Acute Shoulder Injuries DAVID M

Total Page:16

File Type:pdf, Size:1020Kb

Acute Shoulder Injuries DAVID M Acute Shoulder Injuries DAVID M. QUILLEN, M.D., MARK WUCHNER, M.D., and ROBERT L. HATCH, M.D., M.P.H. University of Florida School of Medicine, Gainesville, Florida The shoulder is the most mobile joint in the human body. The cost of such versatility is an increased risk of injury. It is important that family physicians understand the anatomy of the shoulder, mechanisms of injury, typical physical and radiologic findings, approach to manage- ment of injuries, and indications for referral. Clavicle fractures are among the most common acute shoulder injuries, and more than 80 percent of them can be managed conservatively. Humeral head fractures are less common and usually occur in elderly persons; 85 percent of them can be managed nonoperatively. Common acute soft tissue injuries include shoulder dislo- cations, rotator cuff tears, and acromioclavicular sprains. Acromioclavicular injuries are graded from types I to VI. Types I and II are treated conservatively, types IV to VI are treated surgically, and there is debate about the best approach for type III. Eighty percent of shoulder dislocations are anterior. Diagnosis of this injury is straightforward. The injury usually can be reduced by employing a number of nonsurgical techniques. Traumatic or acute rotator cuff tears can be managed conservatively or surgically, depending on the patient and the degree of injury. (Am Fam Physician 2004;70:1947-54. Copyright© 2004 American Academy of Family Physicians.) See page 1845 for he shoulder includes the proximal shoulder or, less commonly, by a direct blow definitions of strength-of humerus, the clavicle and the scap- or by falling on an outstretched arm. recommendation labels. ula, and their connections to each The clavicle is relatively superficial and eas- other, to the sternum (clavicle), and ily palpable along its entire length. Clavicle Tto the thoracic rib cage (scapula). Together, fractures usually can be diagnosed by careful these elements form the most mobile joint inspection and palpation. Acute complications in the human body (Figure 1). It allows the are uncommon, although pneumothorax, upper extremity to rotate up to 180 degrees hemothorax, and injuries to the brachial plexus in three different planes, enabling the arm to or subclavian vessels have been reported.2 perform a versatile range of activities. This Neurovascular and lung examinations should mobility comes at a cost: it leaves the shoul- be performed to screen for these complica- der prone to injury. Family physicians often tions. A routine anteroposterior view usually encounter patients with shoulder injuries. It is the only radiograph needed to confirm the is important to understand the anatomy of fracture and specify its location. Nondisplaced the shoulder, mechanisms of injury, evalua- fractures, however, may be difficult to detect tion and management of injuries, and indi- on an anteroposterior view, particularly in cations for referral. children. In such cases, a 20-degree (Zanca view) or 45-degree cephalic tilt view usually Clavicle Fractures demonstrates the fracture. The only bony connection between the axial Clavicle fractures are classified by All- skeleton and the upper extremity occurs man1 into three groups by dividing the through the clavicle, which is held securely clavicle into thirds. Group 1 (middle one in place by ligaments at the sternum and third of the clavicle) is the most common acromion. The clavicle overlies and protects type of break (Figure 2)3 and represents the brachial plexus, pleural cap, and great 80 percent of clavicle fractures.1 Group 1 vessels of the upper extremity. Clavicle frac- fractures are treated conservatively with an tures are among the most common injuries, arm sling for comfort, even if significant accounting for one in 20 adult fractures.1 The displacement is present. Historically, a fig- injury usually is caused by a fall on the lateral ure-of-eight bandage was applied, but they Downloaded from the American Family Physician Web site at www.aafp.org/afp. Copyright© 2004 American Academy of Family Physicians. For the private, noncom- Novembermercial use 15, of 2004 one individual◆ Volume user 70, of Number the Web site.10 All other rights reserved.www.aafp.org/afp Contact [email protected] for copyright Americanquestions and/or Family permission Physician requests. 