Antivirals Targeting the Surface Glycoproteins of Influenza Virus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Drug Name Peramivir Brand Name(S)
Antimicrobial Stewardship Program Drug Name Peramivir Brand Name(s) Rapivab Drug Class Neuraminidase inhibitor Restriction level Restricted to Infectious Diseases and Pulmonology/Critical Care Accepted Indications Management of Influenza A or B in patients with the following: Strict NPO (no NGT/OGT/G-tube/J-tube) Concerns about poor gut absorption (i.e. ileus) Unacceptable Uses Management of Influenza A or B in a patient who can tolerate oral therapy whether by mouth, G-tube, or J-tube Side Effects Insomnia (3%), Diarrhea (8%), Hyperglycemia (serum glucose >160 mg/dL, 5%), Neutropenia (8%), Increased serum ALT/AST (3%), Increased CPK, 4% Pregnancy Class C Dosing Adult: 600 mg IV once* Renal dosing: - CrCl 30-50 mL/min: 200 mg dose IV once* - CrCl 15-29 mL/min: 100 mg dose IV once* - CrCl <10 mL/min or ESRD on HD: 100 mg dose once after HD‡ Pediatrics: - Children: 2-12 years: 12 mg/kg as a single dose; maximum 600mg - Adolescents ≥13 years: Refer to adult dosing Renal dosing: Infants, Children, and Adolescents <18 years: Note: Dosage adjustment based on renal function estimated using the Schwartz equation. CrCl ≥50 mL/minute/1.73 m2: No adjustment necessary CrCl 31 to 49 mL/minute/1.73 m2: 29 to 30 days of life: 1.5 mg/kg/dose once daily for 5 to 10 days 31 to 90 days of life: 2 mg/kg/dose once daily for 5 to 10 days 91 to 180 days of life: 2.5 mg/kg/dose once daily for 5 to 10 days 181 days of life through 5 years: 3 mg/kg/dose once daily for 5 to 10 days; maximum dose: 150 mg/dose 6 to 17 years: 2.5 mg/kg/dose once daily for 5 to 10 -
Dectova, INN-Zanamivir
28 February 2019 EMA/CHMP/851480/2018 Committee for Medicinal Products for Human Use (CHMP) Assessment report DECTOVA International non-proprietary name: zanamivir Procedure No. EMEA/H/C/004102/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 7 1.1. Submission of the dossier ...................................................................................... 7 1.2. Steps taken for the assessment of the product ......................................................... 9 2. Scientific discussion .............................................................................. 12 2.1. Problem statement ............................................................................................. 12 2.1.1. Disease or condition ......................................................................................... 12 2.1.2. Epidemiology .................................................................................................. 12 2.1.3. Biologic features ............................................................................................. -
Antioxidant Potential of Antiviral Drug Umifenovir
molecules Article Antioxidant Potential of Antiviral Drug Umifenovir Elena V. Proskurnina 1,*, Dmitry Yu. Izmailov 2, Madina M. Sozarukova 3, Tatiana A. Zhuravleva 2, Irina A. Leneva 4 and Artem A. Poromov 4 1 Research Centre for Medical Genetics, ul. Moskvorechye 1, Moscow 115522, Russia 2 Faculty of Fundamental Medicine, Lomonosov Moscow State University, Lomonosovsky prospekt 27-1, Moscow 119234, Russia; [email protected] (D.Y.I.); [email protected] (T.A.Z.) 3 Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prospekt 31, Moscow 119991, Russia; [email protected] 4 Department of Experimental Virology, Mechnikov Research Institute for Vaccines and Sera, Malyi Kazennyi pereulok 5a, Moscow 105064, Russia; [email protected] (I.A.L.); [email protected] (A.A.P.) * Correspondence: [email protected]; Tel.: +7-(499)-612-8193 Received: 21 February 2020; Accepted: 28 March 2020; Published: 30 March 2020 Abstract: Free radical reactions play an important role in biological functions of living systems. The balance between oxidants and antioxidants is necessary for the normal homeostasis of cells and organisms. Experimental works demonstrate the role of oxidative stress that is caused by influenza virus as well as the toxic effects of some antiviral drugs. Therefore, antiviral drugs should be characterized by its pro- and antioxidant activity, because it can affect its therapeutic efficiency. The aim of the study was to quantify the antioxidant capacity and propose the mechanism of the antioxidant effect of the antiviral drug Umifenovir (Arbidol®). The kinetic chemiluminescence with the 2,2’-azobis (2-amidinopropane) dihydrochloride + luminol system was used to quantify the antioxidant capacity of Umifenovir relative to the standard compound Trolox. -
