Category Theory Notes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A General Theory of Localizations
GENERAL THEORY OF LOCALIZATION DAVID WHITE • Localization in Algebra • Localization in Category Theory • Bousfield localization Thank them for the invitation. Last section contains some of my PhD research, under Mark Hovey at Wesleyan University. For more, please see my website: dwhite03.web.wesleyan.edu 1. The right way to think about localization in algebra Localization is a systematic way of adding multiplicative inverses to a ring, i.e. given a commutative ring R with unity and a multiplicative subset S ⊂ R (i.e. contains 1, closed under product), localization constructs a ring S−1R and a ring homomorphism j : R ! S−1R that takes elements in S to units in S−1R. We want to do this in the best way possible, and we formalize that via a universal property, i.e. for any f : R ! T taking S to units we have a unique g: j R / S−1R f g T | Recall that S−1R is just R × S= ∼ where (r; s) is really r=s and r=s ∼ r0=s0 iff t(rs0 − sr0) = 0 for some t (i.e. fractions are reduced to lowest terms). The ring structure can be verified just as −1 for Q. The map j takes r 7! r=1, and given f you can set g(r=s) = f(r)f(s) . Demonstrate commutativity of the triangle here. The universal property is saying that S−1R is the closest ring to R with the property that all s 2 S are units. A category theorist uses the universal property to define the object, then uses R × S= ∼ as a construction to prove it exists. -
Chapter 4. Homomorphisms and Isomorphisms of Groups
Chapter 4. Homomorphisms and Isomorphisms of Groups 4.1 Note: We recall the following terminology. Let X and Y be sets. When we say that f is a function or a map from X to Y , written f : X ! Y , we mean that for every x 2 X there exists a unique corresponding element y = f(x) 2 Y . The set X is called the domain of f and the range or image of f is the set Image(f) = f(X) = f(x) x 2 X . For a set A ⊆ X, the image of A under f is the set f(A) = f(a) a 2 A and for a set −1 B ⊆ Y , the inverse image of B under f is the set f (B) = x 2 X f(x) 2 B . For a function f : X ! Y , we say f is one-to-one (written 1 : 1) or injective when for every y 2 Y there exists at most one x 2 X such that y = f(x), we say f is onto or surjective when for every y 2 Y there exists at least one x 2 X such that y = f(x), and we say f is invertible or bijective when f is 1:1 and onto, that is for every y 2 Y there exists a unique x 2 X such that y = f(x). When f is invertible, the inverse of f is the function f −1 : Y ! X defined by f −1(y) = x () y = f(x). For f : X ! Y and g : Y ! Z, the composite g ◦ f : X ! Z is given by (g ◦ f)(x) = g(f(x)). -
Complete Objects in Categories
Complete objects in categories James Richard Andrew Gray February 22, 2021 Abstract We introduce the notions of proto-complete, complete, complete˚ and strong-complete objects in pointed categories. We show under mild condi- tions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This to- gether with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explana- tion behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. 1 Introduction Recall that Carmichael [19] called a group G complete if it has trivial cen- ter and each automorphism is inner. For each group G there is a canonical homomorphism cG from G to AutpGq, the automorphism group of G. This ho- momorphism assigns to each g in G the inner automorphism which sends each x in G to gxg´1. It can be readily seen that a group G is complete if and only if cG is an isomorphism. Baer [1] showed that a group G is complete if and only if every normal monomorphism with domain G is a split monomorphism. We call an object in a pointed category complete if it satisfies this latter condi- arXiv:2102.09834v1 [math.CT] 19 Feb 2021 tion. -
Category of G-Groups and Its Spectral Category
