0 16.25 5 53.0 33. 75

PROJECTED CTOL TRAFFIC = 1656760.PAX/YR

SERVICE FREQUENCY TIMES (MIN)

TERM TERMI NAL IN CI TY IN CI TY 2 1 3 6 7 8 1 45.0 C.0 0.0 0.0 0. 0 2 0.0 0.0 C .0 0.0 0.0 4 0.0 0.0 190.0 C .0 0.0 5 c.o C.0 .0.0 450 . C 0.0 6 0.0 0.0 0.0 0.0 112.5 7 c.o 0.C 0.0 0.0 225.0

237 APPENDIX 11.7

08/30/72 RUN 11 1935 CHICAGO - DtTROIT W/0 HSGT CITY 1 STOL/CTOL AIRPORTS NONE W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE

WITHOUT HSGT

WITHOUT STOL WITH STOL

PERCENT PAX/ PERCENT PAX/

MODE TRAFFIC YR TRAFFIC YR DELTAS

2 0.59 2931970. 0.54 2692042. -0.05 -239928. 1 0.33 1656759. 0.39 1940630. 0.06 2B3871. 3 0.07 3620C3. 0.06 318063. -0.01 -43940. TOT 4950745. 4950736.

PROJECTED TRAFFIC BY MODE

WITHOUT HSGT

WITHOUT STOL WITH STOL

PERCENT PAX/ PERCENT PAX/

MODE TRAFFIC YR TRAFFIC YR DELTAS

1 0.33 1656759. 0.22 1072445. -C.12 -584314. a 0.59 2931970. 0.54 269204*. -0.05 -239928. 3 0.05 271369. 0.05 238029. -0.01 -33340. 4 0.02 90638. 0.02 80035. -0.00 -10603. 5 0.0 0. 0.18 868173. 0.18 868173. TOT 4950745. 4950736.

TERMINAL LOAD IN CITY FACTOR

8 f. 0.576 8 1 0.587

STOL LOAD FACTOR 0.580 2.65 A/C REQ NIT = 6

PROJECTED TRAFFIC BY TERMINAL PAIR UOOtOOO PAX/YR WITHOUT STOL—WITHOUT HSGT

TERM TERMINAL IN CITY 1 IN CITY 1 3 6 7 8 1 16.6 0.0 0.0 0.0 0.0 16.6 2 0.0 29.3 0.0 0.0 0.0 29.3 4 0.0 0.0 2.7 0.0 0.0 2.7 5 0.0 0.0 0.0 0.9 0.0 0.9 6 0.0 0.0 0.0 0.0 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 SUM 16.6 29.3 2.7 0.9 0.0

PROJECTED TRAFFIC BY TERMINAL PAIR (lOOiOOO PAX/YR WITH STOL—WITHOUT HSGT

TERM TERMINAL IN CITY 1 IN CITY 2 1 3 6 7 B 1 10.7 0.0 0.0 0.0 0.0 10.7 2 0.0 26.9 0.0 0.0 0.0 26.9 4 0.0 0.0 2.4 0.0 0.0 2.4 5 0.0 0.0 0.0 0.8 0.0 0.8 6 0.0 0.0 0.0 0.0 5.8 5.8 7 0.0 0.0 0.0 0.0 2.9 2.9 SUM 10.7 26.9 2.4 0.8 8.7

238 APPENDIX 11.7

08/30/72 RUN 12 1985 CHICAGO - DETROIT W/0 HSGT CITY 1 STQL/CTOL AIRPORTS NOME W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE

AUTO DISTANCE = 192.0 MI AUTO SPEED 65.0 MPH

MODE TIME FARE ( M I N ) 1 53.0 27.00 2 177.2 12.34 3 325.0 14.50 4 355. C 16.25 5 53. C 40. 50

PROJECTED CTOL TRAFFIC = 1656760.PAX/YR

SERVICE FREQUENCY TIMES (MINI

TERM TER M INAL IN CI TY IN CITY 2 1 3 6 7 8 1 45.0 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 0.0 4 0.0 0.0 180. 0 0.0 0.0 5 0.0 0.C 0.0 450 .0 0.0 6 C .0 0.0 .0.0 0.0 450.0 7 0.0 0.0 0.0 0.0 450.0

