High Temperature Reactive Co2 Separation Using

Total Page:16

File Type:pdf, Size:1020Kb

High Temperature Reactive Co2 Separation Using EXPERIMENTAL RESULTS AND COMPUTER SIMULATIONS FOR POST- COMBUSTION CARBON DIOXIDE REMOVAL USING LIMESTONE THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By William Kane Wang, B.S. ChBE Graduate Program in Chemical and Biomolecular Engineering The Ohio State University 2009 Thesis Committee: Liang-Shih Fan, Advisor Jacques Zakin ABSTRACT Amid growing concerns of global climate change, governmental entities and industry throughout the world are performing research on the capture and sequestration of carbon dioxide (CO2). Coal accounts for nearly half of the United States electricity generation and 40% of the world’s electricity generation. This directly translates into 33% of the United States CO2 emissions and 40% of the world’s CO2 emissions produced from coal- combustion power plants for electricity generation. Not surprisingly, a significant emphasis has been placed on capturing CO2 produced from coal-combustion power plants. To date, though, no large-scale power plant employs the use of carbon capture technologies. Under the leadership of Professor Liang-Shih Fan and his research group at The Ohio State University, a process that employs a solid sorbent to reactively remove CO2 from coal combustion flue gas has been developed. The Carbonation-Calcination Reaction (CCR) Process relies on a carbonation reaction with a metal oxide to remove the CO2 and a subsequent calcination reaction to produce a pure stream of CO2 while regenerating the metal oxide. An additional benefit to the CCR process is the ability of the sorbent to simultaneously remove sulfur dioxide (SO2) present in the flue gas stream. ii Upon successful bench-scale experiments, a 20 pound per hour coal combustion facility was erected to demonstrate the CCR Process. With the ability to capture greater than 90% CO2 and greater than 99% SO2 on a once-through basis with a commercially available calcium-based sorbent, the facility was re-renovated for multicylic investigations. Consistent CO2 removals over multiple cycles were obtained using an intermediate hydration reaction for reactivation of the calcium oxide sorbent. The hydration reaction reverses and eliminates any effect of sintering that occurs during the calcination reaction. Due to its inherently small particle size, along with an increase in surface area and pore volume upon spontaneous dehydration, calcium hydroxide is able to maintain constant CO2 removals. Computer simulations integrating the CCR Process into a power plant shows a high level of compatibility due to its high-temperature operation. Energy penalties between 15% and 20% were obtained, with compression of CO2 while producing a pure, dry stream of CO2 ready for sequestration. iii Dedicated to my family-Mother, Father, and three sisters iv ACKNOWLEDGEMENTS I would like to gratefully acknowledge my advisor, Professor Liang-Shih Fan, for providing the opportunity to obtain my graduate degree and perform research in his group. I have had the ability to learn a considerable amount in several fields that extend beyond research and academics. I would also like to acknowledge Professor Jacques Zakin for agreeing to be on my defense committee. The research performed could not have been achieved without several personnel from industry. I would like to thank Dr. Robert Statnick for providing input, sharing his previous experiences, providing continuous support, even in times of great stress, and his patience. I would also like to thank Dr. Mahesh Iyer for his initial role as mentor, support, and conversations, both during his time at Ohio State and beyond. I would like to thank Bob Brown and the Ohio Coal Development Office for their continued financial support of the research project. The members of the Industrial Review Committee, who have provided important suggestions in areas of experimental design, operational procedures, industrial expectations, safety precautions, and troubleshooting, have my deepest appreciation. They include Jeff Gerken from American Electric Power (AEP), Bartev Sakadjian from Babcock & Wilcox, Lew Benson, Dave McKinney, and James Derby of Carmeuse Lime & Stone, Dan Connell, Steve Winberg, and Dick Winschel of CONSOL v Energy, John Bloemer and Frank Carchedi of Duke Energy, and Mark Golightley of First Energy. I would also like to thank the entire Fan Research Group, which has undergone significant personnel changes during my five years as a graduate student. The members of the Carbonation Calcination Reaction (CCR) group consisting of Danny Wong, Shwetha Ramkumar, Dr. Songgeng Li, Siddharth Gumuluru, and Sun Zhenchao have significantly advanced the progress of the research project. With my