Exosomes and Cell Communication: from Tumour-Derived Exosomes and Their Role in Tumour Progression to the Use of Exosomal Cargo for Cancer Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Exosomes and Cell Communication: from Tumour-Derived Exosomes and Their Role in Tumour Progression to the Use of Exosomal Cargo for Cancer Treatment cancers Review Exosomes and Cell Communication: From Tumour-Derived Exosomes and Their Role in Tumour Progression to the Use of Exosomal Cargo for Cancer Treatment Andrea Nicolini 1,*,†, Paola Ferrari 2 and Pier Mario Biava 3 1 Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy 2 Unit of Oncology 1, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy; [email protected] 3 Scientific Institute of Research and Care Multimedica, 20099 Milan, Italy; [email protected] * Correspondence: [email protected] † This author has retired. Simple Summary: Recently, within the research community, exosomes, transporters of bioactive molecules involved in many signalling pathways and cell-to-cell communication with the capacity to alter the tumour microenvironment, have been attracting increasing interest among oncologists. These molecules can play multiple roles, e.g., as useful biomarkers in diagnosis, modulators of the immune system, promoters of the formation of the pre-metastatic niches and cancer metastasis and carriers of substances or factors with anticancer properties. This review focuses on the use of exosomes as a novel therapeutic strategy for cancer treatment. Particularly, it highlights the potential of exosomes as carriers of stem cell differentiation stage factors (SCDSFs) for “cell reprogramming” therapy, a promising research field on which we have reported previously. Here, the main characteristics of this treatment and the advantages that can be obtained using mesenchymal stem cell-derived exosomes Citation: Nicolini, A.; Ferrari, P.; up-loaded with the SCDSFs as carriers of these factors are also discussed. Biava, P.M. Exosomes and Cell Communication: From Tumour- Abstract: Exosomes are nano-vesicle-shaped particles secreted by various cells, including cancer Derived Exosomes and Their Role in cells. Recently, the interest in exosomes among cancer researchers has grown enormously for their Tumour Progression to the Use of Exosomal Cargo for Cancer many potential roles, and many studies have focused on the bioactive molecules that they export as Treatment. Cancers 2021, 13, 822. exosomal cargo. These molecules can function as biomarkers in diagnosis or play a relevant role in https://doi.org/10.3390/ modulating the immune system and in promoting apoptosis, cancer development and progression. cancers13040822 Others, considering exosomes potentially helpful for cancer treatment, have started to investigate them in experimental therapeutic trials. In this review, first, the biogenesis of exosomes and their Academic Editor: Donat Kögel main characteristics was briefly described. Then, the capability of tumour-derived exosomes and Received: 20 January 2021 oncosomes in tumour microenvironments (TMEs) remodelling and pre-metastatic niche formation, Accepted: 12 February 2021 as well as their interference with the immune system during cancer development, was examined. Published: 16 February 2021 Finally, the potential role of exosomes for cancer therapy was discussed. Particularly, in addition, their use as carriers of natural substances and drugs with anticancer properties or carriers of boron Publisher’s Note: MDPI stays neu- neutron capture therapy (BNCT) and anticancer vaccines for immunotherapy, exosomes as biological tral with regard to jurisdictional clai- ms in published maps and institutio- reprogrammers of cancer cells have gained increased consensus. The principal aspects and the nal affiliations. rationale of this intriguing therapeutic proposal are briefly considered. Keywords: exosomes; oncosomes; cancer; exosomal cancer evolution; exosomal cancer therapy; exosomal cancer cells reprogramming Copyright: © 2021 by the authors. Li- censee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and con- 1. Introduction ditions of the Creative Commons At- tribution (CC BY) license (https:// Exosomes are nano-vesicle-shaped particles secreted under physiological and patho- creativecommons.org/licenses/by/ logical conditions by various cells, including cancer cells. They export nucleic acids, 4.0/). Cancers 2021, 13, 822. https://doi.org/10.3390/cancers13040822 https://www.mdpi.com/journal/cancers CancersCancersCancersCancers 20212021 2021 2021,, 13,13 ,13 13,, x,x ,x x 22 2 of2of of of 2424 24 24 Cancers 