Genetic Diversity and Conservation Biology of Moringa Peregrina Populations in Sinai, Egypt

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Diversity and Conservation Biology of Moringa Peregrina Populations in Sinai, Egypt Genetic diversity and conservation biology of Moringa peregrina populations in Sinai, Egypt Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Mohamed A. EL Dadamouny A. Sheteiwy geboren am 03.05.1981 in El Manzala, Ägypten Greifswald, März 2018 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter : Prof. Dr. Christoph Oberprieler Universität Regensburg, Germany 2. Gutachter: Prof. Dr. Martin Schnittler Universität Greifswald, Germany Tag der Promotion: 21.08.2018. Dedication I dedicate my dissertation to my family. To my father, my mother, and to my wife Mrs. Riham Sheteiwy My daughters Sama, Hana, and Jana, and to the spirit of my grandmother Preface Since my undergraduate stage (1998–2002) at Faculty of Science in Ismailia – Egypt, I used to visit Sinai Peninsula for field work. I was attracted to the highly diverse flora of Sinai, which includes around 2000 plant species. Most of these species are medicinal plants that used in the folk medicine and considered as one of the income resources to the Bedouins in this interesting peninsula. One of these medicinal plants was Moringa peregrina, which was standing with Acacia species and Crataegus x Sinaica for several years facing the impacts of high aridity of the area and over collection. These threats led to a gap in the population dynamics. One of the common observations at that time was the poor recruitment due to the low establishment. I did my graduation project (2001–2002) on that point trying to increase the establishment rate with a decreasing of the mortality rate for the germinated seedlings. From 2002 to 2004, I worked within a project aimed to conserve the remaining populations. I got a great chance to understand more about the tree biology (e.g. phenological stages starting from budding and flowering time, fruiting, and etc.). From 2004–2009, I did also my M.Sc. project on the population dynamics of this valuable species. For that reason, its declining populations are located under threats of climate change and anthropogenic impacts. The response of the tree towards such external threats was unclear with a continuous missing in the recruitment and then a continuous decline in its population size. Establishing the conservation programs could help in mitigating the adverse impacts of these threats. But, the tree itself should have the capability to adapt and to overcome towards these external problems if the current populations are genetically diverse. Therefore, we aimed in my Ph.D. project to find a solution for the gap on its reproductive biology and genetic diversity within and among its populations that needed for conservation programs. As an outputs for all works done over the past years under the supervision of Prof. Martin Schnittler, four scientific papers (two accepted papers and two manuscripts) and one review are achieved and included in this cumulative thesis. List of publications included in this cumulative dissertation Peer-Reviewed Publications Dadamouny MA and Schnittler M (2016) Trends of climate with a rapid change in Sinai, Egypt. Journal of water and climate change 7(2):393–414. IWA doi: 10.2166/wcc.2015.215 Dadamouny MA, Unterseher M, König P, and Schnittler M (2016) Population performance of Moringa peregrina (Forssk.) Fiori (Moringaceae) at Sinai Peninsula, Egypt in the last decades: consequences for its conservation. Journal for Nature Conservation 34:65–74 Manuscripts Dadamouny MA and Schnittler M. Demographic and size structure status of the threatened populations of Moringa peregrina trees at Sinai Peninsula, Egypt. Mohamed Dadamouny, Anja Klahr, Franziska Eichhorn, and Martin Schnittler. Relictic populations of the endangered tree Moringa peregrina (Moringaceae) in Sinai, Egypt are still genetically diverse. 4 Genetic diversity and conservation biology of Moringa peregrina populations in Sinai, Egypt Contents Contents Page Title page - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 Defense committee - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Dedication - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 Preface - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 Table of Contents - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 Chapter 1: Summary - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 1.1. Englisch Summary - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 1.2. German Summary - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 Chapter 2: Introduction - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12 Background - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12 1. Species identification - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12 1.1. Taxonomic position of M. peregrina - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12 1.2. Distribution of M. peregrina - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12 1.3. Morphology of M. peregrina - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13 1.4. Anatomy of M. peregrina - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 17 1.5. Phytochemical analyses of M. peregrina - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 18 1.6. Seed viability and germination of M. peregrina - - - - - - - - - - - - - - - - - - - - - - - - 18 1.7. Uses of M. peregrina - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 19 2. Problem identification and looking for solutions - - - - - - - - - - - - - - - - - - - - - - - - - - - - 19 3. Goals of the thesis - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 21 References - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 22 Chapter 3: Publications - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 24 