Communications in Algebra ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: http://www.tandfonline.com/loi/lagb20 Category of G-Groups and its Spectral Category María José Arroyo Paniagua & Alberto Facchini To cite this article: María José Arroyo Paniagua & Alberto Facchini (2017) Category of G-Groups and its Spectral Category, Communications in Algebra, 45:4, 1696-1710, DOI: 10.1080/00927872.2016.1222409 To link to this article: http://dx.doi.org/10.1080/00927872.2016.1222409 Accepted author version posted online: 07 Oct 2016. Published online: 07 Oct 2016. Submit your article to this journal Article views: 12 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lagb20 Download by: [UNAM Ciudad Universitaria] Date: 29 November 2016, At: 17:29 COMMUNICATIONS IN ALGEBRA® 2017, VOL. 45, NO. 4, 1696–1710 http://dx.doi.org/10.1080/00927872.2016.1222409 Category of G-Groups and its Spectral Category María José Arroyo Paniaguaa and Alberto Facchinib aDepartamento de Matemáticas, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico, D. F., México; bDipartimento di Matematica, Università di Padova, Padova, Italy ABSTRACT ARTICLE HISTORY Let G be a group. We analyse some aspects of the category G-Grp of G-groups. Received 15 April 2016 In particular, we show that a construction similar to the construction of the Revised 22 July 2016 spectral category, due to Gabriel and Oberst, and its dual, due to the second Communicated by T. Albu. author, is possible for the category G-Grp. -
Arxiv:1705.02246V2 [Math.RT] 20 Nov 2019 Esyta Ulsubcategory Full a That Say [15]
WIDE SUBCATEGORIES OF d-CLUSTER TILTING SUBCATEGORIES MARTIN HERSCHEND, PETER JØRGENSEN, AND LAERTIS VASO Abstract. A subcategory of an abelian category is wide if it is closed under sums, summands, kernels, cokernels, and extensions. Wide subcategories provide a significant interface between representation theory and combinatorics. If Φ is a finite dimensional algebra, then each functorially finite wide subcategory of mod(Φ) is of the φ form φ∗ mod(Γ) in an essentially unique way, where Γ is a finite dimensional algebra and Φ −→ Γ is Φ an algebra epimorphism satisfying Tor (Γ, Γ) = 0. 1 Let F ⊆ mod(Φ) be a d-cluster tilting subcategory as defined by Iyama. Then F is a d-abelian category as defined by Jasso, and we call a subcategory of F wide if it is closed under sums, summands, d- kernels, d-cokernels, and d-extensions. We generalise the above description of wide subcategories to this setting: Each functorially finite wide subcategory of F is of the form φ∗(G ) in an essentially φ Φ unique way, where Φ −→ Γ is an algebra epimorphism satisfying Tord (Γ, Γ) = 0, and G ⊆ mod(Γ) is a d-cluster tilting subcategory. We illustrate the theory by computing the wide subcategories of some d-cluster tilting subcategories ℓ F ⊆ mod(Φ) over algebras of the form Φ = kAm/(rad kAm) . Dedicated to Idun Reiten on the occasion of her 75th birthday 1. Introduction Let d > 1 be an integer. This paper introduces and studies wide subcategories of d-abelian categories as defined by Jasso. The main examples of d-abelian categories are d-cluster tilting subcategories as defined by Iyama. -
The General Linear Group
18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices. -
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints by Mehrdad Sabetzadeh A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2003 by Mehrdad Sabetzadeh Abstract A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints Mehrdad Sabetzadeh Master of Science Graduate Department of Computer Science University of Toronto 2003 Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. This may result in inconsis- tencies between the descriptions provided by stakeholders. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this thesis, we propose a category-theoretic framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is a graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) cocomplete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. Taking advantage of the same category-theoretic techniques used in defining fuzzy viewpoints, we will also introduce a more general graph-based formalism that may find applications in other contexts. ii To my mother and father with love and gratitude. Acknowledgements First of all, I wish to thank my supervisor Steve Easterbrook for his guidance, support, and patience. -
Arxiv:Math/9407203V1 [Math.LO] 12 Jul 1994 Notbr 1993