20212021Cancers,, 1313,,2021 xx , 13, 822 22 ofof 2424 2 of 23 CancersCancers 2021 2021,, , 13 13,, , x x 22 ofof 2424 Cancers 2021, 13, x 2 of 24 proteinsproteinsproteinsproteins and and andand lipids lipids lipidslipids that that thatthat target target targettarget close close closeclose or or oror distant distant distantdistant cells, cells, cells,cells, thus thus thusthus regulating regulating regulatingregulating multiple multiple multiplemultiple cellular cellular cellularcellular proteins and lipids that target close or distant cells, thus regulating multiple cellular proteinsproteinsproteinsprocesses.processes.processes. processes.andand lipidslipids and CancerCancer CancerCancer lipidsthatthat researchtargetresearch target thatresearchresearch target closeclose hashas hashas close ordemonstratedordemonstrated demonstrateddemonstrated distantdistant or distant cells,cells, cells,thatthat that that thusthus thesethese thusthesethese regulatingregulating particles regulatingparticles particlesparticles multiple multipleprovideprovide provideprovide multiple biomarkersbiomarkerscellular cellular biomarkersbiomarkers cellular pro- forfor forfor processes. Cancer research has demonstrated that these particles provide biomarkers for processes.processes.proteinscesses.diagnosisdiagnosisdiagnosisdiagnosis CancerCancer and Cancer [1[1 research[1 research[1–lipids––3]3]–3]3],, research ,induceinduce , induce inducethat hashas target apoptosis,apoptosis, demonstrated demonstratedapoptosis, hasapoptosis, demonstratedclose modulatemodulateor modulatemodulate distant thatthat thesethese that thethecells thethe immune immune theseparticles, immuneparticles immunethus particlesregulating systemsystem provide systemprovidesystem provide and and andmultiple and biomarkersbiomarkers playplay playplay biomarkers aa cellular a arelevantrelevant relevantrelevant forfor rolerole for rolerole diagnosisprocesses. [1[1––3]3],, induceCancerinduce researchapoptosis,apoptosis, has modulatemodulate demonstrated thethe immune immunethat these systemsystem particles andand provide playplay a abiomarkers relevantrelevant rolerole for diagnosisdiagnosisdiagnosisinininin promoting [1promoting[1[1 promotingpromoting––3]3],,, induceinduceinduce [1–3 ], cancer cancer cancer inducecancer apoptosis,apoptosis,apoptosis, development, development, development, apoptosis,development, modulatemodulatemodulate modulate progression progression progression theprogressionthethe immuneimmuneimmune the immune and and and systemandsystemsystem metastasis. metastasis. metastasis.metastasis. system andandand playplayplay and Moreover, Moreover, Moreover, Moreover, playaaa relevantrelevantrelevant a relevant specific specific specific rolespecificrolerole role exo- exo- exo-exo- in inin promotingpromotingdiagnosis cancercancer [1–3], development,inducedevelopment, apoptosis, progressionprogression modulate the andand immune metastasis.metastasis. system Moreover,Moreover, and play a specificspecific relevant exo- exo-role ininin promotingpromotingpromotingpromotingsomessomessomessomes cancer cancercancerare areareare cancer potentially potentiallypotentially potentially development,development,development, development, helpful helpfulhelpfulhelpful progressionprogressionprogression progression for forforfor cancer cancercancercancer andandand and therapy therapy therapy metastasis.therapymetastasis.metastasis. metastasis. by bybyby variousMoreover, Moreover,variousMoreover,variousvarious Moreover, modalities, modalities,modalities, modalities, specificspecificspecific specific exo-exo- exo- exosomesincluding includingincludingincluding somessomes inarererearearere repromoting-differentiation-differentiation-differentiation potentially -differentiation potentiallypotentially cancer helpful helpful helpful of of ofdevelopment,of malignant malignant formalignantmalignant cancerforfor cancercancer therapycells. cells. progressioncells.cells. therapytherapyThis This ThisThis by variousreview review reviewareview ndbyby metastasis. modalities,variousfirstvarious first firstfirst describes describes describesdescribes modalities,Moreover,modalities, including the the thethe principal specificprincipal principalprincipal re-differentiationincludingincluding exo- morpho- morpho- morpho-morpho- somessomes somes areare potentially potentiallyare potentially helpfulhelpful helpful forfor forcancercancer cancer therapytherapy therapy byby by variousvarious various modalities, modalities,modalities , includingincludingincluding rere-differentiation-differentiationoflogical-functionallogical-functionallogical-functionallogical-functional malignant ofof cells. malignantmalignant Thischaracteristicscharacteristics characteristicscharacteristics review cells.cells. firstThisThis of of of describes of review reviewexosomes. exosomes. exosomes.exosomes. firstfirst the ThTh principaldescribesdescribesThThenenenen,, ,,it it it it discusses discusses morphological-functionaldiscusses discussesthethe principalprincipal how how howhow tumour-derived morpho-tumour-derivedmorpho- tumour-derivedtumour-derived char- rere-differentiation-differentiation-differentiationre-differentiation