239 APPENDIX 11.7

08/30/72 RUN 12 1985 CHICAGO - DETROIT W/0 HSGT CITY 1 JTOL/CTOL AIRPORTS NONE W/0 HSGT CITY 2 STOL/CTOL AIRPORTS NONE WITHOUT HSGT

WITHOUT STOL WITH STOL PERCENT PAX/ PERCENT PAX/

MODE TRAFFIC YR TRAFFIC YR DELTAS

2 0.59 2931970. 0.59 2931580. -0.00 -390. 1 0.33 1656759. 0.33 1657170. 0.00 411. 3 0.07 362003. 0.07 361981. -0.00 -22. TOT 4950745. 4950733. PROJECTED TRAFFIC BY MODE WITHOUT HSGT

WITHOUT STOL WITH STOL PERCENT PAX/ PERCENT P

MODE TRAFFIC YR TRAFFIC YR DELTAS

1 0.33 1656759. 0.29 1411151 -0.05 -249608. 2 0.59 2931970. 0.59 2931580 -0.00 -390. 3 C.05 271369. 0.05 271353 -0.00 -16. 4 C.02 90638. 0.02 90632 -0.00 -6. 5 0.0 P. 0.05 246019 0.05 246019. TOT 4950745. 4950733

TERMINAL LOAD IN CITY FACTOR

8 t 0.588 8 1 C.398

STOL LOAD FACTOR = C.493 C.88 A/C REO NIT = 11 PROJECTED TRAFFIC BY TERMINAL PAIR (100,000 PAX/YR WITHOUT STOL—WITHOUT HSGT

TERM TERMINAL IN CITY 1 IN CITY 2 1 3 6 7 8 1 16. 6 0. 0 0.0 0 .0 0.0 16 .6 2 0.0 29. 3 0.0 0 .0 0.0 29 .3 4 0.0 0. 0 2.7 0 .0 0.0 2 .7 5 0.0 c. 0 0.0 0 .9 0.0 0.9 6 0. 0 0. 0 0.0 0 .0 0.0 0.0 7 0.0 c. o 0.0 0 .c 0.0 0.0 SUM 16. 6 29. 3 2.7 0 .9 0.0

PROJECTED TRAFF 1C BY TERMINAL PAIR ( 100,000 PAX/YR WITH STOL--W ITHOUT HSGT

TERM TERMINAL IN CITY 1 IN CITY 2 1 3 6 7 8 1 14. 1 0. 0 0.0 0 .0 p.0 14 .1 2 0.0 29. 3 0.0 C .0 0.0 29 .3 4 e.0 C. 0 2.7 0 .0 0.0 2 .7 5 0.0 0. 0 0.0 c .9 0.0 0.9 6 0.0 0. 0 0.0 c .0 1.5 1. 5 7 0. 0 0. 0 0.0 0 .0 1.0 1.0 SUM 14. 1 29. 3 2.7 0 .9 2 .5

240 APPENDIX 11.8

FOREIGN CITY PAIR FLIGHT DATA

This tabulation was obtained from the August 1971 Official Airline Guide-International Edition. The column headings are self explanatory. However, it should be pointed out that the city pairs are ranked by seats flown per day. There are 200 city pairs shown in the 0-600 statute mile (966 km) range category. In the 0-900 statute mile (1448 km) range category, there are a total of 225 city pairs. Finally, in the 0-1200 statute mile range category (1931 km) a total of 235 city pairs were identified.

241 CO ee a x

u. — •j--

-o-o • >o ^- m ^^> O-o> ocooooif>ivi(Mr--'O4'^NO>9inmir. O o o rgc>-<'*'»o>o«oop>j^»Miri'4p'Ot>-ooh-ffio>ocoh---H'O'O'o^ r-r- •>t'-im«h-inor-4pO>oocoirt(r^r^ >-iir>j%oinr-fMcoirto>r~o-Airt«(M-^>4iAo z to UJ CO CO O-t- < Oiu LU !/>

