International Francqui Symposium What asteroseismology has to offer to astrophysics

HD 97658 and its super-Earth Spitzer transit analysis and seismic modeling of the host

Valerie Van Grootel (University of Liege, Belgium)

M. Gillon (U. Liege), D. Valencia (U. Toronto, Canada), N. Madhusudhan (U. Cambridge, UK), D. Dragomir (UC Santa Barbara, USA), B.O. Demory (U. Cambridge, UK), and the Spitzer team Outline

 Introducing HD 97658, the 2nd brightest star harboring a transiting super-Earth

modeling of HD 97658

 Spitzer transit light curve analysis

 Global analysis of RVs, Spitzer and MOST photometry

 Discussion:  HD 97658b, a key super-Earth  What asteroseismology can bring to HD 97658

 Conclusion & Prospects

Valerie Van Grootel – Francqui Symposium 2013, Brussels 2 1. HD 97658, the 2nd brightest star harboring a transiting super-Earth

HD 97658 (V=7.7, K=5.7), a K1-type star

• Teff = 5170 ± 50 K (Howard et al. 2011) • [Fe/H] = -0.23 ± 0.03 (“”) ⇒ ~ Z

• d = 21.11 ± 0.33 pc (Hipparcos, Van Leeuwen 2007)

HD 97658 b, a transiting super-Earth • Discovery by Howard et al. (2011) from Keck-Hires radial velocities: MP sin i = 8.2 ± 1.2 Mearth and P = 9.494 ± 0.005 d • Transits discovered by Dragomir et al. (2013) with the MOST satellite: RP = 2.34 ± 0.18 Rearth

From Howard et al. (2011) From Dragomir et al. (2013)

Valerie Van Grootel – Francqui Symposium 2013, Brussels 3 2. HD 97658 stellar evolution modeling

• d = 21.11 ± 0.33 pc, V = 7.7 ⇒ L* = 0.355 ± 0.018 Lsun

• +Teff from spectroscopy: R* = 0.74 ± 0.03 Rsun

• Stellar evolution code CLES (Scuflaire et al. 2008)

⇒ M*, age with Teff, [Fe/H] and L* as inputs (with 1σ uncertainties)

0.4 − 13.7 Gyr 4.1 Gyr 10.0 Gyr

) M* = 0.77 ± 0.05 Msun " ! L

/ 0.45 ∗ − No constrain on age (1-14 Gyr….) L ! log( 7.2 Gyr 1.0 Gyr 11.0 Gyr

0.5 − M =0.73M ,Fe/H= 0.26 M∗ =0.77M",Fe/H=−0.23 M∗ =0.81M",Fe/H=−0.20 ∗ " − 3.72 3.715 3.71 3.705

log Teff (K)

Valerie Van Grootel – Francqui Symposium 2013, Brussels 4 3. The MCMC method to characterize HD 97658b

I used Monte-Carlo Markov Chain (MCMC) code of Gillon et al. (2012), with jump parameters (those for which the chain is varying):

• With uniform prior distribution: mid-transit time T0, transit depth dF, transit width W, P,…

• With Gaussian prior distribution: stellar M* (0.77±0.05 Ms), (0.355±0.018 Ls), Teff (5170±50 K) and metallicity ([Fe/H]=-0.23±0.03) Jump parameters ⇒ model to compare to data through a merit function

data model penalty for jump parameter with Gaussian prior

• Results: Probability Density Functions (PDFs) for each jump parameter + for derived parameters: planet mass, radius,…

Valerie Van Grootel – Francqui Symposium 2013, Brussels transit depth 5 4. Spitzer transit light curve analysis

• « Warm » Spitzer IRAC camera at 4.5µm • As part of the program to search transits for low-mass planets found in RV (Programs 60027 and 90072, PI M. Gillon) • 6h-long lightcurve acquired on Aug 10, 2013 after MOST’s ephemeris

Valerie Van Grootel – Francqui Symposium 2013, Brussels 6 4. Spitzer transit light curve analysis

• « Warm » Spitzer IRAC camera at 4.5µm • As part of the program to search transits for low-mass planets found in RV • 6h-long lightcurve acquired on Aug 10, 2013 after MOST’s ephemeris MOST transit window (17 orbits after)

Spitzer mid-transit time: +0.00062 T0 = 6523.12544 -0.00059 (BJD-2450000)

Spitzer fully confirms, within 1σ, the MOST ephemeris

Valerie Van Grootel – Francqui Symposium 2013, Brussels 7 5. Global MCMC analyses of RVs, Spitzer and MOST a. 171 Keck-Hires RVs + Spitzer photometry

Valerie Van Grootel – Francqui Symposium 2013, Brussels 8 5. Global MCMC analyses of RVs, Spitzer and MOST b. 171 Keck-Hires RVs + Spitzer + MOST photometry MOST: broadband visible light, 3 full transiting light curves MOST transit #1 (Dragomir et al. 2013)

Valerie Van Grootel – Francqui Symposium 2013, Brussels 9 5. Global MCMC analyses of RVs, Spitzer and MOST b. 171 Keck-Hires RVs + Spitzer + MOST photometry MOST: broadband visible light, 3 full transiting light curves MOST transit #1 (Dragomir et al. 2013)

+81 ppm +0.14 (visible) • dFMOST = 949 -75 ⇒ RP = 2.49 -0.13 Rearth ppm +0.098 (4.5 µm) • dFSpitzer = 773±42 ⇒ RP = 2.247 -0.095 Rearth

 MOST unknown instrumental or reduction pipeline effects ?  True ? (planet atmosphere with Rayleigh scattering)

Note: Dragomir et al. (2013), with the same MOST light curves:

RP = 2.34 ± 0.18 Rearth

BUT they used L*=0.30±0.03 Lsun ⇒R*= 0.70±0.03 Rsun , too small !