1947 Scapula Clavicle Sternoclavicular Acromioclavicular joint/ligament joint/ligament Acromion Acromion Glenoid cavity Sternum Glenohumeral joint/ligament Labrum (capsule) Scapula Humerus Scapulothoracic articulation (joint) Anterolateral view Anterior view ILLUSTRATION KIBIUK LYDIA BY V. Figure 1. Bony anatomy of the shoulder. are uncomfortable, have a higher incidence adults, direct blows are a more common cause. of complications, and do not improve func- Up to 85 percent of proximal humerus frac- tional or cosmetic results.4 Ice and analgesics tures can be treated nonoperatively.2 Evalu- are helpful in the initial treatment. Elbow ation of a patient with a proximal humerus range-of-motion exercises should be started fracture starts with a careful and focused as soon as pain permits. Shoulder range-of- physical examination. Neurologic and vas- motion and strengthening exercises should cular examinations of the upper extremity begin once the fracture heals. should be completed and documented. Occa- Nondisplaced group 2 (lateral one third of sionally, the axillary nerve or axillary artery the clavicle) fractures usually can be treated may be injured; rarely, the brachial artery, bra- conservatively. Group 2 fractures that extend chial plexus, or another nerve may be injured. to the articular surface, even if nondisplaced, Identification of an anterior or posterior bulge often lead to osteoarthritis of the acromiocla- may suggest a dislocation. Tenderness and vicular (AC) joint.5 Displaced group 2 frac- swelling often are diffuse, making it difficult tures generally require operative treatment to detect clear point tenderness. because they are unstable and have a high Appropriate radiographs are an important incidence of nonunion. Surgical treatment part of diagnosing and evaluating proxi- generally results in good function.6 mal humerus fractures. A standard shoulder Displaced group 3 fractures (medial one series includes anteroposterior, transscapular third of the clavicle) and sternoclavicu- (Y—Figure 3), and axillary views.3 Instead of lar dislocations require orthopedic referral. a true shoulder series, radiologic technicians These injuries have a fairly high rate of sometimes obtain only internal and external significant intrathoracic or neurovascular rotation views of the humerus. Although injury that may require emergency surgery. these views may demonstrate the fracture, Nondisplaced group 3 fractures without they are suboptimal for detecting associated associated injuries can be treated conserva- fractures and shoulder dislocations. tively with a sling for comfort. Because of its bony structure and the insertion of the rotator cuff tendons, the Proximal Humerus Fractures proximal head of the humerus generally Proximal humerus fractures occur most com- fractures with four predictable cleavage lines monly in elderly persons. They usually result (Figure 4).3 Regardless of the number of from a fall onto an outstretched arm. In young fragments, proximal humerus fractures are 1948 American Family Physician www.aafp.org/afp Volume 70, Number 10 ◆ November 15, 2004 Shoulder Injuries Anatomic neck 3 1 2 Figure 2. Minimally displaced mid-shaft frac- ture. Note that the scapula also is fractured. Reprinted with permission from Eiff MP, Hatch RL, Calmbach WL. Fracture management for primary care. 2d ed. Philadelphia: Saunders, 2003:208. 4 Figure 4. Neer classification of proximal humerus fractures. Four parts of the proximal humerus. 1, greater tuberosity; 2, lesser tuber- osity; 3, head; and 4, shaft. Reprinted with permission from Eiff MP, Hatch RL, Calmbach WL. Fracture management for primary care. 2d ed. Philadelphia: Saunders, 2003:178. Neer 1-part fractures) and can be treated conservatively, if stable.2 Open fractures and fractures with neurologic or vascular defi- cits require emergent orthopedic referral. Patients with displaced proximal humerus fractures should be referred because surgical intervention appears to improve the out- come.8 Fracture-dislocations and fractures of the anatomic neck (indicated by the line just below the humeral head in (Figure 4)3 also should be referred. Treatment of Neer 1-part fractures Figure 3. Transscapular or Y view of the