SUPERIOR and POSTERIOR MEDIASTINUM; ANTEROLATERAL ABDOMINAL WALL and INGUINAL CANAL (Grant's Dissector (16Th Ed.) Pp

Total Page:16

File Type:pdf, Size:1020Kb

SUPERIOR and POSTERIOR MEDIASTINUM; ANTEROLATERAL ABDOMINAL WALL and INGUINAL CANAL (Grant's Dissector (16Th Ed.) Pp SUPERIOR AND POSTERIOR MEDIASTINUM; ANTEROLATERAL ABDOMINAL WALL AND INGUINAL CANAL (Grant's Dissector (16th Ed.) pp. 93-98; 99-112) TODAY’S GOALS (Superior and Posterior Mediastinum): 1. Access the posterior mediastinum. 2. Identify the major structures of the superior and posterior mediastinum. 3. Dissect and identify the components of the sympathetic trunk. DISSECTION NOTES: Remove the posterior wall of the pericardial sac (may already be gone from removing the heart) and examine the posterior relations of the heart (Dissector p. 96, Fig. 3.26). In the posterior mediastinum observe the following: Esophagus: collapsed muscular tube posterior to the trachea. Right and left vagal trunks, and the esophageal plexus (parasympathetics are from CN X and sympathetics from the thoracic sympathetic trunk). Left recurrent laryngeal nerve (Dissector Fig. 3.24) as it passes around the ligamentum arteriosum (formerly the embryonic ductus arteriosus), which connects the left pulmonary artery to the aortic arch. The left vagus nerve contributes parasympathetic fibers to the esophageal plexus and then regroups as the anterior vagal trunk. The right vagus becomes the posterior vagal trunk. The positions of the vagal trunks are due to the rotation of the gut during development. Q. What structure does the right recurrent laryngeal nerve loop around and pass posterior to on its course to the larynx? Azygos system of veins (Dissector p. 97, Fig. 3.27): The azygos vein courses on the right side of vertebral column, along the posterior body wall. It is formed from the union of the ascending lumbar veins and right subcostal vein. It may also arise as a branch of the IVC. It receives the right posterior intercostal veins and the right superior intercostal vein (to the arch of the azygos). The azygos vein drains into the superior vena cava. The accessory hemiazygos and hemiazygos vein course in intercostal spaces on the left side. Descending aorta: Is the thoracic aorta in the thorax and the abdominal aorta in the abdomen. It gives off several branches: • posterior intercostal arteries (usually 9 pairs that are larger than the anterior intercostal arteries) • esophageal branches (minor/branches may be difficult to see) • pericardial and mediastinal branches • bronchial arteries (left usually 2; right usually 1) 8 Thoracic duct (Dissector Fig. 3.27): The largest lymphatic duct in the body; ascends on the anterior surfaces of thoracic vertebral bodies posterior to the esophagus and between the azygos vein and the descending aorta. Its termination in the venous angle of the neck will be studied in the next unit. Q. What areas of the body does the thoracic duct normally drain? Sympathetic trunk (Dissector Fig. 3.27): Remove the parietal pleura from the posterior thoracic cage and dissect out the thoracic sympathetic chain/trunk. Note that three pairs of splanchnic nerves arise from each sympathetic trunk. They are listed below. Realistically, only portions of the greater splanchnic nerve will be visible in our dissections. Greater splanchnic nerve (T5-T9) Lesser splanchnic nerve (T10 and T11) Least splanchnic nerve (T12) At the intersection of the sympathetic trunk with an intercostal nerve, attempt to find rami communicantes (white and gray ramus communicans) connecting the intercostal nerve with a thoracic sympathetic ganglion. Q. Which rami communicans carry preganglionic fibers? Q. Which rami may be found over the entire length of the sympathetic trunk? Q. Where do the greater, lesser, and least splanchnic nerves synapse? PEER TEACHING GUIDE: Organize your narrative to minimally include: 1. Demonstration of the structures and relationships of the posterior mediastinum including the esophagus, descending aorta, thoracic duct, and azygos system of veins. 2. Demonstration of the sympathetic chain, rami communicantes, and splanchnic nerves. 3. Demonstration of the recurrent laryngeal nerve and discussion of its clinical significance. 4. Demonstration of the posterior intercostal VAN (vein, artery, nerve) relationship. 9.
