The Threads That Bind: Symbiotic Fungi in the Garden

Total Page:16

File Type:pdf, Size:1020Kb

The Threads That Bind: Symbiotic Fungi in the Garden veryone knows that a plant they formed a symbiosis with fungi, has leaves and flowers, and whose growing network of threads (the below ground its roots mycelium) allowed them to explore branch and explore the soil. the soil and forage for phosphate. In Yet that picture misses an return the plant provided the fungus essential component as with organic compounds. EEvirtually all plants live with a fungus in Three lines of evidence support this a symbiosis called a mycorrhiza (from story: first, molecular evidence shows the Greek, meaning ‘fungus root’) that that this group of fungi originated at or is essential to both partners. The plants before that distant time; second, we get phosphate and some other nutrients find plants that form this type of mycor- from the fungus, and the fungus gets all rhiza in all branches of the evolutionary its sugars from the plant. Plants gain tree of land plants, showing that they The threads other benefits too from the symbiosis must all have shared a common mycor- and sustainable farming, forestry and rhizal ancestor; and most convincingly, gardening will all increasingly rely on there are fossils from Devonian rocks understanding how it behaves. nearly 400 million years old that contain the fungal structures (Fig. 1a) that bind: Meet the ancestors and older Ordovician spores that are To explain why they are mycorrhizal, unequivocally from the group. This we need to go back to when plants first ancestral type is known as an arbus- colonized the land more than 400 cular mycorrhiza, after the tiny struct- million years ago, in the Ordovician ures called arbuscules that develop symbiotic fungi and Devonian periods. The first land inside the cells of the root and branch plants had no roots; their coarse, like trees (Fig. 1b). The arbuscule is branching rhizomes lay on or near the where the plant obtains phosphate from surface of the ground. The obvious the fungus. Surprisingly, we still do not problem for these plants was getting know where the fungus gets sugars in the garden water, but in practice they probably from the plant, but it may be in the grew in wet places where water may intercellular spaces where the fungal not have been the challenge. A greater hyphae proliferate inside the root. The difficulty was getting phosphate. plant is the only source of organic The aquatic ancestors absorbed it from carbon for the fungus, which appar- the water, where it was present, ently cannot grow solo; no-one has yet although very dilute. On land, a new cultured these fungi without a plant. problem emerged: phosphate ions form extremely insoluble compounds with Thoroughly modern elements such as iron, aluminium mycorrhizas and calcium (think of bone), all of The reasons for the origin of this which are abundant in rocks and soil; symbiosis do not, however, explain hence phosphate ions diffuse extremely why about two-thirds of modern plant slowly into soils, taking days to move species form arbuscular mycorrhizas. a few millimetres. Phosphate would Most modern plants have well develop- not therefore move to the plants, and ed root systems and can obtain phos- with no roots, the plants could not phate themselves: they can grow in pots forage for phosphate in the soil. Instead of sterilized soil. However, the root ᭡ Fruiting body of the ectomycorrhizal (a) (b) ᭡ Hyphae (white) of a fungus (phylum fungus Thelephora terrestris. Robert L. Most people think of fungi and plants in Basidiomycetes) growing on the roots Anderson, USDA Forest Service (brown) of the strawberry tree (Arbutus (www.forestryimages.org) terms of disease, but as Alastair Fitter unedo). Dr Jeremy Burgess / Science Photo Library explains, certain fungi are essential to plant ᭣ Fig. 1a. Arbuscule in a fossil rhizome of Aglaophyton major. The arrow points to the dichotomously branching hypha that gives growth. They form mycorrhizas – mutually rise to the arbuscule, as also seen in the modern root. Reprinted with permission beneficial associations with plant roots. from Taylor et al. (1995) Mycologia 87, 567 ᭣ Fig. 1b. Arbuscules of an arbuscular mycorrhizal fungus (Glomeromycota) in a Without this symbiosis our gardens would modern root of Hyacinthoides non-scripta. J. Merryweather not be so green. 