Recommended publications
  • Endothelial Glycocalyx-Mediated Intercellular Interactions: Mechanisms and Implications for Health and Disease
    ENDOTHELIAL GLYCOCALYX-MEDIATED INTERCELLULAR INTERACTIONS: MECHANISMS AND IMPLICATIONS FOR HEALTH AND DISEASE A Dissertation Presented By Solomon Arko Mensah To The Department of Bioengineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Bioengineering Northeastern University Boston, Massachusetts October 2019 Northeastern University Graduate School of Engineering Dissertation Signature Page Dissertation Title: Endothelial Glycocalyx-Mediated Intercellular Interactions: Mechanisms and Implications for Health and Disease Author: Solomon Arko Mensah NUID: 001753218 Department: Bioengineering Approved for Dissertation Requirement for the Doctor of Philosophy Degree Dissertation Advisor Dr. Eno. E. Ebong, Associate Professor Print Name, Title Signature Date Dissertation Committee Member Dr. Arthur J. Coury, Distinguished Professor Print Name, Title Signature Date Dissertation Committee Member Dr. Rebecca L. Carrier, Professor Print Name, Title Signature Date Dissertation Committee Member Dr. James Monaghan, Associate Professor Print Name, Title Signature Date Department Chair Dr. Lee Makowski, Professor and Chair Print Name, Title Signature Date Associate Dean of the Graduate School Dr. Waleed Meleis, Interim Associate Dean Associate Dean for Graduate Education Signature Date ii ACKNOWLEDGEMENTS First of all, I will like to thank God for how far he has brought me. I am grateful to you, God, for sending your son JESUS CHRIST to die for my sins. I do not take this substitutionary death of CHRIST for granted, and I am forever indebted to you for my salvation. I would like to express my sincerest gratitude to my PI, Dr. Eno Essien Ebong, for the mentorship, leadership and unwaivering guidance through my academic career and personal life. Dr Ebong, you taught me everything I know about scientific research and communication and I will not be where I am today if not for your leadership.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Dysfunctional Mechanotransduction Through the YAP/TAZ/Hippo Pathway As a Feature of Chronic Disease
    cells Review Dysfunctional Mechanotransduction through the YAP/TAZ/Hippo Pathway as a Feature of Chronic Disease 1, 2, 2,3, 4 Mathias Cobbaut y, Simge Karagil y, Lucrezia Bruno y, Maria Del Carmen Diaz de la Loza , Francesca E Mackenzie 3, Michael Stolinski 2 and Ahmed Elbediwy 2,* 1 Protein Phosphorylation Lab, Francis Crick Institute, London NW1 1AT, UK; [email protected] 2 Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; [email protected] (S.K.); [email protected] (L.B.); [email protected] (M.S.) 3 Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; [email protected] 4 Epithelial Biology Lab, Francis Crick Institute, London NW1 1AT, UK; [email protected] * Correspondence: [email protected] These authors contribute equally to this work. y Received: 30 November 2019; Accepted: 4 January 2020; Published: 8 January 2020 Abstract: In order to ascertain their external environment, cells and tissues have the capability to sense and process a variety of stresses, including stretching and compression forces. These mechanical forces, as experienced by cells and tissues, are then converted into biochemical signals within the cell, leading to a number of cellular mechanisms being activated, including proliferation, differentiation and migration. If the conversion of mechanical cues into biochemical signals is perturbed in any way, then this can be potentially implicated in chronic disease development and processes such as neurological disorders, cancer and obesity. This review will focus on how the interplay between mechanotransduction, cellular structure, metabolism and signalling cascades led by the Hippo-YAP/TAZ axis can lead to a number of chronic diseases and suggest how we can target various pathways in order to design therapeutic targets for these debilitating diseases and conditions.