3.1. Trends of climate with a rapid change in Sinai, Egypt - - - - - - - - - - - - - - - - - - - - - - - 25 Abstract - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 25 Introduction - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 25 Study area - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 27 Material and methods - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 29 Results - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 30 Discussion - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 36 Conclusion - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 41 References - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 42 Appendix I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 47 Appendix II - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 50 3.2. Population performance of Moringa peregrina (Forssk.) Fiori (Moringaceae) at Sinai Peninsula, Egypt - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - 52 Abstract - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 52 Introduction - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 52 Material and methods - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 54 Study area - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 54 Results - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 56 Discussion - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 63 5 Contents Genetic diversity and conservation biology of Moringa peregrina Conclusion - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 65 References - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 66 Appendix III - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 69 Appendix IV - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 71 3.3. Demographic and size structure status of the threatened populations of Moringa peregrina trees at Sinai Peninsula, Egypt - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Recommended publications
  • Mapping of Geomorphological Features and Surface Sediments In
    Journal of Geography, Environment and Earth Science International 15(1): 1-12, 2018; Article no.JGEESI.41461 ISSN: 2454-7352 Mapping of Geomorphological Features and Surface Sediments in Nekhel Area, Sinai Peninsula, Egypt Using Integration between Full-polarimetric SAR (RADARSAT-2) and Optical Remote Sensing Data Islam Abou El-Magd1*, Hassan Mohy2 and Ali Amasha3 1Department of Environmental Studies, National Authority for Remote Sensing and Space Sciences, Cairo, Egypt. 2Department of Geology, Cairo University, Egypt. 3Arab Academy for Science, Technology and Maritime Transport, Egypt. Authors’ contributions This work was carried out in collaboration between all authors. Author IAEM designed the research study, shared in the analysis of the data, writing the manuscript and managed the submission to the journal. Authors HM and AA shared in the analysis of the data, managed the literature searches and shared writing the manuscript. All authors read and approved the final manuscript. Article Information DOI: 10.9734/JGEESI/2018/41461 Editor(s): (1) Wen-Cheng Liu, Department of Civil and Disaster Prevention Engineering, National United University, Taiwan and Taiwan Typhoon and Flood Research Institute, National United University, Taipei, Taiwan. Reviewers: (1) Işın Onur, Akdeniz University, Turkey. (2) M. I. M Kaleel, South Eastern University of Sri Lanka, Sri Lanka. Complete Peer review History: http://www.sciencedomain.org/review-history/24532 Received 21st February 2018 st Original Research Article Accepted 1 May 2018 Published 8th May 2018 ABSTRACT Key element for developing countries in remote sensing research is the availability of data particularly the newly developed sensors such as SAR data. This research aims at exploring the potentiality of utilising RADARSAT-2 (which is obtained freely from Canadian Space Agency) in integration with optical data from Landsat 8 and ASTER sensors for lithological mapping of the Nekhel area, Sinai Peninsula, Egypt.
    [Show full text]
  • The Effects of Moringa Stenopetala on Blood Parameters and Histopathology of Liver and Kidney in Mice
    Original article The effects of Moringa stenopetala on blood parameters and histopathology of liver and kidney in mice Desta Ghebreselassie1, Yalemtsehay Mekonnen2, Girmai Gebru3, Wondwossen Ergete4, Kahsay Huruy5 Abstract Background: Moringa stenopetala and related species are commonly used in folk medicine for various human diseases such as antimalarial, antihypertensive, antidiabetic and as antispasmodic. Objective: The aim of the study is to evaluate the effects of aqueous extract of M. stenopetala on blood parameters, and histopathology of liver and kidney in experimental mice. Methods: Fresh leaves of M. stenopetala were collected from Arbaminch area, Southwest Ethiopia, in November 2005. The leaves were dried and extracted with water. Three month-old Swiss albino male mice, which were kept under uniform laboratory conditions, were randomly divided into four groups (one group of controls and three experimental). (The control group was orally given 0.5 ml of distilled water, and groups II, III and IV were given the aqueous leaf extract of M. stenopetala using intragastric tube to achieve the required doses of 600, 750 and 900 mg/kg body weight, respectively once a day at 24 hours intervals for six weeks and then sacrificed). Blood sample was collected from each mouse and examined for hematological and biochemical parameters. Liver and kidney were removed, stained and examined for histopathological profiles. The effects of treatment with aqueous extract of M. stenopetala on hematological, biochemical and histopathology features were compared with control group following standard procedures. Results: Mice treated with 900 mg/kg of the extract per kg of body weight showed a significant increase in body weight compared to the controls (P=0.014).
