Satellite Characterization of Water Mass Exchange Between Ocean and Continents at Interannual to Decadal Timescales Alejandro Blazquez

Total Page:16

File Type:pdf, Size:1020Kb

Satellite Characterization of Water Mass Exchange Between Ocean and Continents at Interannual to Decadal Timescales Alejandro Blazquez Satellite characterization of water mass exchange between ocean and continents at interannual to decadal timescales Alejandro Blazquez To cite this version: Alejandro Blazquez. Satellite characterization of water mass exchange between ocean and continents at interannual to decadal timescales. Hydrology. Université Paul Sabatier - Toulouse III, 2020. English. NNT : 2020TOU30074. tel-03048246v2 HAL Id: tel-03048246 https://tel.archives-ouvertes.fr/tel-03048246v2 Submitted on 15 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THTHESEESE`` En vue de l’obtention du DOCTORAT DE L’UNIVERSITE´ DE TOULOUSE D´elivr´epar : l’Universit´eToulouse 3 Paul Sabatier (UT3 Paul Sabatier) Pr´esent´eeet soutenue le 2 Octobre 2020 par : Alejandro Blazquez Caract´erisation par satellite des ´echanges d’eau entre l’oc´eanet les continents aux ´echelles interannuelles `a d´ecennales JURY P. Exertier Directeur de recherche Pr´esident du Jury L. Fleitout Directeur de recherche Rapporteur M. Horwat Professeur Rapporteur L. Longuevergne Directeur de recherche Examinateur B. Meyssignac Ing´enieurCNES Directeur de th`ese E. Berthier Directeur de recherche Co-directeur de th`ese Ecole´ doctorale et sp´ecialit´e: SDU2E : Oc´ean,Atmosph`ere, Climat Unit´ede Recherche : Laboratoire d’Etudes en G´eophysiqueet Oc´eanographie Spatiales, LEGOS Directeur(s) de Th`ese: Benoit Meyssignac et Etienne Berthier Rapporteur : Voir le jury Remerciements R´ealiserune th`esedans un cadre comme le mien a ´et´eun privil`ege,tant pour les directeurs de recherche, comme le contexte de la th`eseet mon contexte personnel de derniers trois ans. Tout d’abord, j’ai ´et´eencadr´epar deux grandes personnes : Benoit et Etienne.´ Merci beaucoup pour vos conseils et support tout au long de cettes ann´ees. Grace `avous, j’ai appris que la recherche se fait aussi autour d’un caf´e,d’un th´eou mˆeme`av´elo. Votre passion pour la Science a ´et´eune source de motivation. Une th`eseremarquable a besoin d’un th´esard”acceptable”, des bons encadrants et surtout des personnes remarquables prˆetes`adonner son temps et partager sa connais- sance comme : Jean Michel Lemoine, Anny Cazenave, Remi Roca, Thomas Filleau, Jean Fran¸coisCretaux, Fabrice Papa, Sylvain Biancamaria... Je vous remercie ! Je tiens aussi `aremercier mes coll`egesdu CNES de m’avoir permis de r´ealisercette th`esedans le cadre de mon travail : Philippe Maisongrande, Eric Boussarie et Philippe Cubic. Cette aventure a ´et´eaccompagn´eeet parfois rythm´eeavec les naissances de mes en- fants. La premi`eresoumission d’un papier avant la naissance de Sacha. La soumission du manuscrit repouss´epar la naissance du Gabriela... Rien de plus effective pour apprendre `ag´ererun planning que faire une th`eseavec deux b´eb´es.Heureusement que Marian ´etait l`a.Il est plus facile de remonter le courant `adeux sur un bateau. Merci pour ta patience, tes mots doux et ta fa¸conde relativiser les probl`emespendant cettes longues ann´eesde nuits courtes. Finalement, merci `ames enfants pour m’aider `ar´eapprendre l’importance du sourire. ”A day without laughter is a day wasted” Charles Chaplin i Satellite characterization of water mass exchange between ocean and continents at interannual to decadal timescales Abstract: Over the last decades the Earth’s water cycle has changed in response to climate change. Changes have been particularly rapid and intense in the ocean and over land, i.e. in glaciers, ice sheets and land reservoirs. Massive amounts of water have been transferred from land to ocean leading to a significant decrease in freshwater water availability in some regions (like in mountains areas) and to a significant increase of the ocean mass and the sea level. Since 2002, observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission provide quantitative estimates of these transfers of water-mass from land to the ocean. However, these estimates are uncertain as they show discrepancies when different approaches and different parameters are used to process the GRACE data. The spread in GRACE-based estimate for the global water budget is poorly