initial research focusing on chemical looping combustion, I would like to thank Dr. Luis Vargas, who provided not only invaluable advice but also comic relief, Fanxing Li, Deepak Sridhar, Ray Kim, Andrew Tong, and Fu-Chen Yu. Transitioning into fluidization research, I would like to thank Dr. Bing Du, Dr. Zhe Cui, Dr. Raymond Lau, who taught me how to perform experiments while having fun, Dr. Warsito, Dr. Qussai Marashdeh, Orin Hemminger, Fei Wang, and Zhao Yu. Last but not least, I would like to thank Dr. Alissa Park for her guidance, compassion, and humor. I would also like to extend thanks to all the undergraduate help who didn’t mind the manual labor and not-so-clean conditions. They are Yao Wang, Alex Brown, Zack Patterson, Zack Yoscovits, and Joe Braucher. Without the administrative staff in both the Chemical and Biomolecular Engineering Department and The Ohio State University, the research project would have been far too difficult to handle. I would like to thank Mike Davis, Geoff Hulse, and Dave Jones for maintaining the computer labs and network and David Cade and Carl Scott for maintaining not only Koffolt Laboratory, but also the laboratory at West Campus. Paul Green and Leigh Evrard deserve thanks for their expertise in machining, fabrication, and installation of equipment. Without them, parts of the reactor would still be supported by vi bricks and wood. A special thanks must be given to Susan Tesfai and Lynn Flanagan, the two administrative workhorses of the research project. Their ability to keep the finances of the research project under control, incredible work hours, and ability to successfully obtain authorization for all the “odd” purchases that were made truly made the project run efficiently. The Ohio State Research Foundation also deserves a special thanks for authorizing all purchases in a timely fashion. I would like to thank my entire family-my parents, Kang-bo Wang and Su-Huei Wang, sisters, Jenny, Judy, and Peggy for their unending support and love. I would also like to give a special recognition to my two wonderful cats, Jack Junior (JJ) and Remi, who have provided me with hours of entertainment and joy. I would also like to thank the Capital Area Humane Society, as well as the Columbus Ultimate Disc Community, for providing an enjoyable atmosphere for relaxation. Of special note is Erin Schran for providing Darby, Amy Sminchak for providing Flash, Scott Miller for providing Clevis, Bob for providing Alfa and Bioko, and the entire Ultimate dog community and their owners. I would also like to extend my deepest thanks to Megan Covitz, Bredt Covitz, and their two wonderful cats, Jack and Eva, for providing me with countless meals, their incredible hospitality, and friendship. To Kelly Zilli, her three beautiful greyhounds, Vinnie, Guido, and Verdi, and her two adorable cats, Ezekiel and Elliott, I am forever indebted. The numerous dog walks, runs, randomness, and friendship have truly made my time in graduate school easier and more enjoyable. vii VITA September 18, 1981…………………………………………Born – St. Louis, Missouri June, 2004…………………………………………………...B.S. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign 2004-2009…………………………………………………..Graduate Research Associate The Ohio State University PUBLICATIONS Gupta, Puneet; Wang, William; Fan, Liang-Shih. Synthesis of High-Surface-Area SiC Through a Modified Sol-Gel Route: Control of the Pore Structure. Ind. Eng. Chem. Res. 2004, 43, 4732- 4739. Wang, William; Li, Songgeng; Ramkumar, Shwetha; Wong, Danny; Iyer, Mahesh; Fan, L-S; Statnick, Robert M. Demonstration of Multi-Pollutant Capture Including CO2 and SO2 from Coal Combustion. Proceedings-7th Carbon Capture & Sequestration Conference, 2008. Wang, William; Li, Songgeng; Ramkumar, Shwetha; Wong, Danny; Iyer, Mahesh; Fan, L-S; Statnick, Robert M. Results from 20 pound per hour CO2 Capture Facility. Proceedings- Pittsburgh Coal Conference, 2008. Li, Songgeng; Wang, William; Ramkumar; Shwetha; Wong, Danny; Iyer, Mahesh; Fan, L-S; Statnick, Robert M. Demonstration of Carbon Dioxide Capture from Coal-Fired Flue Gas Using Calcium-based Sorbents. Proceedings-AICHE Annual Meeting, 2008. Wang, William; Ramkumar, Shwetha; Li, Songgeng; Wong, Danny; Iyer, Mahesh; Sakadjian, Bartev; Statnick, Robert; Fan, L.-S. Sub-Pilot Demonstration of the Carbonation-Calcination Reaction (CCR) Process: High-Temperature CO2 and Sulfur Capture from Coal Fired Power Plants. Ind. Eng. Chem. Res. In Press. FIELDS OF STUDY Major Field: Chemical Engineering viii TABLE OF CONTENTS Abstract ............................................................................................................................... ii Dedication .........................................................................................................................