proxi- includes a sling for comfort and early range- mal humerus. of-motion exercises, which should be started Reprinted with permission from Eiff MP, Hatch RL, as soon as tolerated (about five to 10 days Calmbach WL. Fracture management for primary care. 2d after the injury). Patients should begin with ed. Philadelphia: Saunders, 2003:177. pendulum exercises with the injured arm in the sling. They perform this movement classified by the displacement and degree of by bending at the waist, allowing the arm angulation.7 Neer 1-part fractures have no to fall toward the floor, and rotating it in more than 1-cm displacement of any frag- a circle. With time, the size of the circle is ment and no more than 45 degrees of angu- increased, and the sling is removed during lation. More than 80 percent7 of proximal the exercise. humerus fractures are nondisplaced (i.e., After two to three weeks, abduction (pro- November 15, 2004 ◆ Volume 70, Number 10 www.aafp.org/afp American Family Physician
Recommended publications
  • Body Mechanics As the Rotator Cuff Gether in a Cuff-Shape Across the Greater and Lesser Tubercles the on Head of the Humerus
    EXPerT CONTENT Body Mechanics by Joseph E. Muscolino | Artwork Giovanni Rimasti | Photography Yanik Chauvin Rotator Cuff Injury www.amtamassage.org/mtj WORKING WITH CLieNTS AFFecTED BY THIS COmmON CONDITION ROTATOR CUFF GROUP as the rotator cuff group because their distal tendons blend and attach to- The four rotator cuff muscles are gether in a cuff-shape across the greater and lesser tubercles on the head of the supraspinatus, infraspinatus, the humerus. Although all four rotator cuff muscles have specific concen- teres minor, and subscapularis (Fig- tric mover actions at the glenohumeral (GH) joint, their primary functional ure 1). These muscles are described importance is to contract isometrically for GH joint stabilization. Because 17 Before practicing any new modality or technique, check with your state’s or province’s massage therapy regulatory authority to ensure that it is within the defined scope of practice for massage therapy. the rotator cuff group has both mover and stabilization roles, it is extremely functionally active and therefore often physically stressed and injured. In fact, after neck and low back conditions, the shoulder is the most com- Supraspinatus monly injured joint of the human body. ROTATOR CUFF PATHOLOGY The three most common types of rotator cuff pathology are tendinitis, tendinosus, and tearing. Excessive physi- cal stress placed on the rotator cuff tendon can cause ir- ritation and inflammation of the tendon, in other words, tendinitis. If the physical stress is chronic, the inflam- matory process often subsides and degeneration of the fascial tendinous tissue occurs; this is referred to as tendinosus. The degeneration of tendinosus results in weakness of the tendon’s structure, and with continued Teres minor physical stress, whether it is overuse microtrauma or a macrotrauma, a rotator cuff tendon tear might occur.
    [Show full text]
  • Scapular Motion Tracking Using Acromion Skin Marker Cluster: in Vitro Accuracy Assessment
    Scapular Motion Tracking Using Acromion Skin Marker Cluster: In Vitro Accuracy Assessment Andrea Cereatti, Claudio Rosso, Ara Nazarian, Joseph P. DeAngelis, Arun J. Ramappa & Ugo Della Croce Journal of Medical and Biological Engineering ISSN 1609-0985 J. Med. Biol. Eng. DOI 10.1007/s40846-015-0010-2 1 23 Your article is protected by copyright and all rights are held exclusively by Taiwanese Society of Biomedical Engineering. This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy J. Med. Biol. Eng. DOI 10.1007/s40846-015-0010-2 ORIGINAL ARTICLE Scapular Motion Tracking Using Acromion Skin Marker Cluster: In Vitro Accuracy Assessment Andrea Cereatti • Claudio Rosso • Ara Nazarian • Joseph P. DeAngelis • Arun J. Ramappa • Ugo Della Croce Received: 11 October 2013 / Accepted: 20 March 2014 Ó Taiwanese Society of Biomedical Engineering 2015 Abstract Several studies have recently investigated how estimated using an AMC combined with a single anatom- the implementations of acromion marker clusters (AMCs) ical calibration, the accuracy was highly dependent on the method and stereo-photogrammetry affect the estimates of specimen and the type of motion (maximum errors between scapula kinematics.
