Metric Diophantine approximation and dynamical systems Dmitry Kleinbock Brandeis University, Waltham MA 02454-9110 E-mail address:
[email protected] This is a rough draft for the Spring 2007 course taught at Brandeis. Comments/corrections/suggestions welcome. Last modified: March 29, 2007. Here is a short course description: The main theme is studying the way the set of rational numbers Q sits inside real numbers R. This seemingly simple set-up happens to lead to quite intricate problems. The word ‘metric’ comes from ‘measure’ and implies that the emphasis will be put on properties of ‘almost all’ numbers; more precisely, for a certain approximation property of real numbers we will be interested in the magnitude (for example, in terms of Lebesgue measure or Hausdorff dimension) of the set of numbers having this property. The n situation becomes even more interesting when one similarly considers Q n sitting in R ; this has been the area of several exciting recent developments, which we may talk about in the second part of the course. The introductory part will feature: rate of approximation of real num- bers by rationals; theorems of Kronecker, Dirichlet, Liouville, Borel-Cantelli, Khintchine; connections with dynamical systems: circle rotations, hyper- bolic flow in the space of lattices, geodesic flow on the modular survace, Gauss map (continued fractions). Other topics could be (choice based upon preferences of the audience): • Hausdorff measures and dimension, fractal sets and measures they support • W. Schmidt’s (α, β)-games, winning sets, badly approximable num- bers • ubiquitious systems, Jarnik-Besicovitch Theorem • inhomogeneous approximation, shrinking target properties for cir- cle rotations • multidimensional theory, Diophantine properties of measures on n R , a connection with flows on SLn+1(R)/SLn+1(Z) References: • W.