UJ LO X LU U -I co>-> r > I INJCJ _F i- o a >— a. oooo << Q ct u to LU

OOo. < IQ . -*r-h-(\joirih--t'*a)—< • i LU vo

O V Q. CO LU

-" Z (/) < oc o

00 QC I X. —

O O t- K 03 « LU 0.0 co 3 i z o

oa.r —a

ec. — o 3 x ;_ c j z LU u z iX3->LUO>l/>O—'>• — t-i->-o.Ooo_jccf-_jec3:t-or_iai:or'OLoy'siTcoTo. zacvtoa >-oo.>_i'^icoi-'C3CLXcos:jcoo_i>>-LO I i i i i i i I i i i I I i i I I i I i i i I I i I i i i i i i I i i I i i i I i I i i I i i i I i <^_jz^foD<->^to- o o COO. 3O3LUa<35t.ocO^<3<aCnOOi-i — O3orOO>X—IDDcozoatOQLL,ODQ.Qa>ji c OtO>.JU.yLUXLL-^U->-^t3OC3_irLU->«)Ll.Q.C30SOtJLUU.>-^ o

z 4 Of

242 a a f> •# «*> «o co r- •* ** * rg ~* ~4 ^* PH ** mo* oo in a: to •• < o < a.

m CM mo

UJ O

•&• a>

-ten o CM vO

O 00 — pg

o o t- (- CO < LU a. u

a. « or a

243 I/) ac.

— i -t 00*0

OC uj teO. O CO — « O

-cm coin uj < 13 uj * V} UJ «/) to < i/i Q. i— < OtiJ UJ (/)

•* cc 01 O iO C> QC vo

*-" cf ^* a «& ^ M O >- a. rCsj Q«. CD (t—o Quj ka4 o.

h- O UJ I/) O3

_) -J < < I- I- O O Of

Q. O —I iriCNjo»o>trtt^f^f*-^'U>co^^o*'*ivOCTvc?^*OGOflOor^or<>*O(Njo^'O^^m'*>r*^'C«-*K O och- c^pgr»j^400rfc>t'h-c»j-^^^'O*4'^JpcoO'(Dtf\f'>'^'Fwot**irnpg^MfNj^^-^ir»o*»ri^^o^^csjr^ash-Ofvj>>'co^t'f*i '' Quo r^ro^i-i^HfNjrNj^^f-jfMrjrg^^oj-^tNj (Nj^-rjm >tp^-4'»^rnm*oirt<\jm(xjrgi-i»^s*'rO'-4C\jfNi-HfNj^ *-*ror<* a. — IX O

Z CC

244 O x

. ac

c- cr, u>o or-

O UJ Z <^>

O ID rj 4 uj co -t in

o UJ t/) o _i 00 — -co < < o a:

UJ fe < — O ^ i- < «-> O O VO K (O OK O> uo <-• m x_^ u/

Oo. CD• (/)

D.<

CO CD oc ar- 13 3 < o o >- K cc 3 Z CL O I/) Z> I z o

o. —• a O

i i i i i i i i i i t i i i i i i i i i i i i i i i i i i i i i

z a.

245 to oc o I Kif, r^uco-ji-ittfsitvjmtMooco^^i/1. <5OiO'omc''»'-Of^rgCTioifv^r^Oin'CoDi^'

o- a-

X- i/> I-H QC tfriofwcroj(\i(s)^-HOOifi-*'mM(v™Ntv<>iitV'-i'-i'vrvrr4r*l min —" cc oo

O O oc •- l- •-i 03 < UJ O 3L a. <_> 3 I Z O >_ ^^r<)ODOcoo^(<)(> ^O'M ro •* -^ Q. — ac o

o 10

O >->->-ae>-TI>TX— Q.II a. t-i— voo^_ii— t-_ii— -it— v-_ioi^>oooi'siOii/>i:o2i>-ooa>-o_)ov_pi--ii->"l-'.—'ja.ii«z_ioou- a: I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I — ^mO