characterized and hampers the accurate estimation of the changes in land water storage and ocean mass leading to an uncertain contribution from ocean mass to sea level rise and an uncertain estimate of the Earth’s Energy Imbalance (EEI), when it is estimated through the sea level budget approach. In my Phd, I revisit the treatment of GRACE satellite data in order to obtain GRACE- based estimates of the water mass exchange between ocean and continents, at interannual to decadal timescales, paying a special attention to the different sources of errors and uncertainties. I consider all state-of-the-art data processing of GRACE data, from which I develop an ensemble of consistent GRACE solutions to estimate the mass changes in Greenland, Antarctica, the ocean and the rest of the emerged lands including glaciers and Terrestrial Water Storage (TWS). With this ensemble, I document the nature of water mass exchanges between ocean and continents and I estimate the associated uncertainties. The range of the uncertainty explains the spread in previous GRACE-based estimates of the components of the global water budget. This approach enables also the exploration of the sources of the uncertainties in GRACE based estimates. I find that the post- processing is responsible for 79% of the uncertainty in the global water budget estimates and that only 21% is due to the differences in the GRACE data inversion process. The main sources of uncertainties in the GRACE-based global water budget, at annual to interannual time scales, are the spread in the geocenter corrections and the uncertainty in the Glacial Isostatic Adjustment (GIA) correction, both being applied to GRACE data. This is particularly true for the ocean mass and glacier and TWS mass change estimates for which the uncertainty in trends for the period from 2005 to 2015 is ±0.33 mm SLE/yr. Regarding the glacier and TWS mass change at basin scale, I identify glacier leakage as the main source of uncertainty at local scale in regions close to glaciers. I propose a method using non-GRACE-based mass estimates to reduce the leakage uncertainty on the GRACE-based local water mass estimate. Accounting for glacier mass changes derived from satellite imagery leads to improved estimates of other hydrological processes affecting the local water cycle. Regarding the ocean mass, I explore a method in view of improving the estimates of the ocean mass by working in a reference frame centered at the center of mass of the Earth , the goal being to remove the geocenter correction and the associated uncertainty. I analyse the consistency between GRACE-based ocean mass, altimetry-based sea-level, and ARGO-based steric sea level. This work enables the improvement the estimates of the ocean mass changes. It further leads to a better closure of the sea level budget and a more accurate estimate of the EEI. Keywords: Global water budget, Ocean mass, Space gravimetry, Climate change, Space Geodesy. ii Caract´erisation par satellite des ´echanges d’eau entre l’oc´eanet les continents aux ´echelles interannuelles ´ad´ecenales R´esum´e: Au cours des derni`eresd´ecennies,le cycle global de l’eau a chang´een r´eponse au changement climatique. Les changements ont ´et´eparticuli`erement rapides et intenses dans l’oc´eanet sur les continents. Des quantit´estr`esimportantes d’eau ont ´et´etransf´er´ees des continents vers l’oc´ean, entraˆınant une diminution significative des ressources en eau douce dans certaines r´egions continentales et une augmentation de la masse de l’oc´eanet du niveau de la mer. Depuis 2002, les observations de la mission spatiale Gravity Recov- ery and Climate Experiment (GRACE) fournissent des estimations quantitatives de ces ´echanges d’eau entre l’oc´eanet les continents. Cependant, ces estimations sont incertaines car elles montrent des ´ecartslorsque diff´erentes approches et diff´erents param`etressont utilis´espour traiter les donn´ees GRACE. L’´ecartentre les estimations du bilan globale de l’eau bas´eessur GRACE est donc mal caract´eris´e.Ce qui entrave l’estimation pr´ecisedes changements dans la quantit´etotal d’eau dans les continents et dans la masse de l’oc´ean conduisant `aune contribution incertaine de la masse de l’oc´ean`al’´el´evation du niveau de la mer et `aune estimation incertaine du d´es´equilibre´energ´etiquede la terre, lorsqu’elle est estim´eepar l’approche bilan globale du niveau de la