Recommended publications
  • The Crazy Calcium Cycle. Eduardo A. Espeso Department of Cellular And
    The CRaZy calcium cycle. Eduardo A. Espeso Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas, CSIC. Ramiro de Maeztu, 9. 28040-Madrid. Spain. Key words: Crz1, calcineurin signaling, calcium pump, calcium channel, P-type ATPase, magnesium homeostasis Summary. Calcium is an essential cation for a cell. This cation participates in the regulation of numerous processes in either prokaryote s or eukaryotes, from bacteria to humans. Saccharomyces cerevisiae has served as a model organism to understand calcium homeostasis and calcium-dependent signaling in fungi. In this chapter it will be reviewed known and predicted transport mechanisms that mediate calcium homeostasis in the yeast. How and when calcium enters the cell, how and where it is stored, when is reutilized, and finally secreted to the environment to close the cycle. As a second messenger, maintenance of a controlled free intracellular calcium concentration is important for mediating transcriptional regulation. Many environmental stimuli modify the concentration of cytoplasmic free calcium generating the "calcium signal". This is sensed and transduced through the calmodulin/calcineurin pathway to a transcription factor, named c alcineurin-r esponsive z inc finger, CRZ, also known as "crazy" , to mediate transcriptional regulation of a large number of genes of diverse pathways including a negative feedback regulation of the calcium homeostasis system. A model of calcium regulation in yeasts In higher eukaryotes entry of calcium in the cell starts concatenated signaling events some of them are of enormous importance in animals such as initiation of the heartbeat or the synapses between neurons. In the budding yeast calcium mediates adaptation to a variety of stimuli such as the presence of mating pheromones (Iida et al., 1990), a damage to endoplasmic reticulum (Bonilla and Cunningham, 2003), and different ambient stresses like salinity, alkaline pH or high osmolarity [reviewed in (Cunningham, 2005)].
    [Show full text]
  • Oregon Department of Human Services HEALTH EFFECTS INFORMATION
    Oregon Department of Human Services Office of Environmental Public Health (503) 731-4030 Emergency 800 NE Oregon Street #604 (971) 673-0405 Portland, OR 97232-2162 (971) 673-0457 FAX (971) 673-0372 TTY-Nonvoice TECHNICAL BULLETIN HEALTH EFFECTS INFORMATION Prepared by: Department of Human Services ENVIRONMENTAL TOXICOLOGY SECTION Office of Environmental Public Health OCTOBER, 1998 CALCIUM CARBONATE "lime, limewater” For More Information Contact: Environmental Toxicology Section (971) 673-0440 Drinking Water Section (971) 673-0405 Technical Bulletin - Health Effects Information CALCIUM CARBONATE, "lime, limewater@ Page 2 SYNONYMS: Lime, ground limestone, dolomite, sugar lime, oyster shell, coral shell, marble dust, calcite, whiting, marl dust, putty dust CHEMICAL AND PHYSICAL PROPERTIES: - Molecular Formula: CaCO3 - White solid, crystals or powder, may draw moisture from the air and become damp on exposure - Odorless, chalky, flat, sweetish flavor (Do not confuse with "anhydrous lime" which is a special form of calcium hydroxide, an extremely caustic, dangerous product. Direct contact with it is immediately injurious to skin, eyes, intestinal tract and respiratory system.) WHERE DOES CALCIUM CARBONATE COME FROM? Calcium carbonate can be mined from the earth in solid form or it may be extracted from seawater or other brines by industrial processes. Natural shells, bones and chalk are composed predominantly of calcium carbonate. WHAT ARE THE PRINCIPLE USES OF CALCIUM CARBONATE? Calcium carbonate is an important ingredient of many household products. It is used as a whitening agent in paints, soaps, art products, paper, polishes, putty products and cement. It is used as a filler and whitener in many cosmetic products including mouth washes, creams, pastes, powders and lotions.