56 microbiology today may 05 microbiology today may 05 57 Ornithogallum umbellatum Plantago major Sagina procumbens Hor. cm Hor. cm Hor. cm A A A 40 10 5 A/(B) (B) (B)/G 80 Lolium multiflorum Mercurialis annua Aphanes arvensis Hor. cm Hor. cm Hor. cm A1 20 A ᭣ Fig. 2. Variation of root system architecture displayed by root tracings 20 A2 of a range of species. Reproduced with permission from L. Kutschera A 10 (1960) Wurzelatlas mitteleuropäischer Ackerunkräuter und 40 Kulturpflanzen (Frankfurt: DLG) A/Ca ᭡ Fig. 3. An ectomycorrhizal root of pine, colonized by Lactarius sp. Ca 40 The roots are stunted and branch dichotomously; the sheath of fungal 60 C hyphae surrounding the root is clearly visible. F. Martin ᭤ Fig. 4. The achlorophyllous orchid Epipogium aphyllum growing at (B) 80 one of its last British sites in 1966; it is now apparently extinct in Britain. The plant has no leaves and virtually no roots either, and is wholly reliant on a mycorrhizal fungal partner for all its nutritional requirements. A. Fitter systems of plants display enormous variation in form: grasses mycelium may be the genetic equivalent of a population of rhizas: the fungus explores soil and whether in natural communities or several distinct types with unique have densely branched root systems with very fine roots (Fig. individuals (or even possibly a community of species!). We obtains nutrients that it exchanges for in managed systems, such as farms, ecological properties. In natural eco- 2, bottom row), whereas plants with bulbs and corms (snow- are only just beginning to understand the basic biology of sugars with the plant. However, ecto- forestry and gardens. However, there systems mycorrhizal fungi appear to drops, crocuses, onions) have coarse, unbranched root sys- these organisms, even though they are among the most mycorrhizal fungi can be grown in pure are many other root–fungus symbioses, control the diversity of the plant tems (Fig. 2, top row). Plants with dense, fine roots rely on the abundant creatures on earth. culture, without a plant, because they generally confined to particular groups community and the speed of the carbon fungus for phosphate only in very infertile soils, whereas the can decompose and obtain nutrients – of plants, which suggests that they have cycle; in managed systems, except in bulbs and other thick-rooted species may be wholly depend- Ectomycorrhizas especially nitrogen – directly from evolved recently. One is with heathers some types of forestry, their potential ent on the symbiosis except in the most heavily fertilized soils. There is no way to tell whether a plant is symbiotic with an organic materials. Without this direct and their allies (Ericales). This sym- has yet to be exploited and will not be In modern agriculture, biological solutions to problems that arbuscular mycorrhizal fungus just by looking at it. You need access to nutrients, plants rely on other biosis is with a group of fungi that until we understand better the biology could be solved technologically have been unfashionable, to stain the roots to reveal the fungal structures, though under fungi and bacteria to break down are especially effective at breaking and ecology of the organisms involved. and little attention has been paid to the potential benefits of a microscope you can also see hyphae around the root. the materials and release them, for down organic materials for nitrogen. this symbiosis. However, phosphate fertilizers are all mined However, this is not the only form of mycorrhiza. Later in which they must compete with other Heathers grow typically in soils where Alastair Fitter unsustainably, and farmers and gardeners may therefore need evolution, a new mycorrhizal symbiosis emerged: this one is microbes. The ectomycorrhizal sym- peat forms, which shows that decom- Department of Biology (Area 2), to rely more on their fungal partners in future. visible to the naked eye, because the fungus changes the way biosis seems to have evolved as an position has almost ceased and that University of York, YO10 5YW, UK Modern plants with fine root systems still form mycor- the roots develop, and the resulting stubby, often branched adaptation to growing in ecosystems the nitrogen cycle has also ground to a (t 01904 32 8549; f 01904 32 8564; rhizas, even though they can often acquire phosphate root tips, coated with fungal hyphae, are very distinctive, where plant litter accumulates because halt. Again, the symbiosis works as an e [email protected]) themselves, because the fungi do more than forage for phos- hence the name ectomycorrhiza (Fig. 3). The ectomycorrhizal decomposition (and hence the nitrogen exchange: the heather gets nitrogen phate: they can acquire other nutrients from soil, especially symbiosis seems to have evolved at least twice, in each case cycle) is slow, leading to nitrogen and the fungus gets sugars. the less soluble and hence less mobile ones such as zinc; they with woody plants – first with pines and their relatives, and deficiency. As far as we know, arbu- Orchids too form their own mycor- Further reading can protect roots from other fungi that may be parasitic or later with woody flowering plants, such as oaks, beeches scular mycorrhizal fungi cannot direct- rhiza, but a very odd one: the orchid is Helgason, T. & others (2002). pathogenic; and they can bind roots to soil so improving their and birches (Fagales). The same fungi are involved in each ly breakdown organic matter, and are parasitic on the fungus, shown most Selectivity and functional diversity in drought resistance.
