The Frontiers Collection

Total Page:16

File Type:pdf, Size:1020Kb

The Frontiers Collection THE FRONTIERS COLLECTION Series editors Avshalom C. Elitzur Iyar The Israel Institute for Advanced Research, Rehovot, Israel e-mail: [email protected] Laura Mersini-Houghton Department of Physics, University of North Carolina, Chapel Hill, NC 27599-3255, USA e-mail: [email protected] T. Padmanabhan Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India e-mail: [email protected] Maximilian Schlosshauer Department of Physics, University of Portland, Portland, OR 97203, USA e-mail: [email protected] Mark P. Silverman Department of Physics, Trinity College, Hartford, CT 06106, USA e-mail: [email protected] Jack A. Tuszynski Department of Physics, University of Alberta, Edmonton, AB T6G 1Z2, Canada e-mail: [email protected] Rüdiger Vaas Center for Philosophy and Foundations of Science, University of Giessen, 35394 Giessen, Germany e-mail: [email protected] THE FRONTIERS COLLECTION Series Editors A.C. Elitzur L. Mersini-Houghton T. Padmanabhan M. Schlosshauer M.P. Silverman J.A. Tuszynski R. Vaas The books in this collection are devoted to challenging and open problems at the forefront of modern science, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science. Furthermore, it is intended to encourage active scientists in all areas to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, conscious- ness and complex systems—the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. More information about this series at http://www.springer.com/series/5342 For a full list of published titles, please see back of book or springer.com/series/5342 Shyam Wuppuluri ⋅ Giancarlo Ghirardi Editors Space, Time and the Limits of Human Understanding 123 Editors Shyam Wuppuluri Giancarlo Ghirardi R. N. Podar School (CBSE) Abdus Salam International Centre for Podar Educational Complex Theoretical Physics Mumbai Trieste India Italy ISSN 1612-3018 ISSN 2197-6619 (electronic) THE FRONTIERS COLLECTION ISBN 978-3-319-44417-8 ISBN 978-3-319-44418-5 (eBook) DOI 10.1007/978-3-319-44418-5 Library of Congress Control Number: 2016950405 © Springer International Publishing AG 2017 Chapter 15 is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the chapter. This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Vox audita perit litera scripta manet, The thing heard perishes but the written word remains —Latin Maxim. Foreword First of all, let me thank Mr. Shyam Wuppuluri for his years of effort devoted to inspiring, assembling, and editing this volume. Rather than attempting to comment on the papers in it, I shall try to outline my approach to some issues that the reader may find helpful to bear in mind when reading these papers. Unfortunately, the concepts needed to discuss these issues are so interrelated that I have not found it possible to provide a simple, sequential introduction to these concepts. Indeed, they are inextricably intermingled in my presentation. Every human community is based on an interrelated complex of labor processes that enable the community not just to survive but that, if successful, enable it to grow and thrive. Each such labor process involves three elements: the labor of a group of people using some tools to act upon the initial objects of labor (the “raw materials”). The goal of this process is action upon these initial objects in such a way as to produce final objects (the “finished products”) that will benefit at least some members of the community. But not all tools and initial objects are external to the members of the com- munity. Language—and other symbolic systems that language enables people to create—allows them to form conceptual systems, some of which in turn become intellectual tools that can be used to modify the initial conceptual systems and to create new ones. In other words, not all labor need to be manual. Just as important is intellectual labor. Like all forms of labor, intellectual labor starts from some object—in this case a conceptual object—and works on this object with the aim of modifying it to produce a new conceptual object (see my paper “Problems not Disciplines”). There are many types of intellectual tools (art, literature, religion, etc.) but most important for the questions discussed in this volume are the scientific disciplines, including both the so-called natural and social sciences (better called the human sciences—the Geisteswissenschaften in German). Why include the social sciences? As in all other forms of labor, a successful intellectual labor process is ultimately the result of the collective labor of more than one individual: knowledge is our name for such results. Rather than being an vii viii Foreword individual problem, as it has been treated in Western philosophy since the time of Descartes, the problem of knowledge is a social problem (see my paper Where is Knowledge?). And it should always be borne in mind that the ultimate goal of all intellectual labor is to provide additional resources to some human community for action upon the material