mer. Au cours de ma th`ese, je revisite le traitement des donn´eessatellitaires GRACE dans le but d’obtenir des estimations du bilan global de l’eau, `ades ´echelles interannuelles `a d´ecennales,en accordant une attention particuli`ereaux diff´erentes sources d’erreurs et d’incertitudes. Je prends en compte tous les post-traitements les plus `ajour des donn´ees GRACE, `apartir desquels je d´eveloppe un ensemble de solutions GRACE coh´erentes pour estimer les changements de masse au Groenland, en Antarctique, dans l’oc´eanet dans le reste des terres ´emerg´eesy compris les glaciers et les eaux terrestres. Avec cet ensemble, j’analyse la nature des ´echanges de masse d’eau entre l’oc´eanet les continents, et j’´evalue les incertitudes associ´ees. L’amplitude de l’incertitude explique les diff´erencesentre les estimations pr´ec´edentes des composantes du bilan global de l’eau effectu´ees`apartir des donn´ees GRACE.
Recommended publications
  • Global Sea-Level Budget 1993–Present
    Earth Syst. Sci. Data, 10, 1551–1590, 2018 https://doi.org/10.5194/essd-10-1551-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Global sea-level budget 1993–present WCRP Global Sea Level Budget Group A full list of authors and their affiliations appears at the end of the paper. Correspondence: Anny Cazenave ([email protected]) Received: 13 April 2018 – Discussion started: 15 May 2018 Revised: 31 July 2018 – Accepted: 1 August 2018 – Published: 28 August 2018 Abstract. Global mean sea level is an integral of changes occurring in the climate system in response to un- forced climate variability as well as natural and anthropogenic forcing factors. Its temporal evolution allows changes (e.g., acceleration) to be detected in one or more components. Study of the sea-level budget provides constraints on missing or poorly known contributions, such as the unsurveyed deep ocean or the still uncertain land water component. In the context of the World Climate Research Programme Grand Challenge entitled “Re- gional Sea Level and Coastal Impacts”, an international effort involving the sea-level community worldwide has been recently initiated with the objective of assessing the various datasets used to estimate components of the sea-level budget during the altimetry era (1993 to present). These datasets are based on the combination of a broad range of space-based and in situ observations, model estimates, and algorithms. Evaluating their quality, quantifying uncertainties and identifying sources of discrepancies between component estimates is extremely useful for various applications in climate research.
    [Show full text]
  • SEASAT Geoid Anomalies and the Macquarie Ridge Complex Larry Ruff *
    Physics of the Earth and Planetary Interiors, 38 (1985) 59-69 59 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands SEASAT geoid anomalies and the Macquarie Ridge complex Larry Ruff * Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (U.S.A.) Anny Cazenave CNES-GRGS, 18Ave. Edouard Belin, Toulouse, 31055 (France) (Received August 10, 1984; revision accepted September 5, 1984) Ruff, L. and Cazenave, A., 1985. SEASAT geoid anomalies and the Macquarie Ridge complex. Phys. Earth Planet. Inter., 38: 59-69. The seismically active Macquarie Ridge complex forms the Pacific-India plate boundary between New Zealand and the Pacific-Antarctic spreading center. The Late Cenozoic deformation of New Zealand and focal mechanisms of recent large earthquakes in the Macquarie Ridge complex appear consistent with the current plate tectonic models. These models predict a combination of strike-slip and convergent motion in the northern Macquarie Ridge, and strike-slip motion in the southern part. The Hjort trench is the southernmost expression of the Macquarie Ridge complex. Regional considerations of the magnetic lineations imply that some oceanic crust may have been consumed at the Hjort trench. Although this arcuate trench seems inconsistent with the predicted strike-slip setting, a deep trough also occurs in the Romanche fracture zone. Geoid anomalies observed over spreading ridges, subduction zones, and fracture zones are different. Therefore, geoid anomalies may be diagnostic of plate boundary type. We use SEASAT data to examine the Maequarie Ridge complex and find that the geoid anomalies for the northern Hjort trench region are different from the geoid anomalies for the Romanche trough.