REDUCTIONS BETWEEN CARDINAL CHARACTERISTICS OF THE CONTINUUM Andreas Blass Abstract. We discuss two general aspects of the theory of cardinal characteristics of the continuum, especially of proofs of inequalities between such characteristics. The first aspect is to express the essential content of these proofs in a way that makes sense even in models where the inequalities hold trivially (e.g., because the continuum hypothesis holds). For this purpose, we use a Borel version of Vojt´aˇs’s theory of generalized Galois-Tukey connections. The second aspect is to analyze a sequential structure often found in proofs of inequalities relating one characteristic to the minimum (or maximum) of two others. Vojt´aˇs’s max-min diagram, abstracted from such situations, can be described in terms of a new, higher-type object in the category of generalized Galois-Tukey connections. It turns out to occur also in other proofs of inequalities where no minimum (or maximum) is mentioned. 1. Introduction Cardinal characteristics of the continuum are certain cardinal numbers describing combinatorial, topological, or analytic properties of the real line R and related spaces like ωω and P(ω). Several examples are described below, and many more can be found in [4, 14]. Most such characteristics, and all those under consideration ℵ in this paper, lie between ℵ1 and the cardinality c =2 0 of the continuum, inclusive. So, if the continuum hypothesis (CH) holds, they are equal to ℵ1. The theory of such characteristics is therefore of interest only when CH fails. That theory consists mainly of two sorts of results. First, there are equations and (non-strict) inequalities between pairs of characteristics or sometimes between arXiv:math/9407203v1 [math.LO] 12 Jul 1994 one characteristic and the maximum or minimum of two others. -
Notes and Solutions to Exercises for Mac Lane's Categories for The
Stefan Dawydiak Version 0.3 July 2, 2020 Notes and Exercises from Categories for the Working Mathematician Contents 0 Preface 2 1 Categories, Functors, and Natural Transformations 2 1.1 Functors . .2 1.2 Natural Transformations . .4 1.3 Monics, Epis, and Zeros . .5 2 Constructions on Categories 6 2.1 Products of Categories . .6 2.2 Functor categories . .6 2.2.1 The Interchange Law . .8 2.3 The Category of All Categories . .8 2.4 Comma Categories . 11 2.5 Graphs and Free Categories . 12 2.6 Quotient Categories . 13 3 Universals and Limits 13 3.1 Universal Arrows . 13 3.2 The Yoneda Lemma . 14 3.2.1 Proof of the Yoneda Lemma . 14 3.3 Coproducts and Colimits . 16 3.4 Products and Limits . 18 3.4.1 The p-adic integers . 20 3.5 Categories with Finite Products . 21 3.6 Groups in Categories . 22 4 Adjoints 23 4.1 Adjunctions . 23 4.2 Examples of Adjoints . 24 4.3 Reflective Subcategories . 28 4.4 Equivalence of Categories . 30 4.5 Adjoints for Preorders . 32 4.5.1 Examples of Galois Connections . 32 4.6 Cartesian Closed Categories . 33 5 Limits 33 5.1 Creation of Limits . 33 5.2 Limits by Products and Equalizers . 34 5.3 Preservation of Limits . 35 5.4 Adjoints on Limits . 35 5.5 Freyd's adjoint functor theorem . 36 1 6 Chapter 6 38 7 Chapter 7 38 8 Abelian Categories 38 8.1 Additive Categories . 38 8.2 Abelian Categories . 38 8.3 Diagram Lemmas . 39 9 Special Limits 41 9.1 Interchange of Limits . -
Generalized Inverse Limits and Topological Entropy
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of Faculty of Science, University of Zagreb FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Zagreb, 2016. FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Supervisors: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Mentori: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016. Acknowledgements First of all, i want to thank my supervisor professor Judy Kennedy for accept- ing a big responsibility of guiding a transatlantic student. Her enthusiasm and love for mathematics are contagious. I thank professor Vlasta Matijevi´c, not only my supervisor but also my role model as a professor of mathematics. It was privilege to be guided by her for master's and doctoral thesis. I want to thank all my math teachers, from elementary school onwards, who helped that my love for math rises more and more with each year. Special thanks to Jurica Cudina´ who showed me a glimpse of math theory already in the high school. I thank all members of the Topology seminar in Split who always knew to ask right questions at the right moment and to guide me in the right direction. I also thank Iztok Baniˇcand the rest of the Topology seminar in Maribor who welcomed me as their member and showed me the beauty of a teamwork. -