world and, intended or not, to produce changes in the community itself. As noted already, in the case of intellectual labor the objects of labor are complexes of concepts; and the collective labor acting upon these complexes is that of some intellectual community. When it is successful, new knowledge is our name for the results of such a process of intellectual labor. And it is important to bear in mind that knowledge itself is indeed a process that will never end as long as intellectual communities continue to exist. So one should be suspicious of any proposed axiomatization of some realm of human knowledge, especially if it is accompanied by claims of the closure of what should be an open, unending process. An important philosophical issue is the distinction between the conceptual objects that constitute our knowledge and the objects of that knowledge, and the relation between these two. Such philosophical doctrines as conflicts as empiricism, rationalism, naturalism, materialism and idealism depend on the answer to this question. Suffice it to say that I regard the goal of action on the objects of knowledge as primary. The introduction of a new conceptual object, or the modi- fication of an existing one, must make clear its relation to some object(s) of knowledge. In the case of physical concepts, such as space and time, this means that their definition must be accompanied by some account of the means by which an ideal measurement of this quantity can be carried out. Let me emphasize: I am not maintaining that it is meaningful because it is measurable; rather that because it is meaningful it must in principle be measurable. No one has stated this lesson more eloquently than Gaston Bachelard: In order to embody new experimental evidence, it is necessary to deform the original concepts, study the conditions of applicability of these concepts, and above all incorporate the conditions of applicability of a concept into the very meaning of the concept. … The classic division that separates a theory from its application ignores this necessity to incorporate the conditions of applicability into the very essence of the theory (La formation de l’esprit scientifique. Paris: Vrin. 1938, pg. 61; transl. by J.S.). Like all tools, intellectual tools themselves may become the object of a labor process aimed at improving their effectiveness—indeed one tool may even be set aside totally in favor of some new tool. The prime example is relation between language, the first intellectual tool, and logic. Logic is a tool created for the improvement of language when it is applied to certain subjects. Indeed, one should rather say “logics,” since more than one consistent logical system may be employed in the critical reconstruction of a language. So one might say that logic is about language and language is about the world. Often this two-step relation is reduced to a one-step relation: logic is about the world—a view I have criticized for decades [A] logic always has some language as its object. The more formalized one wants the logic to be, the more formalized the language must be.
Recommended publications
  • Arxiv:1607.01025V2
    Observables, gravitational dressing, and obstructions to locality and subsystems William Donnelly∗ and Steven B. Giddings† Department of Physics, University of California, Santa Barbara, CA 93106 Quantum field theory – our basic framework for describing all nongravitational physics – conflicts with general relativity: the latter precludes the standard definition of the former’s essential principle of locality, in terms of commuting local observables. We examine this conflict more carefully, by investigating implications of gauge (diffeomorphism) invariance for observables in gravity. We prove a dressing theorem, showing that any operator with nonzero Poincar´echarges, and in particular any compactly supported operator, in flat-spacetime quantum field theory must be gravitationally dressed once coupled to gravity, i.e. it must depend on the metric at arbitrarily long distances, and we put lower bounds on this nonlocal dependence. This departure from standard locality occurs in the most severe way possible: in perturbation theory about flat spacetime, at leading order in Newton’s constant. The physical observables in a gravitational theory therefore do not organize themselves into local commuting subalgebras: the principle of locality must apparently be reformulated or abandoned, and in fact we lack a clear definition of the coarser and more basic notion of a quantum subsystem of the Universe. We discuss relational approaches to locality based on diffeomorphism-invariant nonlocal operators, and reinforce arguments that any such locality is state-dependent and approximate. We also find limitations to the utility of bilocal diffeomorphism- invariant operators that are considered in cosmological contexts. An appendix provides a concise review of the canonical covariant formalism for gravity, instrumental in the discussion of Poincar´e charges and their associated long-range fields.