246 a. O X o -j

o a

< UJ a. o I Z

a >-* ix o

l/l UJ .. I I I I I I I I I I I I I I I I I I I I I I I I I I I I <^uJTQiX« QO — DOX

247 c

oc "* *"' r- •* i j t*\ UJ fV O i/o _

LU ^ ^ ^ O UJ «-* C* UJ (/> CO

uj i/i so

— O Ot t- ^ O1 u">j Sac -< _ *. fe< sO ^S 2(-

co ^^ uj h- oc

I—O > I— Q. £^P- Q3 ^^ UJ ^K C uc 9 o

Sri U. CO O LU 2

CO 3 ta

o o ~a cIc- H- < UJ O 5C n. o co 3 i z o »-4 ^^^oDrgorniTcoi^t<\ OC>- h-o>^>f«i^oooiTii\)»\i-ooift(O Oco ^(\j^^— iroc^ic^fsjfNi— jKrom^-H— «r>jCM-Hf-irsjrsirg—

19 CO o acx< Q. isll— Z<-)ZOOZO.COZ:ii->-ll.U.X3CO>Z a: i i i l i t i i i i i i i i i i i i i i i i i i i i i i i i i i i i I i i l l i i i l i i i i i i i

Z a:

248 1/5 a. O x

u. m«tc:h-^ojCf><\ir-^-o^cMOO<»>if*oo^ff>(n»h-. oooooto^r-^ -c ^H »-l ^* ^ <\J r* _l ,-4 ,_| ^4 _4 _4 r-4 *** ..4 oc in o

UJ Ct O •— < O « a. «-• CO «(/> ...... >.•...••. .. >- uj inmmoo-cm>aooo«J'4'O«^f^r-in »h-^O'«^h--t'Om>»'oinc^'Pijm*«>>-ih-rsi'« cvj-^(MOf-«i-HO''Ol -f-'MO'M>O«>«*'O>or»jeoi inmc>O'O4>a>m>4mo>-^(^eO'^^mmco>o^(^r>-r-ciiri4-oor-irt4'ir<>^''-t(viCrijr~CMeor-'*''^O^cD in f- i r-^^^*'O«-»jeofyih-(^h-of>i4'iX)(viP>joc><*i*r<>'*r^f\iff't-'Uaoc>r-o'ri»vioo-)^>inCT'>O'Ooo-O'* >o r- :* >- ivj^-co»<—«'CfO»*'«o^^o uj < m -o 45 uj *~* ^* Z co • ^ UJ CO CO ••«»•««•.«.«.•«••»••»«••«•••••••«••«»••••••••«•««• ..

o UJ LO X uj O _l CO*"* ...... ••.•.••.•.••.«*••...»•

O ac —' o K O ~« u 2 i- < - o O oo i-

^Q *^" . ^* *^^ ^ •— CO ^^ UJ

Xh-toi-i a moo**-*-*"a5*"-!***rj*** a. in o a uj >*• UJ . " _ (/> ° a.

UJ -I eo a O

O O OC I- l- « ID < UJ =) X a. o i/> 3 I z • »-«i h-ooo-c<^Oi*'vJo at— moo^9>m^i-<

__-.-.... i- I I I I I I i I I I I i i i i i i i i i I i I i i I I I I i i i I I I I I i I I i I I i i i i I i i UJ — XXOlM-iOaCXMZXV>l-aCI--J-IO-}OZ^ZOZOlX4SX ao oou.xto o oecfiiovo o

O CO < t- Oae uj_iae>»- o ouj>Qtocc«xx<>-a:uJXi>>i>cc'Bi/)XQcaeucoz>-_Jh-zh-ceae>-acac>i-ii/>a.(x:uja. a. >o>>oox^j-jz>ax_i-)>-i-toxzux_ixa:a.oxrMrNi>-a.aoxiOKu.xo of I I I i I I I i i i i I i i i | i I i i i i i i i i i i i i I I I i i i i i I I i I I I i i i i i i -_ xaa<<Oi^ujx< . )>U.IXIO_l>-<-JT'-'O-OU.OO

z of

249 at a T. C7- t*} r- IT eo r* r.i »-i o m *$• r\j -j- u> t-t re- o v m r*- r*- I !-• l»> O i-i * m <,, (M IT, •- C! IT. «M

a O «/>»-• «I O «T

_ — o- r- ^- >»• oo

ui < O LJ

O UJ

3 a

i UJ U _l

> I

a. < I UJ

QO >- Q- 2SQ- cc dj O

- » z oc*-« UJ _1 eo oc

< UJ a. o

a. — ac a

Q o a

O oo < K _ a£QO>i:iauJX-»JJ>. a — Zoe>uj3i->ac >-><Iuj a ZZiNlOZZoO)->sl OOZK>>-CCl-