Debate Regarding Oseltamivir Use for Seasonal and Pandemic Influenza
Debate Regarding Oseltamivir Use for Seasonal and Pandemic Influenza Aeron Hurt WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Australia www.influenzacentre.org NA inhibitor antiviral drugs Top view of NA NA inhibitor NA enzyme active site The NA inhibitors Oseltamivir Zanamivir - Oral, IV(?) - Inhaled, IV(?) - Global - Global Peramivir Laninamivir -IV - Inhaled (single) - Japan, - Japan S.Korea, China, US The NA inhibitors Oseltamivir Zanamivir - Oral, IV(?) - Inhaled, IV(?) - Global - Global • Came on the market in many countries in 2000 after clinical studies had been conducted among influenza virus–infected patients with uncomplicated illness. • Oseltamivir is market leader ……due to ease of oral administration • Use for seasonal influenza mainly in Japan and US • With human infections of highly pathogenic influenza A(H5N1) virus from 2003 with a high case‐fatality risks of >50%, governments began to consider antiviral drug administration as a key component of their pandemic response • suitable vaccines would not be available Stockpiling for a pandemic • Oseltamivir was simpler (oral) administration than zanamivir (inhalation) and because of systemic effect of oseltamivir was expected to be appropriate for treatment of highly pathogenic viruses • Oseltamivir was suddenly in high demand! • Roche had warned that need to stockpile to guarantee availability • Since 2005, governments of middle‐income and high‐income countries around the world have spent billions of dollars (estimated) stockpiling oseltamivir (US Gov. Accounting Office). 2009 A(H1N1)pdm09 pandemic • The first pandemic of the 21st century occurred unexpectedly in 2009 after the global spread of a novel virus—influenza A(H1N1)pdm09—of swine (rather than avian) origin. -
Antiviral Agents Active Against Influenza a Viruses
REVIEWS Antiviral agents active against influenza A viruses Erik De Clercq Abstract | The recent outbreaks of avian influenza A (H5N1) virus, its expanding geographic distribution and its ability to transfer to humans and cause severe infection have raised serious concerns about the measures available to control an avian or human pandemic of influenza A. In anticipation of such a pandemic, several preventive and therapeutic strategies have been proposed, including the stockpiling of antiviral drugs, in particular the neuraminidase inhibitors oseltamivir (Tamiflu; Roche) and zanamivir (Relenza; GlaxoSmithKline). This article reviews agents that have been shown to have activity against influenza A viruses and discusses their therapeutic potential, and also describes emerging strategies for targeting these viruses. HXNY In the face of the persistent threat of human influenza A into the interior of the virus particles (virions) within In the naming system for (H3N2, H1N1) and B infections, the outbreaks of avian endosomes, a process that is needed for the uncoating virus strains, H refers to influenza (H5N1) in Southeast Asia, and the potential of to occur. The H+ ions are imported through the M2 haemagglutinin and N a new human or avian influenza A variant to unleash a (matrix 2) channels10; the transmembrane domain of to neuraminidase. pandemic, there is much concern about the shortage in the M2 protein, with the amino-acid residues facing both the number and supply of effective anti-influenza- the ion-conducting pore, is shown in FIG. 3a (REF. 11). virus agents1–4. There are, in principle, two mechanisms Amantadine has been postulated to block the interior by which pandemic influenza could originate: first, by channel within the tetrameric M2 helix bundle12. -
Terminal Sialic Acid Linkages Determine Different Cell Infectivities of Human Parainfluenza Virus Type 1 and Type 3