    [Show full text]
  • A Non-Technical Explanation of the Bell Inequality Eliminated by EPR Analysis Eliminated by Bell A
    Ghostly action at a distance: a non-technical explanation of the Bell inequality Mark G. Alford Physics Department, Washington University, Saint Louis, MO 63130, USA (Dated: 16 Jan 2016) We give a simple non-mathematical explanation of Bell's inequality. Using the inequality, we show how the results of Einstein-Podolsky-Rosen (EPR) experiments violate the principle of strong locality, also known as local causality. This indicates, given some reasonable-sounding assumptions, that some sort of faster-than-light influence is present in nature. We discuss the implications, emphasizing the relationship between EPR and the Principle of Relativity, the distinction between causal influences and signals, and the tension between EPR and determinism. I. INTRODUCTION II. OVERVIEW To make it clear how EPR experiments falsify the prin- The recent announcement of a \loophole-free" observa- ciple of strong locality, we now give an overview of the tion of violation of the Bell inequality [1] has brought re- logical context (Fig. 1). For pedagogical purposes it is newed attention to the Einstein-Podolsky-Rosen (EPR) natural to present the analysis of the experimental re- family of experiments in which such violation is observed. sults in two stages, which we will call the \EPR analy- The violation of the Bell inequality is often described as sis", and the \Bell analysis" although historically they falsifying the combination of \locality" and \realism". were not presented in exactly this form [4, 5]; indeed, However, we will follow the approach of other authors both stages are combined in Bell's 1976 paper [2]. including Bell [2{4] who emphasize that the EPR results We will concentrate on Bohm's variant of EPR, the violate a single principle, strong locality.
    [Show full text]
  • Philosophy of Science -----Paulk
    PHILOSOPHY OF SCIENCE -----PAULK. FEYERABEND----- However, it has also a quite decisive role in building the new science and in defending new theories against their well-entrenched predecessors. For example, this philosophy plays a most important part in the arguments about the Copernican system, in the development of optics, and in the Philosophy ofScience: A Subject with construction of a new and non-Aristotelian dynamics. Almost every work of Galileo is a mixture of philosophical, mathematical, and physical prin~ a Great Past ciples which collaborate intimately without giving the impression of in­ coherence. This is the heroic time of the scientific philosophy. The new philosophy is not content just to mirror a science that develops independ­ ently of it; nor is it so distant as to deal just with alternative philosophies. It plays an essential role in building up the new science that was to replace 1. While it should be possible, in a free society, to introduce, to ex­ the earlier doctrines.1 pound, to make propaganda for any subject, however absurd and however 3. Now it is interesting to see how this active and critical philosophy is immoral, to publish books and articles, to give lectures on any topic, it gradually replaced by a more conservative creed, how the new creed gener­ must also be possible to examine what is being expounded by reference, ates technical problems of its own which are in no way related to specific not to the internal standards of the subject (which may be but the method scientific problems (Hurne), and how there arises a special subject that according to which a particular madness is being pursued), but to stan­ codifies science without acting back on it (Kant).
    [Show full text]
  • The Experimental Verdict on Spacetime from Gravity Probe B
    The Experimental Verdict on Spacetime from Gravity Probe B James Overduin Abstract Concepts of space and time have been closely connected with matter since the time of the ancient Greeks. The history of these ideas is briefly reviewed, focusing on the debate between “absolute” and “relational” views of space and time and their influence on Einstein’s theory of general relativity, as formulated in the language of four-dimensional spacetime by Minkowski in 1908. After a brief detour through Minkowski’s modern-day legacy in higher dimensions, an overview is given of the current experimental status of general relativity. Gravity Probe B is the first test of this theory to focus on spin, and the first to produce direct and unambiguous detections of the geodetic effect (warped spacetime tugs on a spin- ning gyroscope) and the frame-dragging effect (the spinning earth pulls spacetime around with it). These effects have important implications for astrophysics, cosmol- ogy and the origin of inertia. Philosophically, they might also be viewed as tests of the propositions that spacetime acts on matter (geodetic effect) and that matter acts back on spacetime (frame-dragging effect). 1 Space and Time Before Minkowski The Stoic philosopher Zeno of Elea, author of Zeno’s paradoxes (c. 490-430 BCE), is said to have held that space and time were unreal since they could neither act nor be acted upon by matter [1]. This is perhaps the earliest version of the relational view of space and time, a view whose philosophical fortunes have waxed and waned with the centuries, but which has exercised enormous influence on physics.