    [Show full text]
  • Sea Level Change 13SM Supplementary Material
    Sea Level Change 13SM Supplementary Material Coordinating Lead Authors: John A. Church (Australia), Peter U. Clark (USA) Lead Authors: Anny Cazenave (France), Jonathan M. Gregory (UK), Svetlana Jevrejeva (UK), Anders Levermann (Germany), Mark A. Merrifield (USA), Glenn A. Milne (Canada), R. Steven Nerem (USA), Patrick D. Nunn (Australia), Antony J. Payne (UK), W. Tad Pfeffer (USA), Detlef Stammer (Germany), Alakkat S. Unnikrishnan (India) Contributing Authors: David Bahr (USA), Jason E. Box (Denmark/USA), David H. Bromwich (USA), Mark Carson (Germany), William Collins (UK), Xavier Fettweis (Belgium), Piers Forster (UK), Alex Gardner (USA), W. Roland Gehrels (UK), Rianne Giesen (Netherlands), Peter J. Gleckler (USA), Peter Good (UK), Rune Grand Graversen (Sweden), Ralf Greve (Japan), Stephen Griffies (USA), Edward Hanna (UK), Mark Hemer (Australia), Regine Hock (USA), Simon J. Holgate (UK), John Hunter (Australia), Philippe Huybrechts (Belgium), Gregory Johnson (USA), Ian Joughin (USA), Georg Kaser (Austria), Caroline Katsman (Netherlands), Leonard Konikow (USA), Gerhard Krinner (France), Anne Le Brocq (UK), Jan Lenaerts (Netherlands), Stefan Ligtenberg (Netherlands), Christopher M. Little (USA), Ben Marzeion (Austria), Kathleen L. McInnes (Australia), Sebastian H. Mernild (USA), Didier Monselesan (Australia), Ruth Mottram (Denmark), Tavi Murray (UK), Gunnar Myhre (Norway), J.P. Nicholas (USA), Faezeh Nick (Norway), Mahé Perrette (Germany), David Pollard (USA), Valentina Radić (Canada), Jamie Rae (UK), Markku Rummukainen (Sweden), Christian Schoof (Canada), Aimée Slangen (Australia/Netherlands), Jan H. van Angelen (Netherlands), Willem Jan van de Berg (Netherlands), Michiel van den Broeke (Netherlands), Miren Vizcaíno (Netherlands), Yoshihide Wada (Netherlands), Neil J. White (Australia), Ricarda Winkelmann (Germany), Jianjun Yin (USA), Masakazu Yoshimori (Japan), Kirsten Zickfeld (Canada) Review Editors: Jean Jouzel (France), Roderik van de Wal (Netherlands), Philip L.
    [Show full text]
  • Evaluation of Coastal Sea Level Offshore Hong Kong from Jason-2 Altimetry
    remote sensing Article Evaluation of Coastal Sea Level Offshore Hong Kong from Jason-2 Altimetry Xi-Yu Xu 1,2,3,*, Florence Birol 2 and Anny Cazenave 2,4 1 The CAS Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China 2 Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS), Observatoire Midi-Pyrénées, 31400 Toulouse, France; fl[email protected] (F.B.); [email protected] (A.C.) 3 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China 4 International Space Science Institute, 3102 Bern, Switzerland * Correspondence: [email protected]; Tel.: +86-10-6255-0409 Received: 23 November 2017; Accepted: 6 February 2018; Published: 12 February 2018 Abstract: As altimeter satellites approach coastal areas, the number of valid sea surface height measurements decrease dramatically because of land contamination. In recent years, different methodologies have been developed to recover data within 10–20 km from the coast. These include computation of geophysical corrections adapted to the coastal zone and retracking of raw radar echoes. In this paper, we combine for the first time coastal geophysical corrections and retracking along a Jason-2 satellite pass that crosses the coast near the Hong-Kong tide gauge. Six years and a half of data are analyzed, from July 2008 to December 2014 (orbital cycles 1–238). Different retrackers are considered, including the ALES retracker and the different retrackers of the PISTACH products. For each retracker, we evaluate the quality of the recovered sea surface height by comparing with data from the Hong Kong tide gauge (located 10 km away).