AN INTRODUCTION to CATEGORY THEORY and the YONEDA LEMMA Contents Introduction 1 1. Categories 2 2. Functors 3 3. Natural Transfo
AN INTRODUCTION TO CATEGORY THEORY AND THE YONEDA LEMMA SHU-NAN JUSTIN CHANG Abstract. We begin this introduction to category theory with definitions of categories, functors, and natural transformations. We provide many examples of each construct and discuss interesting relations between them. We proceed to prove the Yoneda Lemma, a central concept in category theory, and motivate its significance. We conclude with some results and applications of the Yoneda Lemma. Contents Introduction 1 1. Categories 2 2. Functors 3 3. Natural Transformations 6 4. The Yoneda Lemma 9 5. Corollaries and Applications 10 Acknowledgments 12 References 13 Introduction Category theory is an interdisciplinary field of mathematics which takes on a new perspective to understanding mathematical phenomena. Unlike most other branches of mathematics, category theory is rather uninterested in the objects be- ing considered themselves. Instead, it focuses on the relations between objects of the same type and objects of different types. Its abstract and broad nature allows it to reach into and connect several different branches of mathematics: algebra, geometry, topology, analysis, etc. A central theme of category theory is abstraction, understanding objects by gen- eralizing rather than focusing on them individually. Similar to taxonomy, category theory offers a way for mathematical concepts to be abstracted and unified. What makes category theory more than just an organizational system, however, is its abil- ity to generate information about these abstract objects by studying their relations to each other. This ability comes from what Emily Riehl calls \arguably the most important result in category theory"[4], the Yoneda Lemma. The Yoneda Lemma allows us to formally define an object by its relations to other objects, which is central to the relation-oriented perspective taken by category theory. -
N-Quasi-Abelian Categories Vs N-Tilting Torsion Pairs 3
N-QUASI-ABELIAN CATEGORIES VS N-TILTING TORSION PAIRS WITH AN APPLICATION TO FLOPS OF HIGHER RELATIVE DIMENSION LUISA FIOROT Abstract. It is a well established fact that the notions of quasi-abelian cate- gories and tilting torsion pairs are equivalent. This equivalence fits in a wider picture including tilting pairs of t-structures. Firstly, we extend this picture into a hierarchy of n-quasi-abelian categories and n-tilting torsion classes. We prove that any n-quasi-abelian category E admits a “derived” category D(E) endowed with a n-tilting pair of t-structures such that the respective hearts are derived equivalent. Secondly, we describe the hearts of these t-structures as quotient categories of coherent functors, generalizing Auslander’s Formula. Thirdly, we apply our results to Bridgeland’s theory of perverse coherent sheaves for flop contractions. In Bridgeland’s work, the relative dimension 1 assumption guaranteed that f∗-acyclic coherent sheaves form a 1-tilting torsion class, whose associated heart is derived equivalent to D(Y ). We generalize this theorem to relative dimension 2. Contents Introduction 1 1. 1-tilting torsion classes 3 2. n-Tilting Theorem 7 3. 2-tilting torsion classes 9 4. Effaceable functors 14 5. n-coherent categories 17 6. n-tilting torsion classes for n> 2 18 7. Perverse coherent sheaves 28 8. Comparison between n-abelian and n + 1-quasi-abelian categories 32 Appendix A. Maximal Quillen exact structure 33 Appendix B. Freyd categories and coherent functors 34 Appendix C. t-structures 37 References 39 arXiv:1602.08253v3 [math.RT] 28 Dec 2019 Introduction In [6, 3.3.1] Beilinson, Bernstein and Deligne introduced the notion of a t- structure obtained by tilting the natural one on D(A) (derived category of an abelian category A) with respect to a torsion pair (X , Y).