Recommended publications
  • Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
    Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts).
    [Show full text]
  • The Genomic Impact of Mycoheterotrophy in Orchids
    fpls-12-632033 June 8, 2021 Time: 12:45 # 1 ORIGINAL RESEARCH published: 09 June 2021 doi: 10.3389/fpls.2021.632033 The Genomic Impact of Mycoheterotrophy in Orchids Marcin J ˛akalski1, Julita Minasiewicz1, José Caius2,3, Michał May1, Marc-André Selosse1,4† and Etienne Delannoy2,3*† 1 Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdansk,´ Gdansk,´ Poland, 2 Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, France, 3 Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, Orsay, France, 4 Sorbonne Université, CNRS, EPHE, Muséum National d’Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, Paris, France Mycoheterotrophic plants have lost the ability to photosynthesize and obtain essential mineral and organic nutrients from associated soil fungi. Despite involving radical changes in life history traits and ecological requirements, the transition from autotrophy Edited by: Susann Wicke, to mycoheterotrophy has occurred independently in many major lineages of land Humboldt University of Berlin, plants, most frequently in Orchidaceae. Yet the molecular mechanisms underlying this Germany shift are still poorly understood. A comparison of the transcriptomes of Epipogium Reviewed by: Maria D. Logacheva, aphyllum and Neottia nidus-avis, two completely mycoheterotrophic orchids, to other Skolkovo Institute of Science autotrophic and mycoheterotrophic orchids showed the unexpected retention of several and Technology, Russia genes associated with photosynthetic activities. In addition to these selected retentions, Sean W. Graham, University of British Columbia, the analysis of their expression profiles showed that many orthologs had inverted Canada underground/aboveground expression ratios compared to autotrophic species. Fatty Craig Barrett, West Virginia University, United States acid and amino acid biosynthesis as well as primary cell wall metabolism were among *Correspondence: the pathways most impacted by this expression reprogramming.
    [Show full text]
  • Occurrence of Glomeromycota Species in Aquatic Habitats: a Global Overview
    Occurrence of Glomeromycota species in aquatic habitats: a global overview MARIANA BESSA DE QUEIROZ1, KHADIJA JOBIM1, XOCHITL MARGARITO VISTA1, JULIANA APARECIDA SOUZA LEROY1, STEPHANIA RUTH BASÍLIO SILVA GOMES2, BRUNO TOMIO GOTO3 1 Programa de Pós-Graduação em Sistemática e Evolução, 2 Curso de Ciências Biológicas, and 3 Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, RN, Brazil * CORRESPONDENCE TO: [email protected] ABSTRACT — Arbuscular mycorrhizal fungi (AMF) are recognized in terrestrial and aquatic ecosystems. The latter, however, have received little attention from the scientific community and, consequently, are poorly known in terms of occurrence and distribution of this group of fungi. This paper provides a global list on AMF species inhabiting aquatic ecosystems reported so far by scientific community (lotic and lentic freshwater, mangroves, and wetlands). A total of 82 species belonging to 5 orders, 11 families, and 22 genera were reported in 8 countries. Lentic ecosystems have greater species richness. Most studies of the occurrence of AMF in aquatic ecosystems were conducted in the United States and India, which constitute 45% and 78% reports coming from temperate and tropical regions, respectively. KEY WORDS — checklist, flooded areas, mycorrhiza, taxonomy Introduction Aquatic ecosystems comprise about 77% of the planet surface (Rebouças 2006) and encompass a diversity of habitats favorable to many species from marine (ocean), transitional estuaries to continental (wetlands, lentic and lotic) environments (Reddy et al. 2018). Despite this territorial representativeness and biodiversity already recorded, there are gaps when considering certain types of organisms, e.g. fungi. Fungi are considered a common and important component of almost all trophic levels.