    [Show full text]
  • Sea Level: a Review of Present-Day and Recent-Past Changes and Variability
    Journal of Geodynamics 58 (2012) 96–109 Contents lists available at SciVerse ScienceDirect Journal of Geodynamics jo urnal homepage: http://www.elsevier.com/locate/jog Review Sea level: A review of present-day and recent-past changes and variability ∗ Benoit Meyssignac , Anny Cazenave LEGOS-CNES, Toulouse, France a r t i c l e i n f o a b s t r a c t Article history: In this review article, we summarize observations of sea level variations, globally and regionally, during Received 12 December 2011 the 20th century and the last 2 decades. Over these periods, the global mean sea level rose at rates of Received in revised form 9 March 2012 1.7 mm/yr and 3.2 mm/yr respectively, as a result of both increase of ocean thermal expansion and land Accepted 10 March 2012 ice loss. The regional sea level variations, however, have been dominated by the thermal expansion factor Available online 19 March 2012 over the last decades even though other factors like ocean salinity or the solid Earth’s response to the last deglaciation can have played a role. We also present examples of total local sea level variations Keywords: that include the global mean rise, the regional variability and vertical crustal motions, focusing on the Sea level Altimetry tropical Pacific islands. Finally we address the future evolution of the global mean sea level under on- going warming climate and the associated regional variability. Expected impacts of future sea level rise Global mean sea level Regional sea level are briefly presented. Sea level reconstruction © 2012 Elsevier Ltd.
    [Show full text]
  • 1999 EOS Reference Handbook
    1999 EOS Reference Handbook A Guide to NASA’s Earth Science Enterprise and the Earth Observing System http://eos.nasa.gov/ 1999 EOS Reference Handbook A Guide to NASA’s Earth Science Enterprise and the Earth Observing System Editors Michael D. King Reynold Greenstone Acknowledgements Special thanks are extended to the EOS Prin- Design and Production cipal Investigators and Team Leaders for providing detailed information about their Sterling Spangler respective instruments, and to the Principal Investigators of the various Interdisciplinary Science Investigations for descriptions of their studies. In addition, members of the EOS Project at the Goddard Space Flight Center are recognized for their assistance in verifying and enhancing the technical con- tent of the document. Finally, appreciation is extended to the international partners for For Additional Copies: providing up-to-date specifications of the instruments and platforms that are key ele- EOS Project Science Office ments of the International Earth Observing Mission. Code 900 NASA/Goddard Space Flight Center Support for production of this document, Greenbelt, MD 20771 provided by Winnie Humberson, William Bandeen, Carl Gray, Hannelore Parrish and Phone: (301) 441-4259 Charlotte Griner, is gratefully acknowl- Internet: [email protected] edged. Table of Contents Preface 5 Earth Science Enterprise 7 The Earth Observing System 15 EOS Data and Information System (EOSDIS) 27 Data and Information Policy 37 Pathfinder Data Sets 45 Earth Science Information Partners and the Working Prototype-Federation 47 EOS Data Quality: Calibration and Validation 51 Education Programs 53 International Cooperation 57 Interagency Coordination 65 Mission Elements 71 EOS Instruments 89 EOS Interdisciplinary Science Investigations 157 Points-of-Contact 340 Acronyms and Abbreviations 354 Appendix 361 List of Figures 1.