    [Show full text]
  • 939-956 Issn 2077-4613
    Middle East Journal of Applied Volume : 08 | Issue :03 |July-Sept.| 2018 Sciences Pages: 939-956 ISSN 2077-4613 Integrated Geochemical Indicators and Geostatistics to Asses Processes Governing Groundwater Quality in Principal Aquifers, South Sinai, Egypt Ehab Zaghlool and Mustafa Eissa Hydrogeochemistry Dept., Division of Water Resources and Arid Land, Desert Research Center, 1 Mathaf Al Mataria St., Mataria, P.O.B. 11753, Cairo, Egypt Received: 26 June 2018 / Accepted: 29 August 2018 / Publication date: 15 Sept. 2018 ABSTRACT The groundwater system in the principal aquifers situated in the Southern Sinai was regionally investigated, using hydrochemical tools and geostatistical technique to evaluate the recharge sources and salinization origins which consider the main constraint for sustainable development in such an arid region. The environmental stable isotopes (δ18O and δ2H), groundwater salinity, conservative ions (Cl and Br), ion ratios and the sea water mixing index (SWMI) were utilized to identify the salinization mechanism and to delineate the recharge for different aquifers (Quaternary, Miocene, U. Cretaceous, L. Cretaceous and Precambrian) situated in the upstream watersheds and along the coastal regions. The regional study depends on four hundred and sixty-eight groundwater samples tapping the main aquifers. The geochemical data have been analyzed statistically to estimate the seawater mixing index (SWMI) in order to delineate the deteriorated aquifer zones. The environmental stable isotopes confirm the upstream of Gharandal, Watir, Dahab basins and Saint Catharine areas receives considerable amount of the annual precipitation that could be managed for sustainable development. The hydrochemical ion ratios and the SWMI values give good insights for aquifer salinization, where; mixing with seawater intrusion in the downstream coastal aquifers, leaching processes of minerals in the aquifer matrix, evaporation processes are considered the main sources for aquifer deterioration.
    [Show full text]
  • Estimation of Earthquakes Factors Using Geotech-Nical Technique At
    International Journal of Scientific & Engineering Research Volume 10, Issue 6, June-2019 233 ISSN 2229-5518 Estimation of Earthquakes Factors using geotechnical technique at Faris city, Aswan, Egypt Hesham A. H. Ismaiel Abstract— The present investigation interested with the assessment of earthquakes factors of solar power station project constructing at Faris city, Aswan, Egypt using a geotechnical technique. The geotechnical tests were including grain size analysis, direct shear box (frictional angle and cohesion), and standard penetration test (SPT. To fulfillment this objective, nine mechanical wash boreholes were drilled at ten meter depth. Ninety disturbed sam- ples were collected. The results provided that the studied soils were classified as well graded sands (SW) and well graded gravels (GW) according to the unified soil classification system (USCS). The earthquakes factors like S, TB, TC, and TD were 1.50, 0.10, 0.25, and 1.20 respectively. According to Egyp- tian code for vibration and dynamic load foundations, the studied project area was classified as low potential seismic (zone 2). According to Egyptian code for shallow foundation, the allowable bearing capacity of the studied soils was ranging from 4 to 6 kg/cm2 at shallow foundation width must be not less than one meter. For lightly loaded building, maintenance structures and offices, conventional shallow footings with slabs on-grade were recom- mended. For heavy equipment pads, structural mat slabs were recommended. For heavy loads associated with the substation, a large
    [Show full text]
  • Mints – MISR NATIONAL TRANSPORT STUDY
