Epistemology of Experimental Gravity - Scientific Rationality
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kaluza-Klein Gravity, Concentrating on the General Rel- Ativity, Rather Than Particle Physics Side of the Subject
Kaluza-Klein Gravity J. M. Overduin Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6 and P. S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 and Gravity Probe-B, Hansen Physics Laboratories, Stanford University, Stanford, California, U.S.A. 94305 Abstract We review higher-dimensional unified theories from the general relativity, rather than the particle physics side. Three distinct approaches to the subject are identi- fied and contrasted: compactified, projective and noncompactified. We discuss the cosmological and astrophysical implications of extra dimensions, and conclude that none of the three approaches can be ruled out on observational grounds at the present time. arXiv:gr-qc/9805018v1 7 May 1998 Preprint submitted to Elsevier Preprint 3 February 2008 1 Introduction Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s the- ory of electromagnetism. He however imposed a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] con- tribution was to make this restriction less artificial by suggesting a plausible physical basis for it in compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible “theory of everything,” ten-dimensional superstrings. -
Conformal Symmetry in Field Theory and in Quantum Gravity
universe Review Conformal Symmetry in Field Theory and in Quantum Gravity Lesław Rachwał Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil; [email protected] Received: 29 August 2018; Accepted: 9 November 2018; Published: 15 November 2018 Abstract: Conformal symmetry always played an important role in field theory (both quantum and classical) and in gravity. We present construction of quantum conformal gravity and discuss its features regarding scattering amplitudes and quantum effective action. First, the long and complicated story of UV-divergences is recalled. With the development of UV-finite higher derivative (or non-local) gravitational theory, all problems with infinities and spacetime singularities might be completely solved. Moreover, the non-local quantum conformal theory reveals itself to be ghost-free, so the unitarity of the theory should be safe. After the construction of UV-finite theory, we focused on making it manifestly conformally invariant using the dilaton trick. We also argue that in this class of theories conformal anomaly can be taken to vanish by fine-tuning the couplings. As applications of this theory, the constraints of the conformal symmetry on the form of the effective action and on the scattering amplitudes are shown. We also remark about the preservation of the unitarity bound for scattering. Finally, the old model of conformal supergravity by Fradkin and Tseytlin is briefly presented. Keywords: quantum gravity; conformal gravity; quantum field theory; non-local gravity; super- renormalizable gravity; UV-finite gravity; conformal anomaly; scattering amplitudes; conformal symmetry; conformal supergravity 1. Introduction From the beginning of research on theories enjoying invariance under local spacetime-dependent transformations, conformal symmetry played a pivotal role—first introduced by Weyl related changes of meters to measure distances (and also due to relativity changes of periods of clocks to measure time intervals). -
Cosmology with a Two-Parameter Perturbation Expansion
Astronomy Unit School of Physics and Astronomy Queen Mary University of London Two-parameter Perturbation Theory for Cosmologies with Non-linear Structure Sophia Rachel Goldberg Submitted in partial fulfillment of the requirements of the Degree of Doctor of Philosophy 1 Declaration I, Sophia Rachel Goldberg, confirm that the research included within this thesis is my own work or that where it has been carried out in collaboration with, or supported by others, that this is duly acknowledged below and my contribution in- dicated. Previously published material is also acknowledged below. I attest that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge break any UK law, infringe any third party's copyright or other Intellectual Property Right, or contain any confidential material. I accept that the College has the right to use plagiarism detection software to check the electronic version of the thesis. I confirm that this thesis has not been previously submitted for the award of a degree by this or any other university. The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author. Signature: Date: 19th November 2017 Details of collaboration and publications: the research in this thesis is based on the publications and collaborations listed below. `Cosmology on all scales: a two-parameter perturbation expansion' Sophia R. Goldberg, Timothy Clifton and Karim A. Malik Physical Review D 95, 043503 (2017) `Perturbation theory for cosmologies with nonlinear structure' Sophia R. -
A Philosophical and Historical Analysis of Cosmology from Copernicus to Newton