Recommended publications
  • Prenatal Diagnosis of a Variant of the Azygos Venous System
    Lo Verso et al. SpringerPlus (2016) 5:1334 DOI 10.1186/s40064-016-2956-0 SHORT REPORT Open Access Prenatal diagnosis of a variant of the azygos venous system Clelia Lo Verso1*, Valentina Cigna2, Gianfranca Damiani2, Laura Lo Verso1, Rossella Conti3 and Vincenzo Duca3 Abstract Background: The azygos venous system consists of the azygos vein on the right side and the hemiazygos and accessory hemiazygos on the left side. The azygos vein runs through the abdominal cavity along the right side of the vertebral bodies, in a cranial direction, passes through the diaphragm and reaches the mediastinum, where it forms the arch of the azygos which flows into the superior vena cava. Along its course, the azygos vein communicates with the intercostal veins on the right, the hemiazygos vein that collects blood from the left lower intercostal veins, and accessory hemiazygos vein that drains into the left upper intercostal veins. The last two, at the level of the seventh thoracic vertebra, unite and end in the azygos vein. The accessory hemiazygos vein is normally included in the length between T4 and T8. The embryological origin of the accessory hemiazygos vein is the result of an expansion in the direction of the cranial hemiazygos vein, which comes from the left upper sovracardinale vein (Dudiak et al. in Semin Roentgenol 24(1):47–55, 1989; Radiographics 11(2):233–246, 1991; Webb et al. in Am J Roentgenol 139(1):157–161, 1982). Findings: This case report describes a rare variant of azygos vein system identified in prenatal diagnosis and con- firmed by postnatal ultrasonography.
    [Show full text]
  • Split Azygos Vein: a Case Report
    Open Access Case Report DOI: 10.7759/cureus.13362 Split Azygos Vein: A Case Report Stefan Lachkar 1 , Joe Iwanaga 2 , Emma Newton 2 , Aaron S. Dumont 2 , R. Shane Tubbs 2 1. Anatomy, Seattle Chirdren's, Seattle, USA 2. Neurosurgery, Tulane University School of Medicine, New Orleans, USA Corresponding author: Joe Iwanaga, [email protected] Abstract The azygos venous system, which comprises the azygos, hemiazygos, and accessory hemiazygos veins, assists in blood drainage into the superior vena cava (SVC) from the thoracic cage and portions of the posterior mediastinum. Routine dissection of a fresh-frozen cadaveric specimen revealed a split azygos vein. The azygos vein branched off the inferior vena cava (IVC) at the level of the second lumbar vertebra as a single trunk and then split into two tributaries after forming a venous plexus. The right side of this system drained into the SVC and, inferiorly, the collective system drained into the IVC. Variant forms in the venous system, especially the vena cavae, are prone to dilation and tortuosity, leading to an increased likelihood of injury. Knowledge of the anatomical variations of the azygos vein is important for surgeons who use an anterior approach to the spine for diverse procedures. Categories: Anatomy Keywords: inferior vena cava, embryology, azygos vein, variation, anatomy, cadaver Introduction The inferior vena cava (IVC) is the largest vein in the human body. Its principal function is to return venous blood from the abdomen and lower extremities to the right atrium of the heart [1]. Developmental patterning of the IVC consists of three paired embryonic veins: subcardinal, supracardinal, and postcardinal.
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Azygos Vein System Abnormality: Case Report
    Gülhane Týp Dergisi 2006; 48: 180-182 OLGU SUNUMU © Gülhane Askeri Týp Akademisi 2006 Azygos vein system abnormality: case report Necdet Kocabýyýk (*), Tunç Kutoðlu (**), Soner Albay (*), Bülent Yalçýn (*), Hasan Ozan (*) Summary Introduction Variations seen in the thoracic vein system are Abnormalities related to the azygos system are not rare (1). In a series related to the development of these veins. of 200 cases, Bergman et al. have reported the incidence of this anomaly During the dissection from the posterior medi- astinum of the 60-year-old male cadaver, it 26% (2). These abnormalities are generally explained by the embryolog- was observed that there was no complete ical development. Venous branching of the azygos vein varies (3). There accessory hemiazygos vein, and both posterior are two origins of the azygos and hemiazygos veins. By union of these intercostal veins and hemiazygos vein (above origins and regression of some parts, azygos system comes into its final T10 level) drained bilaterally to the azygos vein. Considering these types of variations is status (4). Different types of structures may occur when these veins important during imaging this region and surgi- develop. Abnormalities about azygos system and especially the variations cal operations. of the hemiazygos veins are not clearly described in the literature. In this Key words: Azygos vein, hemiazygos vein, superior vena cava, venous anomaly presentation absence of the accessory hemiazygos vein and possible causes of these types of variations are discussed in view of the embry- Özet ological development. Azigos ven sistem anomalisi: olgu sunumu Toraks ven sisteminde görülen varyasyonlar, embriyolojik olarak bu venlerin geliþimiyle ilgi- Case Report lidir.