    [Show full text]
  • Ocean Acidification and Oceanic Carbon Cycling 13
    Ocean Acidification and Oceanic Carbon Cycling 13 Dieter A. Wolf-Gladrow and Bjo¨rn Rost Contents Atmospheric CO2 ............................................................................... 104 Air-Sea CO2 Exchange and Ocean Carbonate Chemistry ..................................... 104 Rate of Surface Ocean Acidification and Regional Differences .. ........................... 104 The Physical Carbon Pump and Climate Change .............................................. 105 Impact of Ocean Acidification on Marine Organisms and Ecosystems ....................... 106 The Biological Carbon Pump and Climate Change ............................................ 107 Take-Home Message ............................................................................ 108 References ....................................................................................... 109 Abstract The concentration of atmospheric CO2 is increasing due to emissions from burning of fossil fuels and changes in land use. Part of this “anthropogenic CO2” invades the oceans causing a decrease of seawater pH; this process is called “ocean acidification.” The lowered pH, but also the concomitant changes in other properties of the carbonate system, affects marine life and the cycling of carbon in the ocean. Keywords Anthropogenic CO2 • Seawater acidity • Saturation state • Climate change • Physical carbon pump • Global warming • Biological carbon pumps • Phyto- plankton • Primary production • Calcification D.A. Wolf-Gladrow (*) • B. Rost Alfred Wegener Institute, Helmholtz Centre
    [Show full text]
  • Interaction of Calcium Supplementation and Nonsteroidal Anti-Inflammatory Drugs and the Risk of Colorectal Adenomas
    2353 Interaction of Calcium Supplementation and Nonsteroidal Anti-inflammatory Drugs and the Risk of Colorectal Adenomas Maria V. Grau,1 John A. Baron,1,2 Elizabeth L. Barry,1 Robert S. Sandler,3 Robert W. Haile,4 Jack S. Mandel,5 and Bernard F. Cole1 Departments of 1Community and Family Medicine and 2Medicine, Dartmouth Medical School, Lebanon, New Hamsphire; 3Department of Medicine, University of North Carolina, Chapel Hill, North Carolina; 4Department of Preventive Medicine, University of Southern California, Los Angeles, California; and 5Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia Abstract Background: Calcium and aspirin have both been found to be Results: In the Calcium Trial, subjects randomized to calcium chemopreventive against colorectal neoplasia. However, the who also were frequent users of NSAIDs had a reduction joint effect of the two agents has not been well investigated. of risk for advanced adenomas of 65% [adjusted risk ratio Methods: To explore the separate and joint effects of calcium (RR), 0.35; 95% confidence interval (95% CI), 0.13-0.96], and and aspirin/nonsteroidal anti-inflammatory drugs (NSAID), there was a highly significant statistical interaction between we used data from two large randomized clinical trials calcium treatment and frequent NSAID use (Pinteraction = among patients with a recent history of colorectal adenomas. 0.01). Similarly, in the Aspirin Trial, 81 mg aspirin and In the Calcium Polyp Prevention Study, 930 eligible subjects calcium supplement use together conferred a risk reduction were randomized to receive placebo or 1,200 mg of elemental of 80% for advanced adenomas (adjusted RR, 0.20; 95% CI, calcium daily for 4 years.