    [Show full text]
  • Classical Spacetime Structure
    Classical Spacetime Structure James Owen Weatherall Department of Logic and Philosophy of Science University of California, Irvine Abstract I discuss several issues related to \classical" spacetime structure. I review Galilean, Newto- nian, and Leibnizian spacetimes, and briefly describe more recent developments. The target audience is undergraduates and early graduate students in philosophy; the presentation avoids mathematical formalism as much as possible. 1. Introduction One often associates spacetime|a four-dimensional geometrical structure representing both space and time|with relativity theory, developed by Einstein and others in the early part of the twentieth century.1 But soon after relativity theory appeared, several authors, such as Hermann Weyl (1952 [1918]), Elie´ Cartan (1923, 1924), and Kurt Friedrichs (1927), began to study how the spatio-temporal structure presupposed by classical, i.e., Newtonian, physics could be re-cast using the methods of four-dimensional geometry developed in the context of relativity. These reformulations of classical physics were initially of interest for the insight they offered into the structure of relativity theory.2 But this changed in 1967, when Howard Stein proposed that the notion of a \classical" spacetime could provide important insight arXiv:1707.05887v1 [physics.hist-ph] 18 Jul 2017 Email address: [email protected] (James Owen Weatherall) 1The idea of \spacetime" was actually introduced by Minkowski (2013 [1911]), several years after Einstein first introduced relativity theory. 2And indeed, they remain of interest for this reason: see, for instance, Friedman (1983), Malament (1986a,b, 2012), Earman (1989b), Fletcher (2014), Barrett (2015), Weatherall (2011a,b, 2014, 2017d,c), and Dewar and Weatherall (2017) for philosophical discussions of the relationship between relativity theory and Newtonian physics that make heavy use of this formalism.
    [Show full text]
  • Why Spacetime Is Probably a Substance Author(S): Tim Maudlin Reviewed Work(S): Source: Philosophy of Science, Vol
    Buckets of Water and Waves of Space: Why Spacetime Is Probably a Substance Author(s): Tim Maudlin Reviewed work(s): Source: Philosophy of Science, Vol. 60, No. 2 (Jun., 1993), pp. 183-203 Published by: The University of Chicago Press on behalf of the Philosophy of Science Association Stable URL: http://www.jstor.org/stable/188350 . Accessed: 28/12/2012 20:13 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and Philosophy of Science Association are collaborating with JSTOR to digitize, preserve and extend access to Philosophy of Science. http://www.jstor.org This content downloaded on Fri, 28 Dec 2012 20:13:44 PM All use subject to JSTOR Terms and Conditions Philosophy of Science June, 1993 BUCKETS OF WATER AND WAVES OF SPACE: WHY SPACETIME IS PROBABLY A SUBSTANCE* TIM MAUDLINtt Department of Philosophy Rutgers University This paper sketches a taxonomy of forms of substantivalism and relationism concerning space and time, and of the traditional arguments for these positions. Several natural sorts of relationism are able to account for Newton's bucket experiment. Conversely, appropriately constructed substantivalism can survive Leibniz's critique, a fact which has been obscured by the conflation of two of Leibniz's arguments.
    [Show full text]
  • Arxiv:1704.03334V1 [Physics.Gen-Ph] 8 Apr 2017 Oin Ffltsaeadtime
    WHAT DO WE KNOW ABOUT THE GEOMETRY OF SPACE? B. E. EICHINGER Department of Chemistry, University of Washington, Seattle, Washington 98195-1700 Abstract. The belief that three dimensional space is infinite and flat in the absence of matter is a canon of physics that has been in place since the time of Newton. The assumption that space is flat at infinity has guided several modern physical theories. But what do we actually know to support this belief? A simple argument, called the ”Telescope Principle”, asserts that all that we can know about space is bounded by observations. Physical theories are best when they can be verified by observations, and that should also apply to the geometry of space. The Telescope Principle is simple to state, but it leads to very interesting insights into relativity and Yang-Mills theory via projective equivalences of their respective spaces. 1. Newton and the Euclidean Background Newton asserted the existence of an Absolute Space which is infinite, three dimensional, and Euclidean.[1] This is a remarkable statement. How could Newton know anything about the nature of space at infinity? Obviously, he could not know what space is like at infinity, so what motivated this assertion (apart from Newton’s desire to make space the sensorium of an infinite God)? Perhaps it was that the geometric tools available to him at the time were restricted to the principles of Euclidean plane geometry and its extension to three dimensions, in which infinite space is inferred from the parallel postulate. Given these limited mathematical resources, there was really no other choice than Euclid for a description of the geometry of space within which to formulate a theory of motion of material bodies.