    [Show full text]
  • Global Sea Level Budget 1993-Present
    1 1 2 3 4 5 6 7 8 9 10 11 Global Sea Level Budget 1993-Present 12 13 14 WCRP Global Sea Level Budget Group* 15 16 *A full list of authors and their affiliations appears at the end of the paper 17 18 19 20 Revised version 21 23 July 2018 22 23 24 25 26 27 Corresponding author: Anny Cazenave, LEGOS, 18 Avenue Edouard Belin, 31401 Toulouse, 28 Cedex 9, France; [email protected] 29 30 1 2 31 Abstract 32 33 Global mean sea level is an integral of changes occurring in the climate system in response to 34 unforced climate variability as well as natural and anthropogenic forcing factors. Its temporal 35 evolution allows detecting changes (e.g., acceleration) in one or more components. Study of 36 the sea level budget provides constraints on missing or poorly known contributions, such as 37 the unsurveyed deep ocean or the still uncertain land water component. In the context of the 38 World Climate Research Programme Grand Challenge entitled “Regional Sea Level and 39 Coastal Impacts”, an international effort involving the sea level community worldwide has 40 been recently initiated with the objective of assessing the various data sets used to estimate 41 components of the sea level budget during the altimetry era (1993 to present). These data sets 42 are based on the combination of a broad range of space-based and in situ observations, model 43 estimates and algorithms. Evaluating their quality, quantifying uncertainties and identifying 44 sources of discrepancies between component estimates is extremely useful for various 45 applications in climate research.
    [Show full text]
  • Present-Day Sea-Level Change: a Review
    C. R. Geoscience 338 (2006) 1077–1083 http://france.elsevier.com/direct/CRAS2A/ External Geophysics, Climate and Environment Present-day sea-level change: A review Robert Steven Nerem a, Éric Leuliette a, Anny Cazenave b,∗ a Colorado Center for Astrodynamics Research, University of Colorado at Boulder, Boulder, CO 80309-0431, USA b LEGOS-CNES, 18, av. Édouard-Belin, 31401 Toulouse cedex 9, France Received 6 August 2006; accepted after revision 25 August 2006 Available online 17 October 2006 Written on invitation of the Editorial Board Abstract Understanding of sea-level change has improved considerably over the last decade. Present-day knowledge of sea-level change is derived from tide gauge observations and satellite altimetry measurements. The average rate of sea-level change obtained from tide − gauges over the last 50 years is +1.8 ± 0.3mmyr 1. In comparison, altimeter measurements from TOPEX/Poseidon and Jason-1 − have shown an average rise of +3.1 ± 0.4mmyr 1 since 1993. It is not clear yet whether the larger rate of rise of the last decade reflects acceleration or decadal fluctuation. The causes of the present-day rate are a combination of increases in ocean temperatures and land ice melt from mountain glaciers, Greenland, and Antarctica. Regional variability in sea-level change, as evidenced by the quasi global coverage of altimeter satellites, appears dominated by non uniform change of thermal expansion. New satellite technologies, such as InSAR, ICESat, and GRACE make significant contributions to understanding sea-level change. To cite this article: R.S. Nerem et al., C. R. Geoscience 338 (2006).
    [Show full text]
  • Observational Requirements for Long-Term Monitoring of the Global Mean Sea Level and Its Components Over the Altimetry Era
    University of South Florida Scholar Commons Marine Science Faculty Publications College of Marine Science 2019 Observational Requirements for Long-Term Monitoring of the Global Mean Sea Level and Its Components Over the Altimetry Era Anny Cazenave LEGOS, France Ben Hamlington NASA Jet Propulsion Laboratory, United States Martin Horwath Technische Universität Dresden Valentina R. Barletta DTU Space, Denmark Jérôme Benveniste European Space Agency (ESA-ESRIN), Italy See next page for additional authors Follow this and additional works at: https://scholarcommons.usf.edu/msc_facpub Part of the Life Sciences Commons Scholar Commons Citation Cazenave, Anny; Hamlington, Ben; Horwath, Martin; Barletta, Valentina R.; Benveniste, Jérôme; Chambers, Don; Döll, Petra; Hogg, Anna E.; Legeais, Jean François; Merrifield, Mark; Meyssignac, Benoit; Mitchum, Garry; Nerem, Steve; Pail, Roland; Palanisamy, Hindumathi; Paul, Frank; von Schuckmann, Schuckmann, Karina; and Thompson, Philip, "Observational Requirements for Long-Term Monitoring of the Global Mean Sea Level and Its Components Over the Altimetry Era" (2019). Marine Science Faculty Publications. 1378. https://scholarcommons.usf.edu/msc_facpub/1378 This Article is brought to you for free and open access by the College of Marine Science at Scholar Commons. It has been accepted for inclusion in Marine Science Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Authors Anny Cazenave; Ben Hamlington; Martin Horwath; Valentina
    [Show full text]
  • Altimetry for the Future: Building on 25 Years of Progress
    Available online at www.sciencedirect.com ScienceDirect Advances in Space Research xxx (xxxx) xxx www.elsevier.com/locate/asr Altimetry for the future: Building on 25 years of progress International Altimetry Teamà Received 16 August 2020; received in revised form 11 January 2021; accepted 13 January 2021 Abstract In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of glo- bal and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these devel- opments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and man- agers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings men- tioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology.