Z < ac

250 DC

O

co co oo co UJ o < a. -*(/> • ••••••••••••••••••••••••••••••••••••••••••••••,,• •• h-UJ O^4rt&N^(vcinoorv-tr^'G-i-rvC>rr,'Otr\*c*t'^-t'tmtx>4-(r'-t-t CO oo < _j *i\iiAO^mc\ju%^^<>j^*«oi*omci.->O'O'..<.-omK.~<'<.* ^>4)r-^(M^-i\j^.C'-*i(Mcoi-ivOoo>t-oo^-4iO> mm i/)S rMirt^a^-fM^^rg.-'C-4ifv>oa) o<»'.-coiA-*-in.j*oooflOOcooirimpjOor~-'^ocD-*'O>iNJO' (vro i >*'^ins)rv.C)*coo.-oc>-O--f> 1JO-<'*'-OHo<)-oofy>-<^-tf>(nocoi>-^-"'--c cooo OCN- *^m*t~irior-**o>ooecifio>.-.--ir-l'ifi'Ot\j('i

UJ ••• <(/> •*'co-*p. o. \- i>j^r^ < cc — ^ Oiii fOrj_-h-if>u_^-t***i*.fom<<.mi*>mmmt<_fom(^mfvj(vic>jc>iPj(NjiNjc\irjtNjf\j(vo<^rgf\)f\)p^ ai (/•>-« -j _j 3 O UJ 00 X UJ O -I

mro oo CL O I QC 2 K O O. 00* ^ ^^> i/> < >- . ' a. < ^. — •—to >• (/) QQ. a) 2* 0 UJ— Q o e\J < u. 10 * of l o uj i _ z O flC«»

O O >- •- co < UJ O. O I Z

a. 1-1 a. o

251 ee. O X

t-i CM -<

at- tr\\e\ uj«; oo—« o ai CM o- z t^ UJ to

OUJ UJ

o UJ c/» Z uj U _l z > i

H* U. 'o

01 a: CL< y X; I UJ i_ K - o oo ffl 5ex. —S o oo Q. < ui CM

to CD a; 3 X — IS 3 < 3 Z < t

O O h- t-

K Illll^^lllllllll^lll^lll I I I I I I I I I I I I I I I I I I I I I O O i oO i 19 to •4 t~ O ae i O o. -oc aI Zi -i i£ ^ t °: (

< ac

252 o < I »^»-"00gi/>oc^)OOO)-Jh-oiAm'MP>Joo«iftcrn*'*ininin4'«ir\oir\"4U'i<-<^-CDrgir>rM>t4>*r\i.oor-a>ir'4'ir^GCo-'Cr-i(M tv ro H- ...... 1 . .. a. ^f^ajini7-ir>morvi-i-iooa-~r-oo-i-' 'ooc^>OMt-moocoir.ir\-<-<-4r4*-<H-<<-i<-' «- « O < a — t- V) i- I/J ...... • > i v r i K ui if\(*>-<*«)inocvi«*o*'-'-*c in^'>J'Ooa>' •* -o < j r-o>r-omo-r^inoooo eoorj tr>ooiMiNOo«>o4-co r>j CD f- k-i-i •Hr~K^oDOO^>- i eoirtm- < )irtooi n ^>ocMfOOo>O''>O'>-i'44'rotf\orgh-oos f O' *o< p rf f ^a>o'p > l'-' <>' «f~^ ror>)irv*r»r-i(Tifnooo'l ^ ^^ I 'OO*fNJO ro^C'O0'f ^<''rsllf*OI l^ ~*> ^ "'''^ 4' *'U^O~ tf*^>»OfN*^O*f^^OO-tf OrO^**^ff C»h-'$'^'OJCO tn--4 aK -<*^H i/iif»m«M^<-fiir>mcni'>rMO **if>«cM»'(mf>)^j(f>I-'(riir\ iA(«>eoh-m^-oOfn*i«iMir>o>oiAC^iOcj^)O'Oi*'(r>h--or-oci*o>*-^-i-i ereo a.f- ocD^-K^'Oif>-4'm(OforufM»-i^^oo>(^ff'^-ri-h-ifu^iA4'*fr>fr>mCTiOvooeor-oir>^'^'*ifOrofM h-«c < ^mmrnrnrntnrgr4corjr\iNr4(\j(siNcgi\jNr\i(vi-<<-ii-<>-<^^i-H>-<<-ir-i •*• Q UJ ^H^^t-^^-4«-^»^»^^^i-^tp^»4i-4^4*Mr-4^^^^^^i^^^r^«-^-^>-*^4^HFH»^^ -" •••• 1 I r>-^oom -it- ^>o^—« ^-x >—IL o^orMojc y < < !S? O QC (\J O K O -* «/) —I Of oUJ "TJ2T

