Smart Sunglasses and Goggles Based on thieno[3,4-b][1,4]dioxepine] (PProDOT-Me2), to fabricate and characterize the lens of prototype smart sunglasses. The PProDOT- Electrochromic Polymers Me2 EC film exhibits high transmittance contrast ratio (Δ%T) between blue color and transparent state, low operation potentials, high Chao Ma, Minoru Taya and Chunye Xu* conductivity and high thermal stability6. The lens of smart sunglasses and goggles are multilayer Center of Intelligent Materials and Systems, University of Washington, structured ECD, as schemed in Figure 1. The electrochromic working Box 352600, Seattle, WA 98115 layer, PProDOT-Me2 film, is deposited on Indium Tin oxide (ITO) coated glass. The counter layer of the device is vanadium oxide (V2O5) *Corresponding author:
[email protected] film, also deposited on ITO glass. The V2O5 film serves as an ion storage layer and works with the PProDOT-Me2 film as a pair. When ABSTRACT the EC film is reduced with an applied potential and changes color to - Today, people concern more and more about the sun’s harmful blue, the V2O5 film will absorb ClO4 simultaneously. When the EC film effects on the eyes and safety issues. Sunglasses and goggles can is oxidized with an opposite potential and changes to transparent state, + meet this need to protect the eyes from sun light damages and the V2O5 film will absorb Li . During switching, the V2O5 film maintains influences. This paper discusses the design, process and performance a light green color. There is also a transparent polymer gel electrolyte, - + of prototype smart sunglasses and goggles based on cathodic which is a good conductor for small ions such as ClO4 and Li and a electrochromic (EC) polymers, which show several merits compared to insulator for electrons, sandwiched between the working and counter traditional sunglasses materials as well as other smart window layers.