    [Show full text]
  • Ocean Surface Topography/Jason-2
    National Aeronautics and Space Administration Ocean Surface Topography Mission/Jason-2 science writers’ guide May 2008 OSTM/Jason-2 SCIENCE WRITERS’ GUIDE CONTACT INFORMATION & MEDIA RESOURCES Please call the Public Affairs Offices at NASA, NOAA, CNES or EUMETSAT before contacting individual scientists at these organizations. NASA Jet Propulsion Laboratory Alan Buis, 818-354-0474, [email protected] NASA Headquarters Steve Cole, 202-358-0918, [email protected] NASA Kennedy Space Center George Diller, 321-867-2468, [email protected] NOAA Environmental Satellite, Data and Information Service John Leslie, 301-713-2087, x174, [email protected] CNES Eliane Moreaux, 011-33-5-61-27-33-44, [email protected] EUMETSAT Claudia Ritsert-Clark, 011-49-6151-807-609, [email protected] NASA Web sites http://www.nasa.gov/ostm http://sealevel.jpl.nasa.gov/mission/ostm.html NOAA Web site http://www.osd.noaa.gov/ostm/index.htm CNES Web site http://www.aviso.oceanobs.com/en/missions/future-missions/jason-2/index.html EUMETSAT Web site http://www.eumetsat.int/Home/Main/What_We_Do/Satellites/Jason/index.htm?l=en WRITERS Alan Buis Kathryn Hansen Gretchen Cook-Anderson Rosemary Sullivant OSTM/Jason-2 SCIENCE WRITERS’ GUIDE TABLE OF CONTENTS Science Overview............................................................................ 2 Instruments.................................................................................... 3 Feature Stories New Mission Helps Offshore Industries Dodge Swirling Waters .................................................................
    [Show full text]
  • Oceanography: High Frequency ..24 Session 1.1: Oceanography: High Frequency..15 Constraining the Mesoscale Field
    15 Years of Progress in Radar Altimetry Symposium Venice Lido, Italy, 13-18 March 2006 Abstract Book Table of Content (in order of appearance) Session 0: Thematic Keynote Presentations..... 12 Overview of the Improvements Made on the Empirical Altimetry: Past, Present, and Future......................................12 Determination of the Sea State Bias Correction................... 19 Carl Wunsch..................................................................... 12 Sylvie Labroue, Philippe Gaspar, Joël Dorandeu, Françoise Ogor, Mesoscale Eddy Dynamics observed with 15 years of altimetric and Ouan Zan Zanife.......................................................19 data...........................................................................................12 Calibration of ERS-2, TOPEX/Poseidon and Jason-1 Microwave Rosemary Morrow............................................................. 12 Radiometers using GPS and Cold Ocean Brightness How satellites have improved our knowledge of planetary waves Temperatures .......................................................................... 19 Stuart Edwards and Philip Moore ......................................19 in the oceans...........................................................................12 Paolo Cipollini, Peter G. Challenor, David Cromwell, Ian The Altimetric Wet Tropospheric Correction: Progress since the S. Robinson, and Graham D. Quartly............................... 12 ERS-1 mission ........................................................................ 20 The
    [Show full text]