Valerie Van Grootel – Francqui Symposium 2013, Brussels 10 6. HD 97658b, a key object for super-Earth characterization

a. Internal composition (D. Valencia)

R = 2.247+0.098 R P -0.095 earth ρ = 3.90+0.70 g cm-3 +0.83 ⇒ P -0.61 MP = 7.55 -0.79 M -3 earth (ρEarth = 5.5 g cm ) -3 (ρJupiter = 1.3 g cm )

Valerie Van Grootel – Francqui Symposium 2013, Brussels 11 6. HD 97658b, a key object for super-Earth characterization

Ternary diagram (Teq~750 K)

0% 100% 40

10% 90% HD 97658b 25 H-He 20% 80% M=7.55 ME 30% 16 R 70% 25 planet

20 40%

60% 10 /R Earth 15 50% 50% 12 6.3 60% 40% 10 4.0 8 70% 30% Earth-like 6 80% Nucleus 20% 2.5 5

90% 10% 4 3 2.5 100% 0% Rocks > 50% 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Water 0-40% H2O H-He 0-2%

Valerie Van Grootel – Francqui Symposium 2013, Brussels 12 6. HD 97658b, a key object for super-Earth characterization b. Planet atmosphere modeling (N. Madhusudhan)

Excluded: • Water-rich atmosphere (blue) • Cloud-free solar composition atmosphere (green) • thick opaque clouds (flat spectrum)

Possibilities: • low atmospheres (red and brown): H2-rich, low Z (O (solar)/50) or H2+Na+K only

• H2-rich atmosphere with haze (black) Valerie Van Grootel – Francqui Symposium 2013, Brussels 13 7. What asteroseismology can bring to HD 97658

• I computed oscillation adiabatic properties of stellar (consistent) models that respect the (Teff, L*, [Fe/H]) observational constraints

• Large separations Δν=νn+1,0 –νn,0 and small separations δν=δν02=νn,0 –νn-1,2 are given here at their νmax’s (where the observed pulsation spectrum is expected to be) 16 − M∗ =0.73M",Fe/H= 0.26 1.0Gyr M∗ =0.77M",Fe/H=−0.23 M∗ =0.81M",Fe/H=−0.20 14 4.1Gyr

12 7.2Gyr Hz)

C-D diagram µ ( 02

δν 10 10.0Gyr 11.0Gyr

8 13.7Gyr

6 170 180 190 200 ∆ν (µHz) Even a ~1 µHz accuracy on Δν and δν02 will help to get better stellar mass & age Valerie Van Grootel – Francqui Symposium 2013, Brussels 14 8. Conclusion & Prospects

Conclusion: HD 97658b is a key transiting super-Earth

• Orbiting a bright star (V=7.7,K=5.7) ⇒ very important for future atmospheric characterization (JWST,…)

• HD 97658b is an intermediate density super-Earth ⇒ composition of such objects ? (internal composition ? Volatiles ? Thick atmosphere ?) • Characterizing the host star (mass, radius, age) is essential

Future observations:

• Coming: 6 more transits with Spitzer (PI D. Dragomir) and transmission spectroscopy for atmospheric characterization with Hubble/WFC3 IR (PI H. Knutson)

• GAIA ⇒ very accurate distance, luminosity, and stellar radius (but not sufficient)

• Asteroseismic observations to improve the stellar mass and age knowledge ? TESS, CHEOPS, PLATO 2.0 ?

Valerie Van Grootel – Francqui Symposium 2013, Brussels 15 2. HD 97658 stellar evolution modeling

• d = 21.11 ± 0.33 pc, V = 7.7 ⇒ L* = 0.355 ± 0.018 Lsun

• +Teff from spectroscopy: R* = 0.74 ± 0.03 Rsun

• Stellar evolution code CLES (Scuflaire et al. 2008)

⇒ M*, age with Teff, [Fe/H] and L* as inputs (with 1σ uncertainties)

0.4 − 13.7 Gyr 4.1 Gyr 10.0 Gyr

) M* = 0.77 ± 0.05 Msun " ! L

/ 0.45 ∗ − No constrain on age (1-14 Gyr….) L ! log( 7.2 Gyr 1.0 Gyr 11.0 Gyr

0.5 − M =0.73M ,Fe/H= 0.26 M∗ =0.77M",Fe/H=−0.23 M∗ =0.81M",Fe/H=−0.20 ∗ " − 3.72 3.715 3.71 3.705

log Teff (K)

Valerie Van Grootel – Francqui Symposium 2013, Brussels 16