    [Show full text]
  • Structuration Écologique Et Évolutive Des Symbioses Mycorhiziennes Des
    Universit´ede La R´eunion { Ecole´ doctorale Sciences Technologie Sant´e{ Facult´edes Sciences et des Technologies Structuration ´ecologique et ´evolutive des symbioses mycorhiziennes des orchid´ees tropicales Th`ese de doctorat pr´esent´eeet soutenue publiquement le 19 novembre 2010 pour l'obtention du grade de Docteur de l'Universit´ede la R´eunion (sp´ecialit´eBiologie des Populations et Ecologie)´ par Florent Martos Composition du jury Pr´esidente: Mme Pascale Besse, Professeur `al'Universit´ede La R´eunion Rapporteurs : Mme Marie-Louise Cariou, Directrice de recherche au CNRS de Gif-sur-Yvette M. Raymond Tremblay, Professeur `al'Universit´ede Porto Rico Examinatrice : Mme Pascale Besse, Professeur `al'Universit´ede La R´eunion Directeurs : M. Thierry Pailler, Ma^ıtre de conf´erences HDR `al'Universit´ede La R´eunion M. Marc-Andr´e Selosse, Professeur `al'Universit´ede Montpellier Laboratoire d'Ecologie´ Marine Institut de Recherche pour le D´eveloppement 2 R´esum´e Les plantes n'exploitent pas seules les nutriments du sol, mais d´ependent de champignons avec lesquels elles forment des symbioses mycorhiziennes dans leurs racines. C'est en particulier vrai pour les 25 000 esp`ecesd'orchid´eesactuelles qui d´ependent toutes de champignons mycorhiziens pour accomplir leur cycle de vie. Elles produisent des graines microscopiques qui n'ont pas les ressources nutritives pour germer, mais qui d´ependent de la pr´esencede partenaires ad´equatspour nourrir l'embryon (h´et´erotrophie)jusqu’`al'apparition des feuilles (autotrophie). Les myco- rhiziens restent pr´esents dans les racines des adultes o`uils contribuent `ala nutrition, ce qui permet d'´etudierplus facilement la diversit´edes symbiotes `al'aide des ou- tils g´en´etiques.Conscients des biais des ´etudesen faveur des r´egionstemp´er´ees, nous avons ´etudi´ela diversit´edes mycorhiziens d'orchid´eestropicales `aLa R´eunion.
    [Show full text]
  • Microbial Community Structure in Rice, Crops, and Pastures Rotation Systems with Different Intensification Levels in the Temperate Region of Uruguay
    Supplementary Material Microbial community structure in rice, crops, and pastures rotation systems with different intensification levels in the temperate region of Uruguay Sebastián Martínez Table S1. Relative abundance of the 20 most abundant bacterial taxa of classified sequences. Relative Taxa Phylum abundance 4,90 _Bacillus Firmicutes 3,21 _Bacillus aryabhattai Firmicutes 2,76 _uncultured Prosthecobacter sp. Verrucomicrobia 2,75 _uncultured Conexibacteraceae bacterium Actinobacteria 2,64 _uncultured Conexibacter sp. Actinobacteria 2,14 _Nocardioides sp. Actinobacteria 2,13 _Acidothermus Actinobacteria 1,50 _Bradyrhizobium Proteobacteria 1,23 _Bacillus Firmicutes 1,10 _Pseudolabrys_uncultured bacterium Proteobacteria 1,03 _Bacillus Firmicutes 1,02 _Nocardioidaceae Actinobacteria 0,99 _Candidatus Solibacter Acidobacteria 0,97 _uncultured Sphingomonadaceae bacterium Proteobacteria 0,94 _Streptomyces Actinobacteria 0,91 _Terrabacter_uncultured bacterium Actinobacteria 0,81 _Mycobacterium Actinobacteria 0,81 _uncultured Rubrobacteria Actinobacteria 0,77 _Xanthobacteraceae_uncultured forest soil bacterium Proteobacteria 0,76 _Streptomyces Actinobacteria Table S2. Relative abundance of the 20 most abundant fungal taxa of classified sequences. Relative Taxa Orden abundance. 20,99 _Fusarium oxysporum Ascomycota 11,97 _Aspergillaceae Ascomycota 11,14 _Chaetomium globosum Ascomycota 10,03 _Fungi 5,40 _Cucurbitariaceae; uncultured fungus Ascomycota 5,29 _Talaromyces purpureogenus Ascomycota 3,87 _Neophaeosphaeria; uncultured fungus Ascomycota