Virology 464-465 (2014) 424–431 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Terminal sialic acid linkages determine different cell infectivities of human parainfluenza virus type 1 and type 3 Keijo Fukushima a,1, Tadanobu Takahashi a,1, Seigo Ito a, Masahiro Takaguchi a, Maiko Takano a, Yuuki Kurebayashi a, Kenta Oishi a, Akira Minami a, Tatsuya Kato b,f, Enoch Y Park b,e,f, Hidekazu Nishimura c, Toru Takimoto d, Takashi Suzuki a,n a Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 4228526, Japan b Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 4228529, Japan c Virus Research Center, Sendai Medical Center, 2-8-8 Miyagino, Miyagino-ku, Sendai, Miyagi 9838520, Japan d Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA e Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 4228529, Japan f Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 4228529, Japan article info abstract Article history: Human parainfluenza virus type 1 (hPIV1) and type 3 (hPIV3) initiate infection by sialic acid binding. Received 22 May 2014 Here, we investigated sialic acid linkage specificities for binding and infection of hPIV1 and hPIV3 by Returned to author for revisions using sialic acid linkage-modified cells treated with sialidases or sialyltransferases. The hPIV1 is bound to 8 July 2014 only α2,3-linked sialic acid residues, whereas hPIV3 is bound to α2,6-linked sialic acid residues in Accepted 11 July 2014 addition to α2,3-linked sialic acid residues in human red blood cells. -
Assessing Mimicry of the Transition State
View Article Online / Journal Homepage / Table of Contents for this issue PERSPECTIVE www.rsc.org/obc | Organic & Biomolecular Chemistry Glycosidase inhibition: assessing mimicry of the transition state Tracey M. Gloster*a,b and Gideon J. Davies*a Received 5th August 2009, Accepted 30th September 2009 First published as an Advance Article on the web 5th November 2009 DOI: 10.1039/b915870g Glycoside hydrolases, the enzymes responsible for hydrolysis of the glycosidic bond in di-, oligo- and polysaccharides, and glycoconjugates, are ubiquitous in Nature and fundamental to existence. The extreme stability of the glycosidic bond has meant these enzymes have evolved into highly proficient catalysts, with an estimated 1017 fold rate enhancement over the uncatalysed reaction. Such rate enhancements mean that enzymes bind the substrate at the transition state with extraordinary affinity; the dissociation constant for the transition state is predicted to be 10-22 M. Inhibition of glycoside hydrolases has widespread application in the treatment of viral infections, such as influenza and HIV, lysosomal storage disorders, cancer and diabetes. If inhibitors are designed to mimic the transition state, it should be possible to harness some of the transition state affinity, resulting in highly potent and specific drugs. Here we examine a number of glycosidase inhibitors which have been developed over the past half century, either by Nature or synthetically by man. A number of criteria have been proposed to ascertain which of these inhibitors are true transition state mimics, but these features have only be critically investigated in a very few cases. Introduction molecules, lipids or proteins), constitute between 1 and 3% of the genome of most organisms.1 The task facing these enzymes Glycosidases, the enzymes responsible for the breakdown of di-, with respect to maintaining efficient and highly specific catalysis oligo- and polysaccharides, and glyconjugates, are ubiquitous is no mean feat; it has been calculated that there are 1.05 ¥ 1012 through all kingdoms of life. -
Oxidative Stress, a New Hallmark in the Pathophysiology of Lafora Progressive Myoclonus Epilepsy Carlos Romá-Mateo *, Carmen Ag