    [Show full text]
  • Some Drugs Are Excluded from Medicare Part D, but Are Covered by Your Medicaid Benefits Under the Healthpartners® MSHO Plan (HMO)
    Some drugs are excluded from Medicare Part D, but are covered by your Medicaid benefits under the HealthPartners® MSHO Plan (HMO). These drugs include some over‐the‐counter (OTC) items, vitamins, and cough and cold medicines. If covered, these drugs will have no copay and will not count toward your total drug cost. For questions, please call Member Services at 952‐967‐7029 or 1‐888‐820‐4285. TTY members should call 952‐883‐6060 or 1‐800‐443‐0156. From October 1 through February 14, we take calls from 8 a.m. to 8 p.m., seven days a week. You’ll speak with a representative. From February 15 to September 30, call us 8 a.m. to 8 p.m. Monday through Friday to speak with a representative. On Saturdays, Sundays and holidays, you can leave a message and we’ll get back to you within one business day. Drug Description Strength 3 DAY VAGINAL 4% 5‐HYDROXYTRYPTOPHAN 50 MG ABSORBASE ACETAMINOPHEN 500 MG ACETAMINOPHEN 120MG ACETAMINOPHEN 325 MG ACETAMINOPHEN 650MG ACETAMINOPHEN 80 MG ACETAMINOPHEN 650 MG ACETAMINOPHEN 160 MG/5ML ACETAMINOPHEN 500 MG/5ML ACETAMINOPHEN 160 MG/5ML ACETAMINOPHEN 500MG/15ML ACETAMINOPHEN 100 MG/ML ACETAMINOPHEN 500 MG ACETAMINOPHEN 325 MG ACETAMINOPHEN 500 MG ACETAMINOPHEN 80 MG ACETAMINOPHEN 100.00% ACETAMINOPHEN 80 MG ACETAMINOPHEN 160 MG ACETAMINOPHEN 80MG/0.8ML ACETAMINOPHEN‐BUTALBITAL 50MG‐325MG ACNE CLEANSING PADS 2% ACNE TREATMENT,EXTRA STRENGTH 10% ACT ANTI‐CAVITY MOUTH RINSE 0.05% Updated 12/01/2012 ACTICAL ACTIDOSE‐AQUA 50G/240ML ACTIDOSE‐AQUA 15G/72ML ACTIDOSE‐AQUA 25G/120ML ACTIVATED CHARCOAL 25 G ADEKS 7.5 MG
    [Show full text]
  • The Calcium Cycle
    Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 1985 Volume VII: Skeletal Materials- Biomineralization The Calcium Cycle Curriculum Unit 85.07.08 by Bill Duesing INTRODUCTION This unit is designed to be part of the Ecology course which is taught by High School in the Community at the West Rock Nature Center for four hours a day during the last quarter of the school year, The present ecology course involves both theoretical and practical studies relating to the earth and how it works. We will trace calcium in the biosphere from its location in igneous rocks in the early history of the earth to its location in the skeletons of high school students at the Nature Center. In the process of studying the transport and deposition of calcium we have a vehicle which touches on many of the important concepts we are teaching and relates to some of the hands-on activities the students are involved in. Some of the connections between the calcium cycle and the Ecology course are: Geology: Many of the students have no idea of the age and history of the earth and the great changes which it has gone through. How the calcium stored in the rocks in northwestern Connecticut came to be there touches on much of this chemistry: Most of the students have had very little exposure to chemistry, yet it is important in the study of ecology. Using the study of calcium, some simple chemical principles can be introduced such as the fact that calcium is intimately associated with carbon dioxide (CO2), as the solid calcium carbonate (CaCO3), and therefore is involved with life and life forms.
    [Show full text]
  • Product Safety Summary
    Product Safety Summary Calcium Carbonate CAS No. 497-34-1 This Product Safety Summary is intended to provide a general overview of the chemical substance. The information on the summary is basic information and is not intended to provide emergency response information, medical information or treatment information. The summary should not be used to provide in-depth safety and health information. In-depth safety and health information can be found on the Safety Data Sheet (SDS) for the chemical substance. Names Calcium carbonate Chalk Product Overview Solvay Fluorides, LLC does not sell calcium carbonate directly to consumers. Consumers may be exposed to calcium carbonate in many consumer product applications where the calcium carbonate is not transformed or reacted and is present in powder or granule form. Calcium carbonate is a white, granular or powdered solid. It is used primarily in construction, to make glass, production of polymer compounds as well as for acid gas treatment and pH adjustment. It is also used in the manufacture of other chemicals and pharmaceuticals. Exposure to calcium carbonate, especially powder, can cause irritation to the skin, eyes, and respiratory tract. Manufacture of Product Solvay Fluorides, LLC imports the calcium carbonate it sells from a Solvay affiliate in Europe. Solvay manufactures calcium carbonate by calcining (removing carbon dioxide) quarried marble to form lime (calcium oxide). Water is added to make calcium hydroxide and carbon dioxide (CO2) is passed through the solution to reform a purified calcium carbonate, which is then precipitated (crystallized) into its final form. Page 1 of 4 Copyright 2011-2013, Solvay America, Inc.