    [Show full text]
  • RNA-Seq Highlights Parallel and Contrasting Patterns in the Evolution of the Nuclear Genome of Fully Mycoheterotrophic Plants Mikhail I
    Schelkunov et al. BMC Genomics (2018) 19:602 https://doi.org/10.1186/s12864-018-4968-3 RESEARCH ARTICLE Open Access RNA-seq highlights parallel and contrasting patterns in the evolution of the nuclear genome of fully mycoheterotrophic plants Mikhail I. Schelkunov1* , Aleksey A. Penin1,2,3 and Maria D. Logacheva1,4,5* Abstract Background: While photosynthesis is the most notable trait of plants, several lineages of plants (so-called full heterotrophs) have adapted to obtain organic compounds from other sources. The switch to heterotrophy leads to profound changes at the morphological, physiological and genomic levels. Results: Here, we characterize the transcriptomes of three species representing two lineages of mycoheterotrophic plants: orchids (Epipogium aphyllum and Epipogium roseum) and Ericaceae (Hypopitys monotropa). Comparative analysis is used to highlight the parallelism between distantly related fully heterotrophic plants. In both lineages, we observed genome-wide elimination of nuclear genes that encode proteins related to photosynthesis, while systems associated with protein import to plastids as well as plastid transcription and translation remain active. Genes encoding components of plastid ribosomes that have been lost from the plastid genomes have not been transferred to the nuclear genomes; instead, some of the encoded proteins have been substituted by homologs. The nuclear genes of both Epipogium species accumulated nucleotide substitutions twice as rapidly as their photosynthetic relatives; in contrast, no increase in the substitution rate was observed in H. monotropa. Conclusions: Full heterotrophy leads to profound changes in nuclear gene content. The observed increase in the rate of nucleotide substitutions is lineage specific, rather than a universal phenomenon among non-photosynthetic plants.
    [Show full text]
  • Floral Nectary Anatomy and Ultrastructure in Mycoheterotrophic Plant, Epipogium Aphyllum Sw
    Hindawi Publishing Corporation e Scientific World Journal Volume 2015, Article ID 201702, 11 pages http://dx.doi.org/10.1155/2015/201702 Research Article Floral Nectary Anatomy and Ultrastructure in Mycoheterotrophic Plant, Epipogium aphyllum Sw. (Orchidaceae) Emilia Uwiwczkowska1 and Agnieszka K. Kowalkowska2 1 Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk,´ Poland 2Department of Plant Cytology and Embryology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk,´ Poland Correspondence should be addressed to Agnieszka K. Kowalkowska; [email protected] Received 22 October 2014; Revised 2 February 2015; Accepted 16 February 2015 Academic Editor: Lorenzo Pecoraro Copyright © 2015 E. Swięczkowska´ and A. K. Kowalkowska. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Epipogium aphyllum is a European-Asian obligatory mycoheterotrophic orchid containing no chlorophyll. Flowers are not resupinate with a sack-shape spur and cordate lip, which is divided into two parts: the basal (hypochile) and distal one (epichile). The floral analysis provides strong evidence to conclude that nectar is secreted on the upper surface of pink-coloured papillate ridges and epidermal (adaxial) cells at different place in spur, especially at the apex. The exudation on papillae has been observed through the entire anthesis and it has been stained on polysaccharides, proteins, and lipids. The dense cytoplasm of papillae contains profuse endoplasmic reticulum, plentiful vesicles (bigger ones with tannin-like materials), numerous mitochondria, sometimes dictyosomes, starch grains, and plastids with tubular structures.