    [Show full text]
  • An Endocytosis Pathway Initiated Through Neuropilin-1 and Regulated by Nutrient Availability
    ARTICLE Received 18 Apr 2014 | Accepted 2 Aug 2014 | Published 3 Oct 2014 DOI: 10.1038/ncomms5904 An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability Hong-Bo Pang1, Gary B. Braun1,2, Tomas Friman1,2, Pedro Aza-Blanc1, Manuel E. Ruidiaz1, Kazuki N. Sugahara1,3, Tambet Teesalu1,4 & Erkki Ruoslahti1,2 Neuropilins (NRPs) are trans-membrane receptors involved in axon guidance and vascular development. Many growth factors and other signalling molecules bind to NRPs through a carboxy (C)-terminal, basic sequence motif (C-end Rule or CendR motif). Peptides with this motif (CendR peptides) are taken up into cells by endocytosis. Tumour-homing CendR peptides penetrate through tumour tissue and have shown utility in enhancing drug delivery into tumours. Here we show, using RNAi screening and subsequent validation studies, that NRP1-mediated endocytosis of CendR peptides is distinct from known endocytic pathways. Ultrastructurally, CendR endocytosis resembles macropinocytosis, but is mechanistically different. We also show that nutrient-sensing networks such as mTOR signalling regulate CendR endocytosis and subsequent intercellular transport of CendR cargo, both of which are stimulated by nutrient depletion. As CendR is a bulk transport pathway, our results suggest a role for it in nutrient transport; CendR-enhanced drug delivery then makes use of this natural pathway. 1 Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA. 2 Center for Nanomedicine, Department of Cell, Molecular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106-9610, USA. 3 Department of Surgery, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
    [Show full text]
  • Microrna-320A Inhibits Tumor Invasion by Targeting Neuropilin 1 and Is Associated with Liver Metastasis in Colorectal Cancer
    ONCOLOGY REPORTS 27: 685-694, 2012 microRNA-320a inhibits tumor invasion by targeting neuropilin 1 and is associated with liver metastasis in colorectal cancer YUJUN ZHANG1, XIANGJUN HE1, YULAN LIU1,2, YINGJIANG YE3, HUI ZHANG3, PEIYING HE1, QI ZHANG1, LINGYI DONG3, YUJING LIU1 and JIANQIANG DONG1 1Institute of Clinical Molecular Biology, and Departments of 2Gastroenterology and 3General Surgery, Peking University, People's Hospital, Beijing 100044, P.R. China Received September 13, 2011; Accepted October 26, 2011 DOI: 10.3892/or.2011.1561 Abstract. MicroRNAs (miRNAs) have been implicated Introduction in regulating diverse cellular pathways. Although there is emerging evidence that various miRNAs function as onco- Colorectal cancer (CRC) is the second most common cause genes or tumor suppressors in colorectal cancer (CRC), the role of cancer-related death worldwide (1). Approximately 50% of of miRNAs in mediating liver metastasis remains unexplored. patients diagnosed with CRC die as a result of complications The expression profile of miRNAs in liver metastasis and from distant metastases, which occur mainly in the liver. The primary CRC tissues was analyzed by miRNA microarrays occurrence of liver metastasis ranges from 20% in stage II to and verified by real-time polymerase chain reaction (PCR). 70% in stage IV CRC patients, according to the UICC stage In 62 CRC patients, the expression levels of miR-320a were guidelines. Of all patients who die of advanced colorectal determined by real-time PCR, and the effects on migration and cancer (ACRC), 60-70% display liver metastasis (2). Metastasis invasion of miR-320a were determined using a transwell assay. to the liver is the major cause of death in CRC patients (3).