    [Show full text]
  • Calcium Isotopes in Scleractinian Fossil Corals Since the Mesozoic: Implications for Vital Effects and Biomineralization Through Time ∗ Anne M
    Earth and Planetary Science Letters 444 (2016) 205–214 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Calcium isotopes in scleractinian fossil corals since the Mesozoic: Implications for vital effects and biomineralization through time ∗ Anne M. Gothmann a, , Michael L. Bender a, Clara L. Blättler a, Peter K. Swart b, Sharmila J. Giri b, Jess F. Adkins c, Jarosław Stolarski d, John A. Higgins a a Princeton University, Department of Geosciences, Princeton, NJ, USA b University of Miami, Department of Marine Geosciences, Miami, FL, USA c California Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, CA, USA d Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland a r t i c l e i n f o a b s t r a c t 44/40 Article history: We present a Cenozoic record of δ Ca from well preserved scleractinian fossil corals, as well as fossil 44/40 Received 24 September 2015 coral δ Ca data from two time periods during the Mesozoic (84 and 160 Ma). To complement the Received in revised form 27 February 2016 coral data, we also extend existing bulk pelagic carbonate records back to ∼80 Ma. The same fossil Accepted 6 March 2016 corals used for this study were previously shown to be excellently preserved, and to be faithful archives Available online 7 April 2016 44/40 of past seawater Mg/Ca and Sr/Ca since ∼200 Ma (Gothmann et al., 2015). We find that the δ Ca Editor: H. Stoll compositions of bulk pelagic carbonates from ODP Site 807 (Ontong Java Plateau) and DSDP Site 516 (Rio 44/40 Keywords: Grande Rise) have not varied by more than ∼±0.20h over the last ∼80 Myr.
    [Show full text]
  • The Investigation of Acetylsalicylic Acid, Sodium Bicarbonate, and Calcium Carbonate
    CALIFORNIA STATE SCIENCE FAIR 2010 PROJECT SUMMARY Name(s) Project Number Irfan S. Habib J2113 Project Title The Investigation of Acetylsalicylic Acid, Sodium Bicarbonate, and Calcium Carbonate Abstract Objectives/Goals Does the amount of acetylsalicylic acid in various brands of aspirin tablets depend on the price of the aspirin tablet? Are CaCO3 (calcium carbonate) antacids or NaHCO3 (sodium bicarbonate) antacids more efficient in neutralizing stomach acidity? Does the strength of the base within an antacid depend on the price of the antacid? Methods/Materials A: Titration of Ammonia and Vinegar to obtain basic understanding of titration. B: Titration of aspirin and ammonia was performed to determine the normality (which is the concentration of H+ per 1 L of solution) of each aspirin brand. C: Titration of antacid tablets and vinegar was performed to determine the normality (which is the concentration of OH- per 1L of solution) of each antacid brand. D: Added antacid to 0.5M HCl 1g at a time and recorded pH after each gram was added in order to determine which antacid brand increased the pH of solution at a faster rate. Results A: Normality of Ammonia= 1.06 Normality of Vinegar = 0.83 B: St. Joseph#s was the most expensive aspirin and the Rite Aid brand was the least expensive; however, Ecotrin was the 3rd most expensive and it had the greatest H+ content. The Rite Aid brand had the least amount of H+ content. C: Alka-seltzer was most expensive antacid and Equaline was the least expensive. The Alka-seltzer and Rite Aid brand of antacids had greatest amount of OH- content (both had NaHCO3)and the Equaline (contained CaCO3)had least amount of OH-.