    [Show full text]
  • Spontaneous Fracture of the Scapula Spines in Association with Severe Rotator Cuff Disease and Osteoporosis
    Central Annals of Musculoskeletal Disorders Case Report *Corresponding author Hans Van der Wall, CNI Molecular Imaging & University of Notre Dame, Sydney, Australia, Tel: +61 2 9736 1040; Spontaneous Fracture of the FAX: +61 2 9736 2095; Email: [email protected] Submitted: 25 March 2020 Scapula Spines in Association Accepted: 07 April 2020 Published: 10 April 2020 ISSN: 2578-3599 with Severe Rotator Cuff Copyright © 2020 Robert B, et al. Disease and Osteoporosis OPEN ACCESS 1 2 3 Breit Robert , Strokon Andrew , Burton Leticia , Van der Wall Keywords H3* and Bruce Warwick3 • Scapular fracture • Rotator cuff arthropathy 1CNI Molecular Imaging, Australia • Osteoporosis 2Sydney Private Hospital, Australia • Scintigraphy 3CNI Molecular Imaging & University of Notre Dame, Sydney, Australia • SPECT/ CT 4Concord Hospital, Australia Abstract We present the case of a 74 year-old woman with diabetes mellitus and established osteoporosis who initially presented with increasing pain and disability of the shoulders. Investigations showed severe rotator cuff disease. This was treated conservatively with physiotherapy and corticosteroid injection into both joints with good pain relief but no improvement in function. She subsequently presented with increasing posterior thoracic pain with plain films reporting no evidence of rib fracture. Bone scintigraphy showed severe rotator cuff disease and degenerative joint disease at multiple sites. The single photon emission computed tomography (SPECT)/ x-ray Computed Tomography (CT) showed bilateral scapula spine fractures of long standing with a probable non-union on the left side. These fractures are rare and difficult to treat when associated with rotator cuff disease. INTRODUCTION Fractures of the scapula spine are rare, with a reported level of dysfunction remained significant with marked restriction frequency of less than twenty cases in the literature [1-8].
    [Show full text]
  • Distal Clavicle Resection
    www.ashevilleortho.com Distal Clavicle Resection Impingement syndrome and associated rotator cuff tears are commonly encountered shoulder problems. This condition is caused when the rotator cuff tendons rub the underside of the acromion bone. Chronic rubbing can lead to a weakening and even tearing of the rotator cuff. Symptoms include pain, weakness and loss of motion. Whether this procedure is done using a scope or through a small incision is dependent on the severity of the tear and the doctor’s preference. The method shown in these animations is with a scope. This content is for informational purposes only. It is not intended to represent actual surgical technique or results. The information is not intended to be a substitute for professional medical advice, diagnosis, treatment or care. Always seek the advice of a medical professional when you have a medical condition. Do not disregard professional medical advice or delay in seeking advice if you have read something in this printout. Copyright © 2013, Understand.com, LLC, All Rights Reserved. Asheville Orthopaedic Associates • (828) 252-7331 www.ashevilleortho.com Distal Clavicle Resection Introduction Impingement syndrome and associated rotator cuff tears are commonly encountered shoulder problems. This condition is caused when the rotator cuff tendons rub the underside of the acromion bone. Chronic rubbing can lead to a weakening and even tearing of the rotator cuff. Symptoms include pain, weakness and loss of motion. Whether this procedure is done using a scope or through a small incision is dependent on the severity of the tear and the doctor’s preference. The method shown in these animations is with a scope.
    [Show full text]
  • Subacromial Decompression in the Shoulder
    Subacromial Decompression Geoffrey S. Van Thiel, Matthew T. Provencher, Shane J. Nho, and Anthony A. Romeo PROCEDURE 2 22 Indications P ITFALLS ■ Impingement symptoms refractory to at least • There are numerous possible 3 months of nonoperative management causes of shoulder pain that can ■ In conjunction with arthroscopic treatment of a mimic impingement symptoms. All potential causes should be rotator cuff tear thoroughly evaluated prior to ■ Relative indication: type II or III acromion with undertaking operative treatment clinical fi ndings of impingement of isolated impingement syndrome. Examination/Imaging Subacromial Decompression PHYSICAL EXAMINATION ■ Assess the patient for Controversies • Complete shoulder examination with range of • Subacromial decompression in motion and strength the treatment of rotator cuff • Tenderness with palpation over anterolateral pathology has been continually acromion and supraspinatus debated. Prospective studies • Classic Neer sign with anterolateral shoulder have suggested that there is no difference in outcomes with and pain on forward elevation above 90° when without subacromial the greater tuberosity impacts the anterior decompression. acromion (and made worse with internal rotation) • Subacromial decompression • Positive Hawkins sign: pain with internal rotation, performed in association with a forward elevation to 90°, and adduction, which superior labrum anterior- causes impingement against the coracoacromial posterior (SLAP) repair can potentially increase ligament postoperative stiffness. ■ The impingement test is positive if the patient experiences pain relief with a subacromial injection of lidocaine. ■ Be certain to evaluate for acromioclavicular (AC) joint pathology, and keep in mind that there are several causes of shoulder pain that can mimic impingement syndrome. P ITFALLS IMAGING • Ensure that an axillary lateral ■ Standard radiographs should be ordered, view is obtained to rule out an os acromiale.