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC 1 Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy Carlos Romá-Mateo1,2*, Carmen Aguado3,4*, José Luis García-Giménez1,2,3*, Erwin 3,4 3,5 1,2,3# Knecht , Pascual Sanz , Federico V. Pallardó 1 FIHCUV-INCLIVA. Valencia. Spain 2 Dept. Physiology. School of Medicine and Dentistry. University of Valencia. Valencia. Spain 3 CIBERER. Centro de Investigación Biomédica en Red de Enfermedades Raras. Valencia. Spain. 4 Centro de Investigación Príncipe Felipe. Valencia. Spain. 5 IBV-CSIC. Instituto de Biomedicina de Valencia. Consejo Superior de Investigaciones Científicas. Valencia. Spain. * These authors contributed equally to this work # Corresponding author: Dr. Federico V. Pallardó Dept. Physiology, School of Medicine and Dentistry, University of Valencia. E46010-Valencia, Spain. Fax. +34963864642 [email protected] 2 ABSTRACT Lafora Disease (LD, OMIM 254780, ORPHA501) is a devastating neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in most cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin, a phosphatase with dual specificity that is involved in the dephosphorylation of glycogen, and malin, an E3-ubiquitin ligase involved in the polyubiquitination of proteins related with glycogen metabolism. Thus, it has been reported that laforin and malin form a functional complex that acts as a key regulator of glycogen metabolism and that also plays a crucial role in protein homeostasis (proteostasis). In relationship with this last function, it has been shown that cells are more sensitive to ER-stress and show defects in proteasome and autophagy activities in the absence of a functional laforin-malin complex. -
The Metabolism of Tay-Sachs Ganglioside: Catabolic Studies with Lysosomal Enzymes from Normal and Tay-Sachs Brain Tissue
The Metabolism of Tay-Sachs Ganglioside: Catabolic Studies with Lysosomal Enzymes from Normal and Tay-Sachs Brain Tissue JOHN F. TALLMAN, WILLIAM G. JOHNSON, and ROSCOE 0. BRADY From the Developmental and Metabolic Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20014, and the Department of Biochemistry, Georgetown University School of Medicine, Washington, D. C. 20007 A B S T R A C T The catabolism of Tay-Sachs ganglioside, date fronm the 19th century and over 599 cases have been N-acetylgalactosaminyl- (N-acetylneuraminosyl) -galac- reported (1). Onset of the disease is in the first 6 months tosylglucosylceramide, has been studied in lysosomal of life and is characterized by apathy, hyperacusis, motor preparations from normal human brain and brain ob- weakness, and appearance of a macular cherry-red spot tained at biopsy from Tay-Sachs patients. Utilizing Tay- in the retina. Seizures and progressive mental deteriora- Sachs ganglioside labeled with '4C in the N-acetylgalac- tion follow with blindness, deafness, and spasticity, lead- tosaminyl portion or 3H in the N-acetylneuraminosyl ing to a state of decerebrate rigidity. These infants usu- portion, the catabolism of Tay-Sachs ganglioside may be ally die by 3 yr of age (2). initiated by either the removal of the molecule of A change in the chemical composition of the brain of N-acetylgalactosamine or N-acetylneuraminic acid. The such patients was first detected by Klenk who showed activity of the N-acetylgalactosamine-cleaving enzyme that there was an increase in the ganglioside content (hexosaminidase) is drastically diminished in such compared with normal human brain tissue (3). -
Immunomodulators Under Evaluation for the Treatment of COVID-19
Immunomodulators Under Evaluation for the Treatment of COVID-19 Last Updated: August 4, 2021 Summary Recommendations See Therapeutic Management of Hospitalized Adults with COVID-19 for the COVID-19 Treatment Guidelines Panel’s (the Panel) recommendations on the use of the following immunomodulators for patients according to their disease severity: • Baricitinib with dexamethasone • Dexamethasone • Tocilizumab with dexamethasone Additional Recommendations There is insufficient evidence for the Panel to recommend either for or against the use of the following immunomodulators for the treatment of COVID-19: • Colchicine for nonhospitalized patients • Fluvoxamine • Granulocyte-macrophage colony-stimulating factor inhibitors for hospitalized patients • Inhaled budesonide • Interleukin (IL)-1 inhibitors (e.g., anakinra) • Interferon beta for the treatment of early (i.e., <7 days from symptom onset) mild to moderate COVID-19 • Sarilumab for patients who are within 24 hours of admission to the intensive care unit (ICU) and who require invasive mechanical ventilation, noninvasive ventilation, or high-flow oxygen (>0.4 FiO2/30 L/min of oxygen flow) The Panel recommends against the use of the following immunomodulators for the treatment of COVID-19, except in a clinical trial: • Baricitinib with tocilizumab (AIII) • Interferons (alfa or beta) for the treatment of severely or critically ill patients with COVID-19 (AIII) • Kinase inhibitors: • Bruton’s tyrosine kinase inhibitors (e.g., acalabrutinib, ibrutinib, zanubrutinib) (AIII) • Janus kinase inhibitors other than baricitinib (e.g., ruxolitinib, tofacitinib) (AIII) • Non-SARS-CoV-2-specific intravenous immunoglobulin (IVIG) (AIII). This recommendation should not preclude the use of IVIG when it is otherwise indicated for the treatment of complications that arise during the course of COVID-19. -