    No. TRANSPORT PLANNING AUTHORITY MINISTRY OF TRANSPORT THE ARAB REPUBLIC OF EGYPT MiNTS – MISR NATIONAL TRANSPORT STUDY THE COMPREHENSIVE STUDY ON THE MASTER PLAN FOR NATIONWIDE TRANSPORT SYSTEM IN THE ARAB REPUBLIC OF EGYPT FINAL REPORT TECHNICAL REPORT 11 TRANSPORT SURVEY FINDINGS March 2012 JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS CO., LTD. ALMEC CORPORATION EID KATAHIRA & ENGINEERS INTERNATIONAL JR - 12 039 No. TRANSPORT PLANNING AUTHORITY MINISTRY OF TRANSPORT THE ARAB REPUBLIC OF EGYPT MiNTS – MISR NATIONAL TRANSPORT STUDY THE COMPREHENSIVE STUDY ON THE MASTER PLAN FOR NATIONWIDE TRANSPORT SYSTEM IN THE ARAB REPUBLIC OF EGYPT FINAL REPORT TECHNICAL REPORT 11 TRANSPORT SURVEY FINDINGS March 2012 JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS CO., LTD. ALMEC CORPORATION EID KATAHIRA & ENGINEERS INTERNATIONAL JR - 12 039 USD1.00 = EGP5.96 USD1.00 = JPY77.91 (Exchange rate of January 2012) MiNTS: Misr National Transport Study Technical Report 11 TABLE OF CONTENTS Item Page CHAPTER 1: INTRODUCTION..........................................................................................................................1-1 1.1 BACKGROUND...................................................................................................................................1-1 1.2 THE MINTS FRAMEWORK ................................................................................................................1-1 1.2.1 Study Scope and Objectives .........................................................................................................1-1
    [Show full text]
  • Moringa Peregrina a Natural Medicine for Increasing Immunity Defense Against the COVID-19
    Arom & at al ic in P l ic a n d t e s M ISSN: 2167-0412 Medicinal & Aromatic Plants Review Article Moringa peregrina a Natural Medicine for Increasing Immunity Defense against the COVID-19 Abdelraouf A Moustafa, Samira R. Mansour Department of Botany, Faculty of Science, Suez Canal University, Ismailia, Egypt ABSTRACT Moringa peregrina belongs to family Moringaceae that have only one genus called Moringa. This genus has only thirteen species from tropical and subtropical environments. Moringa oleifera and M. peregrina are the most dominant species between them. This review aimed to conclude and investigate the chemical composition, medicinal uses in folk medicine, traditional knowledge usage and how could these ingredients raise up the human immunity for human against COVID-19. The question addressed here, if the known requirements for avoiding infection and curing from corona disease became very well as a medicinal protocols for defense and curing form such disease (e.g. group of known vitamins, analgesic and protective materials), so could we use the Moringa peregrina as a natural drug as a medical treatment for corona sick people and for protection from catching the infection? Based on our previous studies and collected literatures we found that Moringa leaves and seeds have sufficient amounts of Vitamin C, Vitamin A, Calcium and Potassium. Meantime, historically and recently M. peregrina has wide range of traditional, nutritional, industrial, and medicinal values. It is used in folk medicine for many human health care purposes such as fever, muscle pain, and asthma and these symptoms are mainly symptoms for sick people of COVID-19.
    [Show full text]
  • The Importance of Moringa
    The Importance of Moringa “Ecosystem-based Adaptation to enhance Pastoralist Resilience by Conserving Buska Massif Mountain Forest” Project Period: April 2014 – December 31, 2014 “Moringa Production Builds Resilience and Reduces Agricultural Disaster Risk in South Omo Zone” Project Period: June 2014 – December 31, 2015 “EASIER: Enhancing the Ability to Scale Initiatives that Enable Resilience” Project Period: January – December 31, 2016 South Omo Zone Malnutrition: high Food Security: 85% of Dasenech are PSNP recipients Maternal/child mortality: high Average rainfall: < 400 mm per annum Environment: Arid, sandy, shrinking grazing grounds Conflict: Escalating: between tribes and between tribes & GoE Literacy: Adult literacy in Dasenech <1% GoE infrastructure: Weak with poor linkage to communities Life in South Omo Requires a Fine Balance The land is harsh and