    [Show full text]
  • Transcription Factor IRF4 Promotes CD8 T Cell Exhaustion and Limits
    Article Transcription Factor IRF4 Promotes CD8+ T Cell Exhaustion and Limits the Development of Memory- like T Cells during Chronic Infection Graphical Abstract Authors Kevin Man, Sarah S. Gabriel, Yang Liao, ..., Mark A. Febbraio, Wei Shi, Axel Kallies Correspondence [email protected] In Brief During chronic stimulation, CD8+ T cells acquire an exhausted phenotype characterized by expression of inhibitory receptors, loss of effector function, and metabolic impairments. Man et al. have identified a transcriptional module consisting of the TCR-induced transcription factors IRF4, BATF, and NFATc1 that drives T cell exhaustion and impairs memory T cell development. Highlights d High IRF4 mediates T cell exhaustion including expression of inhibitory receptors d TCR-responsive transcription factors IRF4, BATF, and NFAT form a transcriptional circuit d Low IRF4 reduces T cell exhaustion and promotes formation of TCF1+ memory-like T cells Man et al., 2017, Immunity 47, 1129–1141 December 19, 2017 Crown Copyright ª 2017 Published by Elsevier Inc. https://doi.org/10.1016/j.immuni.2017.11.021 Immunity Article Transcription Factor IRF4 Promotes CD8+ TCell Exhaustion and Limits the Development of Memory-like T Cells during Chronic Infection Kevin Man,1,2,10,11 Sarah S. Gabriel,1,8,9,10 Yang Liao,1,2 Renee Gloury,1,8,9 Simon Preston,1,2 Darren C. Henstridge,3 Marc Pellegrini,1,2 Dietmar Zehn,4 Friederike Berberich-Siebelt,5,6 Mark A. Febbraio,7 Wei Shi,1,2 and Axel Kallies1,8,9,12,* 1The Walter and Eliza Hall Institute of Medical Research, 1G Royal
    [Show full text]
  • Two-Dimensional Signal Transduction During the Formation of Invadopodia
    Malaysian Journal of Mathematical Sciences 13(2): 155164 (2019) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal Two-Dimensional Signal Transduction during the Formation of Invadopodia Noor Azhuan, N. A.1, Poignard, C.2, Suzuki, T.3, Shae, S.1, and Admon, M. A. ∗1 1Department of Mathematical Sciences, Universiti Teknologi Malaysia, Malaysia 2INRIA de Bordeaux-Sud Ouest, Team MONC, France 3Center for Mathematical Modeling and Data Science, Osaka University, Japan E-mail: [email protected] ∗ Corresponding author Received: 6 November 2018 Accepted: 7 April 2019 ABSTRACT Signal transduction is an important process associated with invadopodia formation which consequently leads to cancer cell invasion. In this study, a two-dimensional free boundary problem in a steady-case of signal trans- duction during the formation of invadopodia is investigated. The signal equation is represented by a Laplace equation with Dirichlet boundary condition. The plasma membrane is taken as zero level set function. The level set method is used to solve the complete model numerically. Our results showed that protrusions are developed on the membrane surface due to the presence of signal density inside the cell. Keywords: Invadopodia formation, Signal transduction, Free boundary problem and Level set method. Noor Azhuan,N. A. et. al 1. Introduction Normally, human cells grow and divide to form new cells as required by the body. Cells grow old or become damaged and die, and new cells take their place. However, this orderly process breaks down when a cancer cell formed through multiple mutation in an individual's normal cell key genes.