OWr- oo t_| "a>i ^f ^- ^- oc ^^•^ -<*'*c>'4'r-'^t>oo%o>om^^-^r-a'ooO'O'O'<'*^'^ot-'OoO'OO'^r-ooff>o*(j>fiooori- a>^ ^f. < •*• 3 r~^h-r-< i ^^ ^i_ >- .«.. _t~ oo r— a; ^rorn«^Ots) f\ -o >H£ VI < rH^(Mrn^^^^rsjr^^^-H—l^_l r4fH>4r4>4 —l,H,- -*,*.H(MCM-<-*(\J'-"*^'~l — 1 J" -< (NJ -J -^ ^ -J ^ (MOO t-o v a 1 r^ in CB. - 0 ON OC __ O UJ -< O z at"-" h-rvi^rfifi^rg^«^m^tf\-<<»)^<\jr-^-4O^i-i'^(^»^rg-j^'-Jr>j»j^ir^^i\i<)^<\) — <»'«(\i^fn'O<--i(\i H- ui -J <^ ^* »H

3 < Z o o >- >- CD a. o i z

—imi\i-«^if>r<>«>ivjO>fvj-4N'mff>'*-<-Hr>jpg^-4 . oc o

uViI I I I I I I I i I I I I I I I I I I i I I I i I I I I I i I I I i I I I I I I OO O o o oo .._ a i>-o»-»-rsi»-rozooiooa.ooiu,>-u.u.iioxzi_iat>-ou.>vii->ooii>ii:->ooox'vicD2>o_i_i a: I I I i i I i i I t i I i I i i | i i I I i i i i t I I I i I I I i i i I I I I I I | I i I i I I i

U-><_IX-lLOJ<>-OcOOOCO_tOoO-U.

Z O ac

253 co -c

in CM

^ a> -< rg

coin OOO*

com <-iao roo (t\ o<

in rj (\Jr4

ID —'

< 4 h- t- o o

< ai 3 X a. o in 3 I Z O h-< o>oo^< of *- ^pg<\j( O>/> roinmi a. — a o

zocoza<>-xx*«ioo <-oeQC

Q O o o O en •4 t- O at O 0. ____ _ Ot I I I I t I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

z of

254 5 c

a. o ULJ oc O «-. •a u < a —

.*v ^ (^ ^ ^4 *>4 ^-* w\ i/\ ro f\j »"4 ^ ^ ^- (M «^ *Q m m •••* (^ i^ it ^^ \f\ m i-^ o^ iii ^ o uj Z i/> Ul 10 (/) ...... o r^ . ^) o uj UJ l/> _i a UI I/)

C a. I- O -J at ai < — O K < — _ C oo O *s^ fr- • ac it i/t r— •« to ui ^— < >- ^_ at a. < m 3 X I UJ (T. K rr >- T ac r~. < S O >• ^^ a a. — a o. < uj «C ^ f- < w* U. <7> ac <-» o uj "* O z i- CM £ j

