Midscale Instrumentation for Quantum Materials Report
Total Page:16
File Type:pdf, Size:1020Kb
Midscale Instrumentation for Quantum Materials NSF sponsored workshop report Workshop Report on Midscale Instrumentation to Accelerate Progress in Quantum Materials Workshop: December 5-7, 2016 in Arlington VA. URL: http://physics-astronomy.jhu.edu/miqm/ Chairs: Collin Broholm, David Awschalom, Daniel Dessau, and Laura Greene Panel Leads: Peter Abbamonte, Collin Broholm, Daniel Dessau, Russell Hemley, Evelyn Hu, Steve Kevan, Peter Johnson, Jungsang Kim, Tyrel M. McQueen, Margaret Murnane, Oskar Painter, Jiwong Park, Abhay Pasupathy, Nitin Samarth, Alan Tennant, Stephen Wilson, Igor Zaliznyak, Vivien Zapf NSF: Guebre X. Tessema and Tomasz Durakiewitcz Funding: DMR-1664225 Publication date: September, 2018 Mid-scale Research Infrastructure from NSF’s 10 Big Ideas (https://www.nsf.gov/news/special_reports/big_ideas/) Cover image: Two different quantization conditions - imposed by magnetic field up to 45 tesla and by a super lattice - interfere to create a fractal energy landscape in graphene. Image adapted from reference [1] and also discussed in section 3.1.2.2. 2 Table of Contents Executive Summary.................................................................................................................... 5 1. Introduction ......................................................................................................................... 10 2. Quantum Materials Research Objectives ............................................................................. 12 2.1 Superconductivity ....................................................................................................................... 12 2.1.1 Decadal Objectives ............................................................................................................... 12 2.1.2 Impact .................................................................................................................................. 13 2.1.3 Challenges ............................................................................................................................ 13 2.2 Quantum Magnetism .................................................................................................................. 16 2.2.1 Decadal objectives ............................................................................................................... 17 2.2.2 Impacts ................................................................................................................................ 18 2.2.3 Challenges ............................................................................................................................ 19 2.3 Topology in Electronic Physics .................................................................................................... 20 2.3.1 Decadal Objectives ............................................................................................................... 20 2.3.2 Impacts ................................................................................................................................ 21 2.3.3 Challenges ............................................................................................................................ 22 3. Instrumentation to enable the Quantum Leap .................................................................... 24 3.1 Forming Quantum Matter .......................................................................................................... 24 3.1.1 Synthesis .............................................................................................................................. 24 3.1.1.1 Searchlights for Quantum Materials Discovery ............................................................................. 25 3.1.1.1.1 Scientific Requirements ........................................................................................................ 26 3.1.1.1.2 Midscale Instrumentation .................................................................................................... 26 3.1.2 Extreme Conditions .............................................................................................................. 29 3.1.2.1 Pressure ...................................................................................................................................... 29 3.1.2.1.1 Scientific Requirements ........................................................................................................ 30 3.1.2.1.2 Midscale Instrumentation .................................................................................................... 33 3.1.2.2 High Fields ................................................................................................................................... 34 3.1.2.2.1 Scientific Requirements ........................................................................................................ 35 3.1.2.2.2 Midscale Instrumentation .................................................................................................... 36 3.2 Probing Quantum Matter ........................................................................................................... 37 3.2.1 Microscopy .......................................................................................................................... 38 3.2.1.1 Scientific Requirements ............................................................................................................... 39 3.2.1.2 Midscale Instrumentation ............................................................................................................ 40 3.2.2 Scattering ............................................................................................................................. 43 3.2.2.1 Scientific Requirements ............................................................................................................... 44 3.2.2.2 Midscale Instrumentation ............................................................................................................ 48 3.3 Controlling and integrating Quantum Matter ............................................................................. 49 3.3.1. Materials Issues in Quantum Information ..................................................................... 49 3.3.1.1. Scientific Requirements .............................................................................................................. 50 3.3.1.2. Midscale Instrumentation ........................................................................................................... 51 3.3.2. Hybrid Quantum Photonic Integrated Circuit (PIC) Facility ............................................ 51 3.3.2.1. Scientific Requirements .............................................................................................................. 52 3.3.2.2. Midscale Instrumentation ........................................................................................................... 53 3 Appendix A: Workshop participants by panel .......................................................................... 54 December 5: Instrumentation panels: ............................................................................................ 54 December 6: Scientific panels: ........................................................................................................ 56 Appendix B: Workshop Agenda ............................................................................................... 59 References ............................................................................................................................... 61 4 Executive Summary A broad category of “quantum materials” has taken center stage in condensed matter physics. Their exotic physical properties are stimulating fundamental progress in our understanding of electrons in solids and offer opportunities for transformative technological impacts[2, 3]. Essential to progress is the development and availability of powerful new experimental tools to synthesize quantum materials and elucidate their unique behaviors across a wide range of length and time scales and under a wide range of thermodynamic conditions. After a brief introduction to the main scientific challenges, this workshop report describes instrumentation to dramatically improve our understanding of quantum materials and help to harness their technological potential. At the atomic length scale, matter exhibits wave-like characteristics: electrons tunnel through barriers, pursue multiple trajectories, and form standing waves when bound by nuclei within atoms. But while quantum mechanics ultimately determines materials properties at the macro- scale, matter wave characteristics generally fade from view through de-coherence in a quantum to classical cross-over regime. In quantum materials on the other hand, the veil is lifted on the quantum world and the deeply confounding features of quantum mechanics including entanglement, coherence, and quantum fluctuations directly impact materials properties and thus can be harnessed to create exotic and/or powerful new phenomena. This report describes fundamental challenges in our understanding and ability to control quantum matter and the instrumentation needed for a new quantum revolution. We note there is not a single quantum materials problem, and as outlined in this report, dozens of unsolved states of matter remain, with, to date, only conventional superconductivity and the quantum Hall / fractionalized quantum Hall effect seemingly at a mature level of understanding.