    [Show full text]
  • A Third Species of Epipogium (Orchidaceae) Added to the Indian Flora
    A third species of Epipogium (Orchidaceae) added to the Indian flora Anant Kumar1, Gopal Krishna1 & Vinay Ranjan1* ________________________________ 1Botanical Survey of India, Central National Herbarium, Howrah-711103, West Bengal, India *corresponding author: [email protected] ________________________________ Abstract Epipogium japonicum Makino was recently observed in Neora Valley National Park, Darjeeling, West Bengal, India. Its presence as a new addition to Indian flora brings to 3 the number of known species on the Indian territory. A brief description with an illustration, a determination key and a geographical distribution map of the three species known in India are proposed. Résumé Epipogium japonicum Makino a récemment été observé dans le Parc National Neora Valley (Darjeeling, West Bengal) en Inde. Ceci constitue une addition nouvelle à la flore indienne et porte à 3 le nombre d'espèces connues sur le territoire indien. Nous en donnons ici une brève description, accompagnée d'une illustration et d'une carte de distribution géographique en Inde des trois espèces en question. Une clé de détermination de ces trois espèces est également proposée. Keywords: Flora of India, Neora Valley National Park, new record, taxonomy. Mots clés : flore d'Inde, nouvel enregistrement, Parc national Neora Valley, taxinomie. Manuscrit reçu le 15/10/2018 Article mis en ligne le 13/02/2019 – pp. 17-24 Introduction According to the world checklist of Orchidaceae (Govaerts et al., 2018), the mycotrophic genus Epipogium Gmelin ex Borkhausen (1792: 139) is comprised of three species. Later, this number increases up to 5 after the recent discovery of new species from Taiwan (Lin et al., 2016; Hsieh et al., 2018): Epipogium aphyllum Swartz (1814:32), Epipogium japonicum Makino (1904: 131), Epipogium kentingensis T.P.Lin & S.H.Wu (2012: 378), Epipogium meridianus T.P.Lin in Hsieh et al.
    [Show full text]
  • BIOL 1030 – TOPIC 3 LECTURE NOTES Topic 3: Fungi (Kingdom Fungi – Ch
    BIOL 1030 – TOPIC 3 LECTURE NOTES Topic 3: Fungi (Kingdom Fungi – Ch. 31) KINGDOM FUNGI A. General characteristics • Fungi are diverse and widespread. • Ten thousand species of fungi have been described, but it is estimated that there are actually up to 1.5 million species of fungi. • Fungi play an important role in ecosystems, decomposing dead organisms, fallen leaves, feces, and other organic materials. °This decomposition recycles vital chemical elements back to the environment in forms other organisms can assimilate. • Most plants depend on mutualistic fungi to help their roots absorb minerals and water from the soil. • Humans have cultivated fungi for centuries for food, to produce antibiotics and other drugs, to make bread rise, and to ferment beer and wine • Fungi play ecological diverse roles - they are decomposers (saprobes), parasites, and mutualistic symbionts. °Saprobic fungi absorb nutrients from nonliving organisms. °Parasitic fungi absorb nutrients from the cells of living hosts. .Some parasitic fungi, including some that infect humans and plants, are pathogenic. .Fungi cause 80% of plant diseases. °Mutualistic fungi also absorb nutrients from a host organism, but they reciprocate with functions that benefit their partner in some way. • Fungi are a monophyletic group, and all fungi share certain key characteristics. B. Morphology of Fungi 1. heterotrophs - digest food with secreted enzymes “exoenzymes” (external digestion) 2. have cell walls made of chitin 3. most are multicellular, with slender filamentous units called hyphae (Label the diagram below – Use Textbook figure 31.3) 1 of 11 BIOL 1030 – TOPIC 3 LECTURE NOTES Septate hyphae Coenocytic hyphae hyphae may be divided into cells by crosswalls called septa; typically, cytoplasm flows through septa • hyphae can form specialized structures for things such as feeding, and even for food capture 4.