    [Show full text]
  • Analysis of Multiple Variations in Azygos Venous System Anatomy with Its Classification: a Cadaveric Study
    ORIGINAL ARTICLE Eur. J. Anat. 23 (1): 9-15 (2019) Analysis of multiple variations in azygos venous system anatomy with its classification: A cadaveric study Apurba Patra1, Rajan K. Singla2, Harsimarjit Kaur2, Vishal Malhotra3 1Department of Anatomy, Dr Radhakrishnan, Government Medical College, Hamirpur (HP), India, 2Department of Anatomy, Government Medical College, Patiala, India, 3Department of SPM, Government Medical College, Patiala, India SUMMARY INTRODUCTION The azygos venous system varies greatly in The azygos system (gr. azygos – ‘unpaired’ or mode of its origin, course, number of vertical chan- ‘single’) which acts as a by-pass between the infe- nels, number of horizontal anastomoses and na- rior and superior vena caval systems (Bowsher, ture of termination. Anatomical knowledge of such 1954) is formed by veins which drain the posterior variations is of immense importance in radiological wall of the thorax and abdomen into the superior investigations and surgical intervention of posterior vena cava (SVC) (Tatar et al., 2008). It presents a mediastinum pathologies. The present study was tortuous appearance and usually lies anterior to undertaken on 30 adult embalmed cadavers aging the bodies of the thoracic vertebrae. The azygos between 40–65 years, to determine the anatomical system consists of three interconnected major variations of the azygos system and to classify veins, the azygos (AV), hemiazygos (HV) and ac- accordingly. The vertebral level and diameter of cessory hemiazygos veins (AHV) (Snell, 2004; the azygos, hemiazygos, accessory hemiazygos Drake et al., 2005). The AV begins on the posterior veins at their origin and terminations were also abdominal wall usually as a continuation of lumbar observed.
    [Show full text]
  • The Azygos Vein System in the Rat
    THE AZYGOS VEIN SYSTEM IN THE RAT MYRON H. HALPERN' Departments of Anatomy, University of Xichigan, Ann Arbor, and Hahnemann Medical College, Philadelphia THREE FIGURES The adult pattern of the azygos vein system of various mam- mals has received the attention of many early investigators (Eustachius, 1561; Bardeleben, 1848 ; Marshall, 1850; and Morrison, 1879). Since there has not almways been agreement among these workers in the patterns described, attempts were made by some of them to try to correlate the patterns on a de- velopmental basis (Barcleleben, 1848 ; Marshall, 1850; and Parker and Tozier, 1897). Tihey ( 'B), Kampmeier ( 'la), Sabin ( '14, '15), and Reagan ('19) each described the develop- ment of the azygos system of a different mammal. Although there was partial agreement on certain aspects of the embry- ology, it was not until recently that there has been general accord. Since one of the more significant contributions to the development of the azygos system in the rat (Strong, '36) has never appeared as a journal article and is procurable only as a thesis from the Indiana University Library, it will be included and related to the present description of the adult pattern. MATERIALS To investigate the constancy of pattern and to check fully the points of previous disagreement in the adult pattern, 57 rats were studied by the fluorescent-latex injection technique previously described by the author ( '52). Eleven additional 1 The author wishes to thank Dr. Russell T. Woodburne, Department of Anatomy, University of Michigan for his critical reading of this manuscript. a Portion of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University of Michigan.
    [Show full text]
  • What Is the History of the Term “Azygos Vein” in the Anatomical Terminology?
    Surgical and Radiologic Anatomy (2019) 41:1155–1162 https://doi.org/10.1007/s00276-019-02238-3 REVIEW What is the history of the term “azygos vein” in the anatomical terminology? George K. Paraskevas1 · Konstantinos N. Koutsoufianiotis1 · Michail Patsikas2 · George Noussios1 Received: 5 December 2018 / Accepted: 2 April 2019 / Published online: 26 April 2019 © Springer-Verlag France SAS, part of Springer Nature 2019 Abstract The term “azygos vein” is in common use in modern anatomical and cardiovascular textbooks to describe the vein which ascends to the right side of the vertebral column in the region of the posterior mediastinum draining into the superior vena cava. “Azygos” in Greek means “without a pair”, explaining the lack of a similar vein on the left side of the vertebral column in the region of the thorax. The term “azygos” vein was utilized frstly by Galen and then was regenerated during Sylvius’ dissections and Vesalius’ anatomical research, where it received its fnal concept as an ofcial anatomical term. The purpose of this study is to highlight the origin of the term “azygos vein” to the best of our knowledge for the frst time and its evolu- tion from the era of Hippocrates to Realdo Colombo. Keywords Anatomy · “azygos vein” · “sine pari vena” · Terminology · Vesalius Introduction History of the origin of the term “azygos vein” The term “azygos vein” can be found in all modern ana- tomical textbooks. The term is used to describe a vein that Hippocrates (Fig. 1) did not make any mention with regard ascends on the right side of the vertebral column in the to the azygos vein.