arid Water is scarce The children are beautiful The young people posture . Men have little to do And, the women work Global Team for Local Initiatives (GTLI) mission is to build resilience in South Omo Zone Woreda Population Health Environment Livelihood Hamer 39,495 25,229 2,772 Dasenech 10,918 37,257 21,930 501 BenaTsemay 10,579 12,456 - - Nyangatom 13,159 - - Total 21,497 102,367 47,159 3,273 Moringa: the Tree of Life Continuous source of: • Food – Humans – Animals • Nutrition • Medicine • Water Purification • Economic Opportunities Drought-resistant Grows fast • Soil Conservation Produces for 60-100 years and • Fertilizer available for continuous harvest • Biogas Water stored
    [Show full text]
  • Monthly Means of Daily Solar Irradiation Over Egypt Estimated from Satellite Database and Various Empirical Formulae Mossad El-Metwally, Lucien Wald
    Monthly means of daily solar irradiation over Egypt estimated from satellite database and various empirical formulae Mossad El-Metwally, Lucien Wald To cite this version: Mossad El-Metwally, Lucien Wald. Monthly means of daily solar irradiation over Egypt estimated from satellite database and various empirical formulae. International Journal of Remote Sensing, Taylor & Francis, 2013, 34, pp.8182-8198. 10.1080/01431161.2013.834393. hal-00865173 HAL Id: hal-00865173 https://hal-mines-paristech.archives-ouvertes.fr/hal-00865173 Submitted on 24 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Monthly means of daily solar irradiation over Egypt estimated from satellite database and various empirical formulae Mossad EL-METWALLY1 and Lucien WALD2 1 Department of Physics, Faculty of Science, Port Said University, Port Said, Egypt. Corresponding author: [email protected] 2 MINES ParisTech, Centre Observations, Impacts, Energie, BP 207, 06904 Sophia Antipolis, France Short title: Comparing solar radiation from satellite database and empirical models over Egypt Abstract Monthly means of daily solar irradiation retrieved from the HelioClim-3 version 3 database (HC3v3), elaborated from Meteosat satellite images, were tested at 14 Egyptian stations along with the model of Yang, Koike and Ye (YKY) and 10 empirical models (EMs) for the period 2004 to 2009.
    [Show full text]
  • Moringa Frequently Asked Questions
    Moringa frequently asked questions M.E. Olsona Instituto de Biologı́a, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, México DF 04510, Mexico. Abstract The moringa tree Moringa oleifera is increasingly being studied for numerous properties of applied interest. In the course of work on these properties, many questions arise from both scientists and potential consumers. Here I address some of the most common such questions. I explain that moringa’s correct scientific name is Moringa oleifera Lam., and that Moringa pterygosperma is not a synonym but an illegitimate name. The wild range of Moringa oleifera is unknown but it might be native of lowland northwestern India. It is cultivated in all tropical countries, but it is probably best to avoid saying that it is “naturalized” because some uses of this word imply that the plant has become invasive. There are thirteen described species in the genus Moringa, but additional new species probably await description, especially in northeast Africa. Traditionally, leaves of Moringa oleifera, M. concanensis, and M. stenopetala are eaten, and the tubers of young M. peregrina are sometimes eaten roasted. All other species have local medicinal uses. Current commercial use so far emphasizes M. oleifera dried leaf meal in capsules, often touting protein content. Simple calculations show that capsules have negligible protein nutritional value. Such use in pill form rather than as a food leads to the frequent question of whether moringa has “side effects”. A review of studies shows that moringa has low levels of trypsin inhibitors, tannins, saponins, and lectins, meaning that there is no reason to expect that normal levels of consumption would lead to discomfort from these compounds.