    [Show full text]
  • The Appendicular Skeleton Appendicular Skeleton
    THE SKELETAL SYSTEM: THE APPENDICULAR SKELETON APPENDICULAR SKELETON The primary function is movement It includes bones of the upper and lower limbs Girdles attach the limbs to the axial skeleton SKELETON OF THE UPPER LIMB Each upper limb has 32 bones Two separate regions 1. The pectoral (shoulder) girdle (2 bones) 2. The free part (30 bones) THE PECTORAL (OR SHOULDER) GIRDLE UPPER LIMB The pectoral girdle consists of two bones, the scapula and the clavicle The free part has 30 bones 1 humerus (arm) 1 ulna (forearm) 1 radius (forearm) 8 carpals (wrist) 19 metacarpal and phalanges (hand) PECTORAL GIRDLE - CLAVICLE The clavicle is “S” shaped The medial end articulates with the manubrium of the sternum forming the sternoclavicular joint The lateral end articulates with the acromion forming the acromioclavicular joint THE CLAVICLE PECTORAL GIRDLE - CLAVICLE The clavicle is convex in shape anteriorly near the sternal junction The clavicle is concave anteriorly on its lateral edge near the acromion CLINICAL CONNECTION - FRACTURED CLAVICLE A fall on an outstretched arm (F.O.O.S.H.) injury can lead to a fractured clavicle The clavicle is weakest at the junction of the two curves Forces are generated through the upper limb to the trunk during a fall Therefore, most breaks occur approximately in the middle of the clavicle PECTORAL GIRDLE - SCAPULA Also called the shoulder blade Triangular in shape Most notable features include the spine, acromion, coracoid process and the glenoid cavity FEATURES ON THE SCAPULA Spine -
    [Show full text]
  • Bone Limb Upper
    Shoulder Pectoral girdle (shoulder girdle) Scapula Acromioclavicular joint proximal end of Humerus Clavicle Sternoclavicular joint Bone: Upper limb - 1 Scapula Coracoid proc. 3 angles Superior Inferior Lateral 3 borders Lateral angle Medial Lateral Superior 2 surfaces 3 processes Posterior view: Acromion Right Scapula Spine Coracoid Bone: Upper limb - 2 Scapula 2 surfaces: Costal (Anterior), Posterior Posterior view: Costal (Anterior) view: Right Scapula Right Scapula Bone: Upper limb - 3 Scapula Glenoid cavity: Glenohumeral joint Lateral view: Infraglenoid tubercle Right Scapula Supraglenoid tubercle posterior anterior Bone: Upper limb - 4 Scapula Supraglenoid tubercle: long head of biceps Anterior view: brachii Right Scapula Bone: Upper limb - 5 Scapula Infraglenoid tubercle: long head of triceps brachii Anterior view: Right Scapula (with biceps brachii removed) Bone: Upper limb - 6 Posterior surface of Scapula, Right Acromion; Spine; Spinoglenoid notch Suprspinatous fossa, Infraspinatous fossa Bone: Upper limb - 7 Costal (Anterior) surface of Scapula, Right Subscapular fossa: Shallow concave surface for subscapularis Bone: Upper limb - 8 Superior border Coracoid process Suprascapular notch Suprascapular nerve Posterior view: Right Scapula Bone: Upper limb - 9 Acromial Clavicle end Sternal end S-shaped Acromial end: smaller, oval facet Sternal end: larger,quadrangular facet, with manubrium, 1st rib Conoid tubercle Trapezoid line Right Clavicle Bone: Upper limb - 10 Clavicle Conoid tubercle: inferior
    [Show full text]
  • Trapezius Origin: Occipital Bone, Ligamentum Nuchae & Spinous Processes of Thoracic Vertebrae Insertion: Clavicle and Scapul