    [Show full text]
  • Calcium Carbonate Dissolution and Precipitation in Water: Factors Affecting the Carbonate Saturometer Method
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1971 Calcium Carbonate Dissolution and Precipitation in Water: Factors Affecting the Carbonate Saturometer Method Lyle M. Dabb Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Chemistry Commons, and the Soil Science Commons Recommended Citation Dabb, Lyle M., "Calcium Carbonate Dissolution and Precipitation in Water: Factors Affecting the Carbonate Saturometer Method" (1971). All Graduate Theses and Dissertations. 2991. https://digitalcommons.usu.edu/etd/2991 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ACKNOWLEDGMENTS I would like to thank Dr. Jerome J . Jurinak for his patience and guidance during my classwork and lab experiments. I would also like t o thank Dr . R. L . Smith and Dr. H. B. Petersen for serving as committee members. I thank Robert A. Griffin and Dr. Sung-Ho Lai for their friendship, help, and encouragement. I thank Dr. John J. Hassett for his help when I started this research. Pa rtial support of this study by the Federal Water Quality Admin- istration is gr atefully acknowledged. I thank my wife, Sandy, for keeping our horne affairs running so smoothly and for her understanding and patience. ¥ m fJJt- Lyle M. Dabb TABLE OF CONTENTS Page INTRODUCTION 1 REVIEW OF LITERATURE 3 METHODS AND MATERIALS RESULTS AND DISCUSSION 10 EIGHT NATURAL WATERS FROM VERNAL, UTAH 31 SUMMARY AND CONCLUSIONS .
    [Show full text]
  • Amorphous Calcium–Magnesium Carbonate (ACMC)
    Amorphous Calcium–Magnesium Carbonate (ACMC) Accelerates Dolomitization at Room Temperature under Abiotic Conditions German Montes-Hernandez, François Renard, Anne-Line Auzende, Nathaniel Findling To cite this version: German Montes-Hernandez, François Renard, Anne-Line Auzende, Nathaniel Findling. Amorphous Calcium–Magnesium Carbonate (ACMC) Accelerates Dolomitization at Room Temperature under Abiotic Conditions. Crystal Growth & Design, American Chemical Society, 2020, 20 (3), pp.1434- 1441. 10.1021/acs.cgd.9b01005. hal-02896885 HAL Id: hal-02896885 https://hal.archives-ouvertes.fr/hal-02896885 Submitted on 5 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Amorphous calcium-magnesium carbonate (ACMC) accelerates 2 dolomitization at room temperature under abiotic conditions 3 4 German Montes-Hernandeza *, François Renarda, b, Anne-Line Auzendea, Nathaniel Findlinga 5 6 a Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 7 Grenoble, France 8 b The Njord Centre, Department of Geosciences, University of Oslo, box 1048 Blindern, 0316 Oslo, 9 Norway 10 11 12 13 *Corresponding author: Dr. German Montes-Hernandez 14 E-mail address: [email protected] 15 1 16 Abstract 17 The challenge to produce dolomite CaMg(CO3)2 at low temperature (20-35°C) over laboratory time 18 scales remains so far unsuccessful, which has led to long-lasting scientific debates in the last two 19 centuries.
    [Show full text]
  • Calcium Carbonate
    Right to Know Hazardous Substance Fact Sheet Common Name: CALCIUM CARBONATE Synonyms: Calcium Salt of Carbonic Acid, Chalk CAS Number: 1317-65-3 Chemical Name: Limestone RTK Substance Number: 4001 Date: July 2015 DOT Number: NA Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Calcium Carbonate is a white to tan odorless powder or Hazard Summary odorless crystals. It is used in human medicine as an antacid, Hazard Rating NJDOH NFPA calcium supplement and food additive. Other uses are HEALTH 1 - agricultural lime and as additive in cement, paints, cosmetics, FLAMMABILITY 0 - dentifrices, linoleum, welding rods, and to remove acidity in REACTIVITY 0 - wine. REACTIVE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe Reasons for Citation When Calcium Carbonate is heated to decomposition, it Calcium Carbonate is on the Right to Know Hazardous emits acrid smoke and irritating vapors. Substance List because it is cited by OSHA, NIOSH, and Calcium Carbonate is incompatible with ACIDS, EPA. ALUMINUM, AMMONIUM SALTS, MAGNESIUM, HYDROGEN, FLUORINE and MAGNESIUM. Calcium Carbonate mixed with magnesium and heated in a current of hydrogen causes a violent explosion. Calcium Carbonate ignites on contact with FLUORINE. Calcium Carbonate contact causes irritation to eyes and skin. SEE GLOSSARY ON PAGE 5. Inhaling Calcium Carbonate causes irritation to nose, throat and respiratory system and can cause coughing. FIRST AID Eye Contact Immediately flush with large amounts of water for at least 15 Workplace Exposure Limits minutes, lifting upper and lower lids. Remove contact OSHA: The legal airborne permissible exposure limit (PEL) is lenses, if worn, while flushing.
    [Show full text]