    [Show full text]
  • 6 Space Substantivalism and Relationism Newton's Argument For
    6 Space Substantivalism and relationism abstract entities vs concrete entities. regions is commonly thought to be concrete but that isn’t in the category of material objects. realists would say regions or space do exist. Anti-realists about space would say, regions are an unnecessary addition. God creating the universe The realist about regions thinks that God has first to make an enormous container – the regions – in order to put the objects in. The anti-realist thinks that all God has to do to make the universe is make a bunch of objects, and then arrange them in a certain way. Those who are realists about regions are called substantivalists, whilst those who are anti- realists about regions are often called relationists. Newton’s argument for absolute space Dirction + Speed = velocity # Velocity + acceleration = innertial forces Newton’s bucket Newton’s argument for substantivalism – if velocity has to be relative to something, and acceleration is a change in velocity, then acceleration has to be relative to something as well. But, says Newton, it’s possible for one object to accelerate even though there’s no object that the acceleration could be relative to. But, as it must be relative to something, it must be relative to something that was not an object: it must be relative to space itself; ergo, space must exist. Stage 1: The rope is twisted but has not been let loose. The bucket and the water are at rest with respect to one another. Stage 2: The rope has been let loose and the bucket has started to rotate.
    [Show full text]
  • Newton Vs. Leibniz: Intransparency Vs. Inconsistency
    Newton vs. Leibniz: Intransparency vs. Inconsistency Karin Verelst Vrije Universiteit Brussel1 [email protected] The only way to avoid becoming a metaphysician is to say nothing E.A. Burtt Abstract Introduction The early modern debates on the nature of space enjoy a renewed interest in the recent philosophical literature. Focal points of the discussion are the opposition between the “absolute” vs. the “relational ” conception of space and the related issue of its presumed substantival nature. Quintessential formulations of the key positions in the debate remain the viewpoints attributed to Newton and Leib- niz. But scholarly disagreement concerning them remains stark. Especially with respect to Newton the defended interpretations range from anti-metaphysical readings (based on the notorious “I do not feign hypotheses”) to at first glance almost theological readings that have him speculate about the relation between God and world. Leibniz, on the other hand, is presented as Newton’s counter- part, who sets out tackling mechanical problems with an a priori metaphysical scheme — inherited from Descartes — already laid out in his mind. But Newton arXiv:1203.2292v1 [physics.hist-ph] 10 Mar 2012 clearly conceived of himself as a natural philosopher [52, p. 2], while Leibniz, certainly in his earlier years, would have insisted on his use of strictly mechanical concepts only [10, Introduction]. We believe that, in order to be able to judge on the “metaphysical degree” of the positions taken by our protagonists, we should understand more clearly what metaphysics itself is about. This question is often ignored. We shall show 1FUND-CLEA, Dept. of Mathematics.
    [Show full text]
  • Space, Time and Einstein
    Space, Time and Einstein Space, Time and Einstein An Introduction J. B. Kennedy © J. B. Kennedy 2003 This book is copyright under the Berne Convention. No reproduction without permission. All rights reserved. First published in 2003 by Acumen Acumen Publishing Limited 15A Lewins Yard East Street Chesham HP5 1HQ www.acumenpublishing.co.uk ISBN: 1-902683-66-8 (hardcover) ISBN: 1-902683-67-6 (paperback) British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Designed and typeset by Kate Williams, Abergavenny. Printed and bound by Biddles Ltd., Guildford and King’s Lynn. For Carole and John Crascall Contents Preface and acknowledgements ix Part I: Einstein’s revolution 1 1 From Aristotle to Hiroshima 3 2 Einstein in a nutshell 7 3 The twin paradox 31 4 How to build an atomic bomb 40 5 The four-dimensional universe 50 6 Time travel is possible 66 7 Can the mind understand the world? 71 Part II: Philosophical progress 75 8 Who invented space? 77 9 Zeno’s paradoxes: is motion impossible? 92 10 Philosophers at war: Newton vs. Leibniz 104 11 The philosophy of left and right 126 12 The unreality of time 133 13 General relativity: is space curved? 139 14 The fall of geometry: is mathematics certain? 149 15 The resurrection of absolutes 159 16 The resilience of space 172 vii SPACE, TIME AND EINSTEIN Part III: Frontiers 175 17 Faster than light: was Einstein wrong? 177 18 The Big Bang: how did the universe begin? 185 19 Black holes: trapdoors to nowhere 188 20 Why haven’t aliens come visiting? 193 21 The inflationary and accelerating universe 197 22 Should we believe the physicists? 202 Appendix A: Spacetime diagrams 207 Appendix B: Symmetry and Lorentz’s minority interpretation 222 Appendix C: Simple formulas for special relativity 225 Appendix D: Websites 227 Appendix E: Guide to further reading 229 Index 239 viii Preface and acknowledgements The ongoing revolution in our understanding of space and time is so central to the drama of our times that no educated person can remain ignorant of it.