    Origin: occipital bone, ligamentum nuchae & spinous processes of thoracic vertebrae Insertion: clavicle and scapula (acromion Trapezius and scapular spine) Action: elevate, retract, depress, or rotate scapula upward and/or elevate clavicle; extend neck Origin: spinous process of vertebrae C7-T1 Rhomboideus Insertion: vertebral border of scapula Minor Action: adducts & performs downward rotation of scapula Origin: spinous process of superior thoracic vertebrae Rhomboideus Insertion: vertebral border of scapula from Major spine to inferior angle Action: adducts and downward rotation of scapula Origin: transverse precesses of C1-C4 vertebrae Levator Scapulae Insertion: vertebral border of scapula near superior angle Action: elevates scapula Origin: anterior and superior margins of ribs 1-8 or 1-9 Insertion: anterior surface of vertebral Serratus Anterior border of scapula Action: protracts shoulder: rotates scapula so glenoid cavity moves upward rotation Origin: anterior surfaces and superior margins of ribs 3-5 Insertion: coracoid process of scapula Pectoralis Minor Action: depresses & protracts shoulder, rotates scapula (glenoid cavity rotates downward), elevates ribs Origin: supraspinous fossa of scapula Supraspinatus Insertion: greater tuberacle of humerus Action: abduction at the shoulder Origin: infraspinous fossa of scapula Infraspinatus Insertion: greater tubercle of humerus Action: lateral rotation at shoulder Origin: clavicle and scapula (acromion and adjacent scapular spine) Insertion: deltoid tuberosity of humerus Deltoid Action:
    [Show full text]
  • Coracoid Process Anatomy: a Cadaveric Study of Surgically Relevant Structures Jorge Chahla, M.D., Ph.D., Daniel Cole Marchetti, B.A., Gilbert Moatshe, M.D., Márcio B
    Quantitative Assessment of the Coracoacromial and the Coracoclavicular Ligaments With 3-Dimensional Mapping of the Coracoid Process Anatomy: A Cadaveric Study of Surgically Relevant Structures Jorge Chahla, M.D., Ph.D., Daniel Cole Marchetti, B.A., Gilbert Moatshe, M.D., Márcio B. Ferrari, M.D., George Sanchez, B.S., Alex W. Brady, M.Sc., Jonas Pogorzelski, M.D., M.H.B.A., George F. Lebus, M.D., Peter J. Millett, M.D., M.Sc., Robert F. LaPrade, M.D., Ph.D., and CAPT Matthew T. Provencher, M.D., M.C., U.S.N.R. Purpose: To perform a quantitative anatomic evaluation of the (1) coracoid process, specifically the attachment sites of the conjoint tendon, the pectoralis minor, the coracoacromial ligament (CAL), and the coracoclavicular (CC) ligaments in relation to pertinent osseous and soft tissue landmarks; (2) CC ligaments’ attachments on the clavicle; and (3) CAL attachment on the acromion in relation to surgically relevant anatomic landmarks to assist in planning of the Latarjet procedure, acromioclavicular (AC) joint reconstructions, and CAL resection distances avoiding iatrogenic injury to sur- rounding structures. Methods: Ten nonpaired fresh-frozen human cadaveric shoulders (mean age 52 years, range 33- 64 years) were included in this study. A 3-dimensional coordinate measuring device was used to quantify the location of pertinent bony landmarks and soft tissue attachment areas. The ligament and tendon attachment perimeters and center points on the coracoid, clavicle, and acromion were identified and subsequently dissected off the bone. Coordinates of points along the perimeters of attachment sites were used to calculate areas, whereas coordinates of center points were used to determine distances between surgically relevant attachment sites and pertinent bony landmarks.