O <"^ O < 3 Z

< LU a. o

at o <

255 APPENDIX 11.8 CITY CODE LIST (DECODING)

CODE CITY NAME AAL Aalborg, Denmark AAR Aarhus, Denmark ACA Acapulco, Mexico ACC Accra, Ghana ADL Adelaide, S. Australia AEP Buenos Aires, Arg - Aeroparque AGP Malaga, Spain AKL Auckland, New Zealand ALG Algiers, Algeria AMS Amsterdam, Netherlands ARN Stockholm, Sweden - Arlanda Arpt. ATH Athens, Greece AUA Aruba, Neth. Antilles BAQ Barranquilla, Colombia BCN Barcelona, Spain BDA Bermuda, Atlantic Ocean BDI Barbados, West Indies BEG Belgrade, Yugoslavia BEY Beirut, Lebanon BFS Belfast, N. Ireland BGO Bergen, BKK Bangkok, Thailand BMA Stockholm, Sweden - Bromma Arpt. BNE Brisbane, Qld., Australia BOG Bogota, Colombia BOM Bombay, India BOO Bodo, Norway BOS Boston, Mass., USA BRE Bremen, German Federal Rep. BRH Brussels, Belgium - National Arpt. BRQ Brno, Czechoslovakia BSL Basle, Switzerland BTS Bratislava, Czechoslovakia BUD Budapest, Hungary BUF Buffalo, N.Y., USA BUN Buenaventura, Colombia CAG Cagliari, Sardinia CAI Cairo, Egypt, UAR CBR Canberra, A.C.T., Australia CEB Cebu, Philippine Is. CGH Sao Paulo, Brazil - Congonhas Arnt. CGI1 Cologne, German Federal Rep. CMC Christchurch, New Zealand

256 APPENDIX 11.8 CITY CODE LIST (DECODING)

CODE CITY NAME CLO Call, Colombia CLX Lima, Peru - Jorge Chavez Int. Arpt. CMN Casablanca, Morocco - Nouasseur COR Cordoba, Argentina CPU Copenhagen, Denmark CPT Capetown, Rep. of S. Africa CSO Montevideo, Uruguay - Carrasco Arpt. CTA Catania, Sicily CTS Sapporo, Japan - Chitose Arpt. CUR Curacao, Neth. Antilles DAR Dar Es Salaam, Tanzania DBV Dubrovnlk, Yugoslavia DEL Delhi, India DTW Detroit, Mich. Metropolitan Arpt. DUB Dublin, Ireland DUS Dusseldorf, German Federal Rep. EBB Entebbe/Kampala, Uganda EDI Edinburgh, Scotland ELS East London, Rep. of S. Africa ESB Ankara, Turkey EZE Buenos Aires, Arg. - Ezeiza Arpt. FBU Oslo, Norway - Fornebu Arpt. FCO Rome, Italy - Leonardo Da Vinci Arpt. FDF Fort De France, Martinique FPO Freeport, Bahamas FRA Frankfurt, German Federal Rep; FUK Fukuoka, Japan GDL Guadalajara, Mexico GIG Rio De Janeiro, Bra. - Galeao Arpt. GLA Glasgow, Scotland GOT Gothenburg, Sweden GVA Geneva, Switzerland GYE Guayaquil, Ecuador HAC Hachijo Jima Island, Japan HAJ Hanover, German Federal Rep. HAM Hamburg, German Federal Rep. HEL Helsinki, Finland HER Heraklion, Crete, Greece HIJ Hiroshima, Japan HKG Hong Kong, Br. Crown Colony HUN Hualien, Rep. of China (Taiwan)