Sialic Acids and Their Influence on Human NK Cell Function
cells Review Sialic Acids and Their Influence on Human NK Cell Function Philip Rosenstock * and Thomas Kaufmann Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany; [email protected] * Correspondence: [email protected] Abstract: Sialic acids are sugars with a nine-carbon backbone, present on the surface of all cells in humans, including immune cells and their target cells, with various functions. Natural Killer (NK) cells are cells of the innate immune system, capable of killing virus-infected and tumor cells. Sialic acids can influence the interaction of NK cells with potential targets in several ways. Different NK cell receptors can bind sialic acids, leading to NK cell inhibition or activation. Moreover, NK cells have sialic acids on their surface, which can regulate receptor abundance and activity. This review is focused on how sialic acids on NK cells and their target cells are involved in NK cell function. Keywords: sialic acids; sialylation; NK cells; Siglecs; NCAM; CD56; sialyltransferases; NKp44; Nkp46; NKG2D 1. Introduction 1.1. Sialic Acids N-Acetylneuraminic acid (Neu5Ac) is the most common sialic acid in the human organism and also the precursor for all other sialic acid derivatives. The biosynthesis of Neu5Ac begins in the cytosol with uridine diphosphate-N-acetylglucosamine (UDP- Citation: Rosenstock, P.; Kaufmann, GlcNAc) as its starting component [1]. It is important to understand that sialic acid T. Sialic Acids and Their Influence on formation is strongly linked to glycolysis, since it results in the production of fructose-6- Human NK Cell Function. Cells 2021, phosphate (F6P) and phosphoenolpyruvate (PEP). -
Influenza: Diagnosis and Treatment
Influenza: Diagnosis and Treatment David Y. Gaitonde, MD; Cpt. Faith C. Moore, USA, MC; and Maj. Mackenzie K. Morgan, USA, MC Dwight D. Eisenhower Army Medical Center, Fort Gordon, Georgia Influenza is an acute viral respiratory infection that causes significant morbidity and mortality worldwide. Three types of influ- enza cause disease in humans. Influenza A is the type most responsible for causing pandemics because of its high susceptibility to antigenic variation. Influenza is highly contagious, and the hallmark of infection is abrupt onset of fever, cough, chills or sweats, myalgias, and malaise. For most patients in the outpatient setting, the diagnosis is made clinically, and laboratory con- firmation is not necessary. Laboratory testing may be useful in hospitalized patients with suspected influenza and in patients for whom a confirmed diagnosis will change treatment decisions. Rapid molecular assays are the preferred diagnostic tests because they can be done at the point of care, are highly accurate, and have fast results. Treatment with one of four approved anti-influenza drugs may be considered if the patient presents within 48 hours of symptom onset. The benefit of treatment is greatest when antiviral therapy is started within 24 hours of symptom onset. These drugs decrease the duration of illness by about 24 hours in otherwise healthy patients and may decrease the risk of serious complications. No anti-influenza drug has been proven superior. Annual influenza vaccination is recommended for all people six months and older who do not have contraindications. (Am Fam Physician. 2019; 100:online. Copyright © 2019 American Academy of Family Physicians.) Published online November 11, 2019 BEST PRACTICES IN INFECTIOUS DISEASE Influenza is an acute respiratory infection caused by a negative-strand RNA virus of the Orthomyxoviridae fam- Recommendations from the Choosing ily.