    [Show full text]
  • Intercostal Arteries a Single Posterior & Two Anterior Intercostal Arteries
    Intercostal Arteries •Each intercostal space contains: . A single posterior & .Two anterior intercostal arteries •Each artery gives off branches to the muscles, skin, parietal pleura Posterior Intercostal Arteries In the upper two spaces, arise from the superior intercostal artery (a branch of costocervical trunk of the subclavian artery) In the lower nine spaces, arise from the branches of thoracic aorta The course and branching of the intercostal arteries follow the intercostal Posterior intercostal artery Course of intercostal vessels in the posterior thoracic wall Anterior Intercostal Arteries In the upper six spaces, arise from the internal thoracic artery In the lower three spaces arise from the musculophrenic artery (one of the terminal branch of internal thoracic) Form anastomosis with the posterior intercostal arteries Intercostal Veins Accompany intercostal arteries and nerves Each space has posterior & anterior intercostal veins Eleven posterior intercostal and one subcostal vein Lie deepest in the costal grooves Contain valves which direct the blood posteriorly Posterior Intercostal Veins On right side: • The first space drains into the right brachiocephalic vein • Rest of the intercostal spaces drain into the azygos vein On left side: • The upper three spaces drain into the left brachiocephalic vein. • Rest of the intercostal spaces drain into the hemiazygos and accessory hemiazygos veins, which drain into the azygos vein Anterior Intercostal Veins • The lower five spaces drain into the musculophrenic vein (one of the tributary of internal thoracic vein) • The upper six spaces drain into the internal thoracic vein • The internal thoracic vein drains into the subclavian vein. Lymphatics • Anteriorly drain into anterior intercostal nodes that lie along the internal thoracic artery • Posterioly drain into posterior intercostal nodes that lie in the posterior mediastinum .
    [Show full text]
  • A COMPARATIVE STUDY of the AZYGOS VENOUS SYSTEM in MAN, MONKEY, DOG, CAT, RAT and RABBIT by DAVID BOWSHER Department of Anatomy, University of Liverpool
    [ 400 ] A COMPARATIVE STUDY OF THE AZYGOS VENOUS SYSTEM IN MAN, MONKEY, DOG, CAT, RAT AND RABBIT BY DAVID BOWSHER Department of Anatomy, University of Liverpool It has been generally considered that the azygos vein acts as a by-pass between the inferior and superior caval systems, and most research has centred on the con- nexions of its caudal end. In view of the correlation between changes in the pressures of the azygos vein and the cerebrospinal fluid, it was decided to investigate the functional value of the azygos venous system, and the importance of its connexions with the internal vertebral venous system. HISTORICAL INTRODUCTION The azygos vein has excited interest since the earliest days of anatomical study, and is mentioned in the third century by Galen (ed. 1822). Vesalius (1555) wrote of it at some length, and alluded to its connexion with the internal vertebral veins and inferior vena cava. Eustachius (1722) shows, without comment, the hemiazygos arising from the left renal vein. Winslow (1776) gives a fairly accurate description of the vein, together with the branches draining the spinal canal into the intercostal veins. The definitive anatomy of the spinal (internal vertebral) veins and their con- nexions was established by the Paris school in the first half of the nineteenth century, and undoubtedly the most important of these writers was Breschet (1829). He pointed out that a large vein emerges from each thoracic intervertebral foramen and ascends over the body of the vertebra to join the azygos or hemiazygos vein, having first joined forces with the posterior intercostal vein; and that this 'vein of the intervertebral foramen' is larger than the intercostal vein which overlies it.