257 APPENDIX 11.8 CITY CODE LIST (DECODING)

CODE CITY NAME ISM Islamabad, W. Pakistan 1ST Istanbul, Turkey IZM . Izmir, Turkey JER Jersey, Channel Is., U.K. JFK New York, N.Y. - Kennedy Int. Arpt., USA JKT Djakarta, Java, Indonesia JNB Johannesburg, Rep. of S. Africa KCZ Kochi, Japan KHI Karachi, W. Pakistan KIN Kingston, Jamaica KKJ Kita Kyushu, Japan KMI Miyazaki, Japan KMJ Kumamoto, Japan KOJ Kagoshima, Japan KUL Kuala Lumpur, Malaysia LCG Paris, France - Le Bourget Arpt. LBZ Durban, Rep. S. Afr - Louis Botha Arpt. LGA New York, N.Y. - La Guardia Arpt., USA LHE Lahore, W. Pakistan LHR London, England - Heathrow Arpt. LIN Milan, Italy - Forlanini - Linate LIS Lisbon, Portugal LOS Lagos, Nigeria LPA Las Palmas, Canary Is. LST Launceston, Tasmania LYS Lyon, France MAD Madrid, Spain MAN Manchester, England MAR Maracaibo, Venezuela MAZ Mayaguez, Puerto Rico MBJ Montego Bay, Jamaica MDE Medellin, Colombia MEL Melbourne, V Aust - Tullamarine MEX Mexico City, Mexico MIA Miami, Fla., USA MID Merida, Mexico MIQ Caracas, Ven - Maiquetia Arpt. MMA Maimo, Sweden MNL Manila, Phillipine Is. MRS Marseille, France MTY Monterrey, Mexico MUC Munich, German Federal Rep. MXP Milan, Italy - Malpensa Arpt. MYJ Matsuyama, Shikoku, Japan

258 APPENDIX 11.8 CITY CODE LIST (DECODING)

CODE CITY NAME NAP Naples, Italy NAS Nassau, Bahamas NBO Nairobi, Kenya NCE Nice, France NCL Newcastle, England NUE Nuremberg, German Federal Rep. OIT Oita, Japan OKA Okinawa, Ryukyu Is. OMJ Omura, Japan OPO Oporto, Portugal ORD Chicago, 111 - O'Hare Arpt., USA ORY Paris, France - Orly Arpt. OSA Osaka, Japan OST Ostend, Belgium PLZ Port Elizabeth, R. S. Africa PMI Palma De Mallorca, Spain PMO Palermo, Sicilv POA Porto Alegre, Brazil POS Port of Spain, Trinidad PRG Prague, Czechoslovakia PSE Ponce, Puerto Rico PTP . Pointe A Pitre, Guadeloupe PUS Pusan, Rep. of Korea PVR Puerto Vallarta, Mexico RHO Rhodes Island, Greece RNN Ronne, Denmark RTM Rotterdam, Netherlands SCL Santiago, Chile SDQ Santo Domingo, Dom. Rep. SOU Rio De Janeiro, Bra. - S. Dumont Arpt, SEA Seattle, Wash., USA SEL Seoul, Rep. of Korea SEN Southend, England SFO San Francisco, Calif., USA SIN Singapore, Singapore SJU San Juan, Puerto Rico SKG Salonika, Greece SNN Shannon, Ireland SSA Salvador, Brazil STR Stuttgart, German Federal Rep. STT St. Thomas, Virgin Is. STX St. Croix, Virgin Is. SVO Moscow, USSR - Sheremetyevo Arpt.

259 APPENDIX 11.8 CITY CODE LIST (DECODING)

CODE CITY NAME SVQ Seville, Spain SXF Berlin, Ger. Dem. Rep. SYD Sydney, NSW Australia TAK Takamatsu, Japan f TCI Santa Cruz Tenerife, Canary Is. THF Berlin, Ger - Tempelhof Arpt. THR Teheran, Iran TLS Toulouse, France TLV Tel Aviv, Israel TPE Taipei, Rep. of China (Taiwan) TRD Trondheim, Norway TRN Turin, Italy TUM Panama City, Pan - Tocumen Arpt. TYO Tokyo, Japan VBY Visby, Sweden VCE Venice, Italy VCP Sao Paulo, Brazil - Viracopos Arpt, VIE Vienna, Austria WLG Wellington, New Zealand YEG Edmonton, Alta - Int. Apt., Canada YHZ Halifax, N.S. YOW Ottawa, Ontario, Canada YQB Quebec, Que. YQG Windsor, Ont., Canada YQM Moncton, N.B. YQR Regina, Sask. YQX Gander, Nfld,, Canada i YQY Sydney, N.S. YUL Montreal, Que., Canada YVR Vancouver, B.C., Canada YWG Winnipeg, Man., Canada • YXD Edmonton, Alta., Canada i YYC Calgary, Alta., Canada YYJ Victoria, B.C. YYT St. Johns, Nfld. YYZ Toronto, Ont., Canada ZAG Zagreb, Yugoslavia ZRH Zurich, Switzerland

260