    [Show full text]
  • Cell and Molecular Biology of Invadopodia
    CHAPTER ONE Cell and Molecular Biology of Invadopodia Giusi Caldieri, Inmaculada Ayala, Francesca Attanasio, and Roberto Buccione Contents 1. Introduction 2 2. Biogenesis, Molecular Components, and Activity 3 2.1. Structure 4 2.2. The cell–ECM interface 5 2.3. Actin-remodeling machinery 7 2.4. Signaling to the cytoskeleton 11 2.5. Interaction with and degradation of the ECM 19 3. Open Questions and Concluding Remarks 23 3.1. Podosomes versus invadopodia 23 3.2. Invadopodia in three dimensions 24 3.3. Invadopodia as a model for drug discovery 24 Acknowledgments 25 References 25 Abstract The controlled degradation of the extracellular matrix is crucial in physiological and pathological cell invasion alike. In vitro, degradation occurs at specific sites where invasive cells make contact with the extracellular matrix via specialized plasma membrane protrusions termed invadopodia. Considerable progress has been made in recent years toward understanding the basic molecular components and their ultrastructural features; generating substantial interest in invadopodia as a paradigm to study the complex interactions between the intracellular trafficking, signal transduction, and cytoskeleton regulation machi- neries. The next level will be to understand whether they may also represent valid biological targets to help advance the anticancer drug discovery process. Current knowledge will be reviewed here together with some of the most important open questions in invadopodia biology. Tumor Cell Invasion Laboratory, Consorzio Mario Negri Sud, S. Maria Imbaro (Chieti) 66030, Italy International Review of Cell and Molecular Biology, Volume 275 # 2009 Elsevier Inc. ISSN 1937-6448, DOI: 10.1016/S1937-6448(09)75001-4 All rights reserved. 1 2 Giusi Caldieri et al.
    [Show full text]
  • Modeling the Mechanobiology of Cancer Cell Migration Using 3D Biomimetic Hydrogels
    gels Review Modeling the Mechanobiology of Cancer Cell Migration Using 3D Biomimetic Hydrogels Xabier Morales †, Iván Cortés-Domínguez † and Carlos Ortiz-de-Solorzano * IDISNA, Ciberonc and Solid Tumors and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; [email protected] (X.M.); [email protected] (I.C.-D.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Understanding how cancer cells migrate, and how this migration is affected by the me- chanical and chemical composition of the extracellular matrix (ECM) is critical to investigate and possibly interfere with the metastatic process, which is responsible for most cancer-related deaths. In this article we review the state of the art about the use of hydrogel-based three-dimensional (3D) scaffolds as artificial platforms to model the mechanobiology of cancer cell migration. We start by briefly reviewing the concept and composition of the extracellular matrix (ECM) and the materials commonly used to recreate the cancerous ECM. Then we summarize the most relevant knowledge about the mechanobiology of cancer cell migration that has been obtained using 3D hydrogel scaf- folds, and relate those discoveries to what has been observed in the clinical management of solid tumors. Finally, we review some recent methodological developments, specifically the use of novel bioprinting techniques and microfluidics to create realistic hydrogel-based models of the cancer ECM, and some of their applications in the context of the study of cancer cell migration. Keywords: hydrogel; collagen; Matrigel; extracellular matrix; mechanobiology; amoeboid-mesenchymal transition; cancer; cell migration; microfluidic devices; bioprinting Citation: Morales, X.; Cortés-Domínguez, I.; Ortiz-de-Solorzano, C.
    [Show full text]
  • Association Between Tfh and PGA in Children with Henoch–Schönlein Purpura
    Open Medicine 2021; 16: 986–991 Research Article Miao Meihua, Li Xiaozhong, Wang Qin, Zhu Yunfen, Cui Yanyan, Shao Xunjun* Association between Tfh and PGA in children with Henoch–Schönlein purpura https://doi.org/10.1515/med-2021-0318 in the HSP group showed no statistical difference com- received May 30, 2019; accepted June 7, 2021 pared with that in the acute respiratory infection and the (P < ) Abstract surgery control 0.05 . Conclusion ‒ Objective ‒ The aim of this study was to investigate the Increased activity of Tfh cells, which is roles of follicular helper CD4+ T cells (Tfh) and serum closely related to mucosal immunity, may be a major contributor in the elevation of PGA-IgA, and Tfh cells anti-α-1,4-D-polygalacturonic