    [Show full text]
  • Double Inferior Vena Cava with Variant Hemiazygos Vein – a Case Report
    IJAE Vol. 122, n. 2: 121-126, 2017 ITALIAN JOURNAL OF ANATOMY AND EMBRYOLOGY Research article - Human anatomy case report Double inferior vena cava with variant hemiazygos vein – a case report Sumathilatha Sakthi Velavan*, Bedia Castellanos, Sushama Rich, Robert Goldberg Department of Anatomy, Touro College of Osteopathic Medicine, Harlem, New York, NY – 10027 Abstract The duplication of the inferior vena cava is a rare variation resulting from an alteration in the embryogenesis of the cardinal venous system. Although there are various types of double infe- rior vena cava and is prevalent in 2-3% of the population, the continuation of left inferior vena cava as hemiazygos vein is a very unusual variant and hence this case is reported for its rar- ity and clinical significance. During dissection of an eighty-seven-year-old female cadaver, the presence of the double inferior vena cava was noted. A detailed dissection was done of the major veins of the abdomen and traced till their drainage into the thorax. The right and left inferior vena cava were connected by a venous bridge which coursed deep to the abdominal aorta. The right inferior vena cava followed its usual course and drained into the right atrium, while the left inferior vena cava entered the thoracic cavity as the hemiazygos vein and drained into the azygos vein. Anatomical knowledge of the rare variant prevents misdiagnosis and aids in the proper interpretation of radiological images. Also, awareness of this vascular anomaly guides the surgeons during retroperitoneal procedures when encountering intraoperative dif- ficulties. Key words Duplication, inferior vena cava, double IVC, azygos vein, hemiazygos vein.
    [Show full text]
  • Thorax & Diaphragm
    THORAX Darwish H. Badran MD, PHD, FFDRCSI Professor of Anatomical Sciences The Thoracic wall is formed of: Thoracic cage: which is formed of: • Anteriorly: sternum and costal cartilage • On either side: ribs • Posteriorly: vertebral column Intercostal muscles Neurovascular bundle Ribs Ribs are classified into: True ribs (1-7): are connected to the sternum by costal cartilage False ribs (8, 9, 10, 11, 12): the costal cartilage of each of these ribs joins the costal cartilage of the rib above it. • Ribs 11 & 12 are named floating ribs because their anterior ends are free anteriorly (not connected to the ribs above or to the sternum) The longest rib is the 7th rib The most laterally projected rib is the 8th rib The lowest rib anteriorly is the 10th rib Superior articular facet for vertebral Typical ribs body Typical ribs are the ribs 3-10. Articular facet for transverse process of vertebra Anterior end: cup-shaped Angle and articulates with the costal cartilage. Posterior end: has a head, neck and tubercle. Costal Shaft. Groove Head of the typical rib Has 2 facets and a ridge in between them. The upper facet articulates with the body of the vertebra above. The lower facet articulates with the body of the vertebra that has the same number. The ridge articulates with the inter vertebral disc between the two related vertebra. The head is connected to the bodies of 2 vertebra by the triradiate ligament. Neck of the typical rib It is the constriction that follows the head. It is connected to the transverse processes of the: • Corresponding vertebra by the inferior costo-transverse ligament.
    [Show full text]
  • Download [ PDF ]
    DOI: 10.14260/jemds/2015/827 ORIGINAL ARTICLE STUDY OF AZYGOS SYSTEM AND ITS VARIATIONS B. Vijaya Nirmala1, Teresa Rani S2 HOW TO CITE THIS ARTICLE: B. Vijaya Nirmala, Teresa Rani S. “Study of Azygos System and its Variations”. Journal of Evolution of Medical and Dental Sciences 2015; Vol. 4, Issue 33, April 23; Page: 5652-5657, DOI: 10.14260/jemds/2015/827 ABSTRACT: The cause of venous compromise is multifactorial. The venous system variations are generally explained on the basis of their embryological basis. Variations of azygos venous system is not clearly described in the literature. Multiple variations like mode of formation of azygos vein formed mostly by the union of ascending lumbar and subcostal veins, position of azygos vein which courses normally to the right side forms in the midline and on left side in some cases. Variations in the mode of termination of Azgos vein, in formation of Hemi azygos vein, mode of termination of Hemi azygos vein are explained in view of their embryological development. Venous abnormalities often complicate mediastina surgery with intra operative haemorrhage. Prior knowledge of possible anatomical variations may help the surgeons to reduce the risk of such events. KEYWORDS: Azygos vein (AZV), Hemiazygos vein (HAZV), Accessory hemiazygos vein (AHAZV), Inferior vena cava (IVC). INTRODUCTION: The azygos venous system develops in the basis of multiple transformations of the subcardinal veins,1 which causes its great variability, especially on the left side.Azygos veins are important cavo-caval and porto caval junctions, thus forming collateral circulation in caval vein occlusion and in portal hypertension.2 The azygos venous system trnsporting deoxygenated blood from the posterior wall of the thoracic and abdomen into the superior vena cava is expected to arise from the postrior aspect of inferior vena cava at or below the level of renal veins from its development.
    [Show full text]