    [Show full text]
  • Muscles of the Upper Limb.Pdf
    11/8/2012 Muscles Stabilizing Pectoral Girdle Muscles of the Upper Limb Pectoralis minor ORIGIN: INNERVATION: anterior surface of pectoral nerves ribs 3 – 5 ACTION: INSERTION: protracts / depresses scapula coracoid process (scapula) (Anterior view) Muscles Stabilizing Pectoral Girdle Muscles Stabilizing Pectoral Girdle Serratus anterior Subclavius ORIGIN: INNERVATION: ORIGIN: INNERVATION: ribs 1 - 8 long thoracic nerve rib 1 ---------------- INSERTION: ACTION: INSERTION: ACTION: medial border of scapula rotates scapula laterally inferior surface of scapula stabilizes / depresses pectoral girdle (Lateral view) (anterior view) Muscles Stabilizing Pectoral Girdle Muscles Stabilizing Pectoral Girdle Trapezius Levator scapulae ORIGIN: INNERVATION: ORIGIN: INNERVATION: occipital bone / spinous accessory nerve transverse processes of C1 – C4 dorsal scapular nerve processes of C7 – T12 ACTION: INSERTION: ACTION: INSERTION: stabilizes / elevates / retracts / upper medial border of scapula elevates / adducts scapula acromion / spine of scapula; rotates scapula lateral third of clavicle (Posterior view) (Posterior view) 1 11/8/2012 Muscles Stabilizing Pectoral Girdle Muscles Moving Arm Rhomboids Pectoralis major (major / minor) ORIGIN: INNERVATION: ORIGIN: INNERVATION: spinous processes of C7 – T5 dorsal scapular nerve sternum / clavicle / ribs 1 – 6 dorsal scapular nerve INSERTION: ACTION: INSERTION: ACTION: medial border of scapula adducts / rotates scapula intertubucular sulcus / greater tubercle flexes / medially rotates / (humerus) adducts
    [Show full text]
  • Rehabilitation Guidelines for Shoulder Debridement, Decompression and Distal Clavicle Excision
    UW HEALTH SPORTS REHABILITATION Rehabilitation Guidelines for Shoulder Debridement, Decompression and Distal Clavicle Excision Acromion Front View Back View Supraspinatus Supraspinatus Long head of bicep Type I Infraspinatus Short Teres head of bicep Minor Subscapularis Type II Front View Type III Figure 1 Shoulder anatomy Image Copyright 2010 UW Health Sports Medicine Center. Figure 2 Acromion classifications Subscapularis The shoulder is made up of three The rotator cuff connects the bones: the scapula (shoulder blade), humerus to the scapula. The rotator the humerus (upper arm bone) and cuff is formed by the tendons of the clavicle (collarbone). One part of four muscles: the supraspinatus, the scapula, called the glenoid fossa, infraspinatus, teres minor and is coupled with the humerus to Figure 3 Rotator cuff anatomy subscapularis (Figure 3). The stability make up the socket of the shoulder Image property of Primal Pictures, Ltd., primalpictures.com. Use and movement of the shoulder is of this image without authorization from Primal Pictures, Ltd. is (Figure 1). prohibited. controlled primarily by the rotator The glenoid is very shallow and cuff muscles, with assistance from may be performed using instruments flat. The glenoid labrum is a the ligaments, glenoid labrum and (about the size of a pencil which rim of soft tissue that turns the capsule of the shoulder. Labral include a camera and other surgical flat surface of the glenoid into a tears and rotator cuff tears are instruments) inserted through deeper socket that molds to fit often caused by a direct injury to small incisions in the shoulder, to the head of the humerus.
    [Show full text]
  • Surface Anatomy and Markings of the Upper Limb Pectoral Region
    INTRODUCTION TO SURFACE ANATOMY OF UPPER & LOWER LIMBS OBJECTIVES By the end of the lecture, students should be able to: •Palpate and feel the bony the important prominences in the upper and the lower limbs. •Palpate and feel the different muscles and muscular groups and tendons. •Perform some movements to see the action of individual muscle or muscular groups in the upper and lower limbs. •Feel the pulsations of most of the arteries of the upper and lower limbs. •Locate the site of most of the superficial veins in the upper and lower limbs Prof. Saeed Abuel 2 Makarem What is Surface Anatomy? • It is a branch of gross anatomy that examines shapes and markings on the surface of the body as they are related to deeper structures. • It is essential in locating and identifying anatomic structures prior to studying internal gross anatomy. • It helps to locate the affected organ / structure / region in disease process. • The clavicle is subcutaneous and can be palpated throughout its length. • Its sternal end projects little above the manubrium. • Between the 2 sternal ends of the 2 clavicles lies the jugular notch (suprasternal notch). • The acromial end of the clavicle can be palpated medial to the lateral border of the acromion, of the scapula. particularly when the shoulder is alternately raised and depressed. • The large vessels and nerves to the upper limb pass posterior to the convexity of the clavicle. 4 • The coracoid process of scapula can be felt deeply below the lateral one third of the clavicle in the Deltopectoral GROOVE or clavipectoral triangle.
    [Show full text]