    [Show full text]
  • País Região Cidade Nome De Hotel Morada Código Postal Algeria
    País Região Cidade Nome de Hotel Morada Código Postal Algeria Adrar Timimoun Gourara Hotel Timimoun, Algeria Algeria Algiers Aïn Benian Hotel Hammamet Ain Benian RN Nº 11 Grand Rocher Cap Caxine , 16061, Aïn Benian, Algeria Algeria Algiers Aïn Benian Hôtel Hammamet Alger Route nationale n°11, Grand Rocher, Ain Benian 16061, Algeria 16061 Algeria Algiers Alger Centre Safir Alger 2 Rue Assellah Hocine, Alger Centre 16000 16000 Algeria Algiers Alger Centre Samir Hotel 74 Rue Didouche Mourad, Alger Ctre, Algeria Algeria Algiers Alger Centre Albert Premier 5 Pasteur Ave, Alger Centre 16000 16000 Algeria Algiers Alger Centre Hotel Suisse 06 rue Lieutenant Salah Boulhart, Rue Mohamed TOUILEB, Alger 16000, Algeria 16000 Algeria Algiers Alger Centre Hotel Aurassi Hotel El-Aurassi, 1 Ave du Docteur Frantz Fanon, Alger Centre, Algeria Algeria Algiers Alger Centre ABC Hotel 18, Rue Abdelkader Remini Ex Dujonchay, Alger Centre 16000, Algeria 16000 Algeria Algiers Alger Centre Space Telemly Hotel 01 Alger, Avenue YAHIA FERRADI, Alger Ctre, Algeria Algeria Algiers Alger Centre Hôtel ST 04, Rue MIKIDECHE MOULOUD ( Ex semar pierre ), 4, Alger Ctre 16000, Algeria 16000 Algeria Algiers Alger Centre Dar El Ikram 24 Rue Nezzar Kbaili Aissa, Alger Centre 16000, Algeria 16000 Algeria Algiers Alger Centre Hotel Oran Center 44 Rue Larbi Ben M'hidi, Alger Ctre, Algeria Algeria Algiers Alger Centre Es-Safir Hotel Rue Asselah Hocine, Alger Ctre, Algeria Algeria Algiers Alger Centre Dar El Ikram 22 Rue Hocine BELADJEL, Algiers, Algeria Algeria Algiers Alger Centre
    [Show full text]
  • The Data on Periodical (Weekly) Market at the End of the 19Th Century in Egypt -The Cases of Qaliubiya, Sharqiya and Daqahliya Provinces
    The Data on Periodical (Weekly) Market at the End of the 19th Century in Egypt -The cases of Qaliubiya, Sharqiya and Daqahliya Provinces Hiroshi Kato Some geographers and historians are concerned with periodical market, which they define as the place of economic transactions peculiar to so called "peasant society. In Egypt, which is, as well known, a typical hydraulic society, periodical market, that is weekly market (α1- siiq al-usbu i) in the Islamic world, still has the important economic functions in rural areas at the present, as well as it had in the past. The author is now collecting the data on Egyptian weekly market from the 19th century to the present, based upon source materials on one hand, and field research on the other. The aim of this paper is to present some statistical and ge0- graphical data on Egyptian weekly market at the end of the 19th century to the researchers who are interested in periodical market in agrarian society, before the intensive study, which the author is planning in the future, on the economic functions of Egyptian weekly market and their transformation in the process of the modernization of Egyptian society. The source material from which the data are collected is A. Boinet, Geographie Econ0- mique et Administrative de I'Egypte, Basse-Egypte I, Le Caire, 1902. It is the results of the population census in 1897 and the agrarian census maybe took in 1898 and 1899, being annexed to the population census in the previous year. The data are arranged village by village, and contain the statistics on cultivated area, crops, planted trees, animals, industry, traffic by rail- road, and transportation by the Nile and canals, and the descriptive informations and remarks on school, canal, railroad, market, post office and so on.
    [Show full text]
  • Moringa Spp.) Received: 12 January 2018 Jed W
    www.nature.com/scientificreports OPEN The Diversity of Chemoprotective Glucosinolates in Moringaceae (Moringa spp.) Received: 12 January 2018 Jed W. Fahey 1,2,3,4, Mark E. Olson5,6, Katherine K. Stephenson1,3, Kristina L. Wade1,3, Accepted: 3 May 2018 Gwen M. Chodur 1,4,12, David Odee7, Wasif Nouman8, Michael Massiah9, Jesse Alt10, Published: xx xx xxxx Patricia A. Egner11 & Walter C. Hubbard2 Glucosinolates (GS) are metabolized to isothiocyanates that may enhance human healthspan by protecting against a variety of chronic diseases. Moringa oleifera, the drumstick tree, produces unique GS but little is known about GS variation within M. oleifera, and even less in the 12 other Moringa species, some of which are very rare. We assess leaf, seed, stem, and leaf gland exudate GS content of 12 of the 13 known Moringa species. We describe 2 previously unidentifed GS as major components of 6 species, reporting on the presence of simple alkyl GS in 4 species, which are dominant in M. longituba. We document potent chemoprotective potential in 11 of 12 species, and measure the cytoprotective activity of 6 purifed GS in several cell lines. Some of the unique GS rank with the most powerful known inducers of the phase 2 cytoprotective response. Although extracts of most species induced a robust phase 2 cytoprotective response in cultured cells, one was very low (M. longituba), and by far the highest was M. arborea, a very rare and poorly known species. Our results underscore the importance of Moringa as a chemoprotective resource and the need to survey and conserve its interspecifc diversity.
    [Show full text]