acid (PGA) antibody in the - pathogenesis of Henoch–Schönlein purpura (HSP). and PGA IgA are closely related to the occurrence of HSP. Methods ‒ ELISA was performed to determine serum Keywords: Henoch–Schönlein purpura, follicular helper - - + PGA IgA and PGA IgG. Flow cytometry was utilized to CD4 T cells, α-1,4-D-polygalacturonic acid, immunity determine the peripheral CD4+ CXCR5+ and CD4+ CXCR5+ ICOS+ Tfh cells. Real-time PCR was conducted to deter- mine the expression of Bcl-6 gene. Then the change of Tfh cells was analyzed, together with the association 1 Introduction with the anti-PGA antibody as well as the roles in the – ( ) pathogenesis of HSP. Henoch Schönlein purpura HSP , now known as IgA Results ‒ Compared with the cases with acute respira- vasculitis, is a common systemic disease in children. A tory
    [Show full text]
  • Noncanonical Role of Transferrin Receptor 1 Is Essential for Intestinal Homeostasis
    Noncanonical role of transferrin receptor 1 is essential for intestinal homeostasis Alan C. Chena, Adriana Donovanb, Renee Ned-Sykesc, and Nancy C. Andrewsa,d,1 aDepartment of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27705; bDivision of Pharmacology and Preclinical Biology, Scholar Rock, Cambridge, MA 02142; cDivision of Laboratory Systems, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA 30333; and dDepartment of Pediatrics, Duke University School of Medicine, Durham, NC 27705 Contributed by Nancy C. Andrews, August 4, 2015 (sent for review June 16, 2015; reviewed by Jerry Kaplan and Ramesh A. Shivdasani) Transferrin receptor 1 (Tfr1) facilitates cellular iron uptake through Surprisingly, the mice showed marked induction of genes asso- receptor-mediated endocytosis of iron-loaded transferrin. It is ex- ciated with epithelial–mesenchymal transition in IECs, suggest- pressed in the intestinal epithelium but not involved in dietary iron ing that Tfr1 normally acts to suppress this cell fate change. absorption. To investigate its role, we inactivated the Tfr1 gene There was also abnormal accumulation of lipids, similar to mice selectively in murine intestinal epithelial cells. The mutant mice had lacking transcription factor Plagl2, and increased expression of severe disruption of the epithelial barrier and early death. There stem cell markers. was impaired proliferation of intestinal epithelial cell progenitors, aberrant lipid handling, increased mRNA expression of stem cell Results markers, and striking induction of many genes associated with Conditional Deletion of Tfr1 in IECs. We developed Tfr1fl/fl mice epithelial-to-mesenchymal transition. Administration of parenteral carrying loxP sites flanking Tfr1 exons 3–6(Fig.
    [Show full text]
  • Cholesterol Targeting in Cancer Therapy
    Oncogene (2010) 29, 3745–3747 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 www.nature.com/onc COMMENTARY The Rafts of the Medusa: cholesterol targeting in cancer therapy MR Freeman1,2,3,4, D Di Vizio1,2,3 and KR Solomon1,2,5 1Urological Diseases Research Center, Children’s Hospital Boston, Boston, MA, USA; 2Department of Urology, Children’s Hospital Boston–Harvard Medical School, Boston, MA, USA; 3Department of Surgery, Children’s Hospital Boston–Harvard Medical School, Boston, MA, USA; 4Department of Biological Chemistry and Molecular Pharmacology, Children’s Hospital Boston–Harvard Medical School, Boston, MA, USA and 5Department of Orthopaedic Surgery, Children’s Hospital Boston–Harvard Medical School, Boston, MA, USA In this issue of Oncogene, Mollinedo and co-workers present promising evidence that cholesterol-sensitive signaling pathways involving lipid rafts can be therapeutically targeted in multiple myeloma. Because the pathways considered in their study are used by other types of tumor cells, one implication of this report is that cholesterol-targeting approaches may be applicable to other malignancies. Oncogene (2010) 29, 3745–3747; doi:10.1038/onc.2010.132; published online 3 May 2010 Cholesterol is a sterol that serves targeted therapeutically in the case androgens are generally thought to as a metabolic precursor to other of certain malignancies. promote prostate cancer disease bioactive sterols, such as nuclear Published evidence suggests that progression, the relative clarity of receptor ligands, and also has a a cholesterol-focused approach the epidemiological data in pros- major role in plasma membrane might work in some clinical scenar- tate cancer in comparison to other structure.
    [Show full text]