    [Show full text]
  • Distribution and Conservation Status of Some Rare and Threatened Orchid
    Wulfenia 24 (2017): 143 –162 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Distribution and conservation status of some rare and threatened orchid taxa in the central Balkans and the southern part of the Pannonian Plain Vladan Djordjević, Dmitar Lakušić, Slobodan Jovanović & Vladimir Stevanović Summary: Along with being a centre of plant species diversity and endemism, the Balkan Peninsula is one of the parts of Europe with the highest number of orchid taxa. However, the orchid flora in the central Balkans has not been sufficiently studied. The paper presents the distribution of ten rare and threatened taxa of Orchidaceae in the central Balkans and the southern part of the Pannonian Plain: Anacamptis papilionacea, Epipactis palustris, E. purpurata, Epipogium aphyllum, Goodyera repens, Gymnadenia frivaldii, Ophrys apifera, O. insectifera, Orchis militaris and O. spitzelii subsp. spitzelii. In addition to field investigation, checking and revision of herbarium material, literature sources were also used for supplementing distribution data. The distribution maps of these taxa in the central Balkans (Serbia and Kosovo region) and the southern part of the Pannonian Plain (Vojvodina) are created on a 10 km × 10 km UTM grid system. Data concerning their habitat preferences, population size and the estimated IUCN conservation status in the study area are provided. Keywords: Orchidaceae, phytogeography, IUCN conservation status, Balkan Peninsula The orchid family is one of the largest and most diverse families in the plant kingdom with estimates of about 28 000 species distributed in about 763 genera (Chase et al. 2015; Christenhusz & Byng 2016). According to Hágsater & Dumont (1996), over 300 orchid species occur in Europe, North Africa and Near East.
    [Show full text]
  • A Comparative Analysis of Decline in the Distribution Ranges of Orchid Species in Estonia and the United Kingdom
    BIOLOGICAL CONSERVATION 129 (2006) 31– 39 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/biocon A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom Tiiu Kulla,*, Michael J. Hutchingsb aInstitute of Agricultural and Environmental Sciences, Estonian Agricultural University, Riia 181, Tartu 51014, Estonia bSchool of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9QG, UK ARTICLE INFO ABSTRACT Article history: National databases were interrogated to analyse and compare proportional alterations in Received 14 February 2005 the distribution ranges of orchid species between two surveys in the UK (surveys com- Received in revised form pleted in 1969 and 1999) and in Estonia (surveys completed in 1970 and 2004). Nearly every 26 August 2005 species declined between the surveys in both countries, and two species may have become Accepted 21 September 2005 extinct in the UK. Mean decline in distribution range for 49 species in the UK was 50% Available online 17 November 2005 (range 14–100%), and 23 species declined by over 50%. The mean decline for 33 orchid spe- cies in Estonia was 25% (range 0–62%), and three species declined by over 50%. These Keywords: results corroborate serious range declines recently reported for orchids in other regions Distribution ranges of Europe (the Netherlands and Flanders, Belgium). In contrast with these other regions, Extinction risk we found that species associated with calcareous grassland and woodland habitats had Orchid decline suffered greater mean contractions in range than species of wet grassland habitats. Vulnerable species Greater decline was recorded for species found on drier soils, and for species characteristic Dynamic chorology of open habitats.
    [Show full text]
  • ORCHID CONSERVATION NEWS the Newsletter of the Orchid Specialist Group of the IUCN Species Survival Commission
    ORCHID CONSERVATION NEWS The Newsletter of the Orchid Specialist Group of the IUCN Species Survival Commission Issue 1 March 2021 PATHS TOWARD CONSERVATION PROGRESS Orchid workshop at Bogotá Botanic Garden, Colombia in 2017 1 https://www.bgci.org/our-work/plant- Editorial conservation/conservation-prioritisation/ex-situ- At the time of this first Issue of 2021, many challenges surveys/ still lie before us, lots of unknowns yet to be determined with the pandemic at the forefront of our thoughts. We Why am I puzzled? Well firstly, I don’t know where are doing our best to continue our conservation work the figure of 38% has come from. Although encouraging despite constraints whether it be project planning, data progress is being made with Red Listing, I don’t think collection and management, seed banking, evaluating we know how many species are threatened globally. conservation strategies, or continuing studies of orchid Secondly, does just one individual plant count as an ex populations over the long term. With the situ collection? Surely we need to be focusing on unpredictability and randomness of natural events that conserving as far as possible the genetic diversity within may threaten orchid ecosystems, long-term monitoring each species. Thirdly, the table doesn’t tell me whether studies are being re-visited years, even decades after the collection is plants and/or seed. their initiation, to study what has been happening following severe disturbance. For example, Deschênes, The BGCI report asserts that botanical gardens are the Brice & Brisson (2019) have reported, after an initial main repository of orchid collections.
    [Show full text]