    [Show full text]
  • SPACE, TIME, and (How They) MATTER: a Discussion of Some Metaphysical Insights About the Nature of Space and Time Provided by Our Best Fundamental Physical Theories
    SPACE, TIME, AND (how they) MATTER: A Discussion of Some Metaphysical Insights about the Nature of Space and Time Provided by Our Best Fundamental Physical Theories Valia Allori Northern Illinois University Forthcoming in: J. Statchel, G.C. Ghirardi (eds.). Space, Time, and Frontiers of Human Understanding. Springer-Verlag Abstract This paper is a brief (and hopelessly incomplete) non-standard introduction to the philosophy of space and time. It is an introduction because I plan to give an overview of what I consider some of the main questions about space and time: Is space a substance over and above matter? How many dimensions does it have? Is space-time fundamental or emergent? Does time have a direction? Does time even exist? Nonetheless, this introduction is not standard because I conclude the discussion by presenting the material with an original spin, guided by a particular understanding of fundamental physical theories, the so-called primitive ontology approach. 1. Introduction Scientific realists believe that our best scientific theories could be used as reliable guides to understand what the world is like. First, they tell us about the nature of matter: for instance, matter can be made of particles, or two-dimensional strings, or continuous fields. In addition, whatever matter fundamentally is, it seems there is matter in space, which moves in time. The topic of this paper is what our best physical theories tell us about the nature of space and time. I will start in the next section with the traditional debate concerning the question of whether space is itself a substance or not.
    [Show full text]
  • Logical Idealism & Einstein's Theory of Relativity
    Logical Idealism & Einstein’s Theory of Relativity Schlick’s Critique of Cassirer’s Monograph Zur Einsteinschen Relativitätstheorie (1921) Jacob Portes PHIL G9062: Philosophy of Space and Time June 30, 2015 1 When Einstein’s general theory of relativity was formulated during the second decade of the 20th century, philosophers of both the neo-Kantian and logical empiricist variety scrambled to fit the revolutionary theory into their respective philosophical frameworks. A few even went so far as to claim that the new theory was an unambiguous confirmation of their particular philosophy of science. One of the first serious arguments of this kind was published in a 1921 monograph by the neo-Kantian Ernst Cassirer entitled Zur Einsteinschen Relativitätstheorie (“Einstein’s Theory of Relativity”).1 This book was also the subject of a decisive critique, published soon afterwards by the champion of logical empiricism Moritz Schlick, which dismissed it as a worthy but ultimately unsuccessful attempt to incorporate the new relativity into Kantian epistemology.2 Interestingly, some write that this article was in many ways responsible for the rise of logical empiricism and the precipitous decline of neo-Kantian thought among philosophers of science (logical idealism); that the debate between neo-Kantian and empiricist philosophy over relativity theory “effectively ended with Schlick’s essay”3 and that the article “may well be regarded as the point of departure of a new direction for scientific philosophy [i.e. logical empiricism].”4 A few scholars have noted, however, that Schlick’s argument does not address Cassirer’s neo-Kantian epistemology and instead attacks the straw man of traditional Kantian epistemology – an easy target indeed, considering that Kant relied heavily on “outdated” ideas from Euclidean geometry and Newtonian mechanics.
    [Show full text]