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2017 Scientific transformations: a philosophical and historical analysis of cosmology from Copernicus to Newton Manuel-Albert Castillo University of Central Florida Part of the History of Science, Technology, and Medicine Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Castillo, Manuel-Albert, "Scientific transformations: a philosophical and historical analysis of cosmology from Copernicus to Newton" (2017). Electronic Theses and Dissertations, 2004-2019. 5694. https://stars.library.ucf.edu/etd/5694 SCIENTIFIC TRANSFORMATIONS: A PHILOSOPHICAL AND HISTORICAL ANALYSIS OF COSMOLOGY FROM COPERNICUS TO NEWTON by MANUEL-ALBERT F. CASTILLO A.A., Valencia College, 2013 B.A., University of Central Florida, 2015 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in the department of Interdisciplinary Studies in the College of Graduate Studies at the University of Central Florida Orlando, Florida Fall Term 2017 Major Professor: Donald E. Jones ©2017 Manuel-Albert F. Castillo ii ABSTRACT The purpose of this thesis is to show a transformation around the scientific revolution from the sixteenth to seventeenth centuries against a Whig approach in which it still lingers in the history of science. I find the transformations of modern science through the cosmological models of Nicholas Copernicus, Johannes Kepler, Galileo Galilei and Isaac Newton. -
The Copernican Revolution (1957) Is a Decidedly Non-Revolutionary Astronomer Who Unwittingly Ignited a Conceptual Revolution in the European Worldview
Journal of Applied Cultural Studies vol. 1/2015 Stephen Dersley The Copernican Hypotheses Part 1 Summary. The Copernicus constructed by Thomas S. Kuhn in The Copernican Revolution (1957) is a decidedly non-revolutionary astronomer who unwittingly ignited a conceptual revolution in the European worldview. Kuhn’s reading of Copernicus was crucial for his model of science as a deeply conservative discourse, which presented in The Structure of Scientific Revolutions (1962). This essay argues that Kuhn’s construction of Copernicus and depends on the suppression of the most radical aspects of Copernicus’ thinking, such as the assumptions of the Commentariolus (1509-14) and the conception of hypothesis of De Revolutionibus (1543). After comparing hypo- thetical thinking in the writings of Aristotle and Ptolemy, it is suggested that Copernicus’ concep- tual breakthrough was enabled by his rigorous use of hypothetical thinking. Keywords: N. Copernicus hypothesis, T. S. Kuhn, philosophy of science Stephen Dersley, University of Warwick, Faculty of Social Sciences Alumni, Coventry CV4 7AL, United Kingdom, e-mail: [email protected] Kuhn’s Paradigm n The Copernican Revolution, Thomas Kuhn was at pains to construct an image of ICopernicus as a decidedly non-revolutionary astronomer. Kuhn’s model of scientific revolutions, first embodied in The Copernican Revolution and then generalised to the status of a theory in The Structure of Scientific Revolutions, conceives of science as be- 100 Stephen Dersley ing, for the majority of the time, a deeply conservative activity. In Kuhn’s model, scien- tists who are engaged in the business of doing every day scientific work do so at the behest of of a reigning paradigm that completely dictates their field of enquiry and functions as an imperceptible intellectual strait-jacket. -
Particle Dark Matter an Introduction Into Evidence, Models, and Direct Searches
Particle Dark Matter An Introduction into Evidence, Models, and Direct Searches Lecture for ESIPAP 2016 European School of Instrumentation in Particle & Astroparticle Physics Archamps Technopole XENON1T January 25th, 2016 Uwe Oberlack Institute of Physics & PRISMA Cluster of Excellence Johannes Gutenberg University Mainz http://xenon.physik.uni-mainz.de Outline ● Evidence for Dark Matter: ▸ The Problem of Missing Mass ▸ In galaxies ▸ In galaxy clusters ▸ In the universe as a whole ● DM Candidates: ▸ The DM particle zoo ▸ WIMPs ● DM Direct Searches: ▸ Detection principle, physics inputs ▸ Example experiments & results ▸ Outlook Uwe Oberlack ESIPAP 2016 2 Types of Evidences for Dark Matter ● Kinematic studies use luminous astrophysical objects to probe the gravitational potential of a massive environment, e.g.: ▸ Stars or gas clouds probing the gravitational potential of galaxies ▸ Galaxies or intergalactic gas probing the gravitational potential of galaxy clusters ● Gravitational lensing is an independent way to measure the total mass (profle) of a foreground object using the light of background sources (galaxies, active galactic nuclei). ● Comparison of mass profles with observed luminosity profles lead to a problem of missing mass, usually interpreted as evidence for Dark Matter. ● Measuring the geometry (curvature) of the universe, indicates a ”fat” universe with close to critical density. Comparison with luminous mass: → a major accounting problem! Including observations of the expansion history lead to the Standard Model of Cosmology: accounting defcit solved by ~68% Dark Energy, ~27% Dark Matter and <5% “regular” (baryonic) matter. ● Other lines of evidence probe properties of matter under the infuence of gravity: ▸ the equation of state of oscillating matter as observed through fuctuations of the Cosmic Microwave Background (acoustic peaks). -
Black Hole Termodinamics and Hawking Radiation
Black hole thermodynamics and Hawking radiation (Just an overview by a non-expert on the field!) Renato Fonseca - 26 March 2018 – for the Journal Club Thermodynamics meets GR • Research in the 70’s convincingly brought together two very different areas of physics: thermodynamics and General Relativity • People realized that black holes (BHs) followed some laws similar to the ones observed in thermodynamics • It was then possible to associate a temperature to BHs. But was this just a coincidence? • No. Hawkings (1975) showed using QFT in curved space that BHs from gravitational collapse radiate as a black body with a certain temperature T Black Holes Schwarzschild metric (for BHs with no spin nor electric charge) • All coordinates (t,r,theta,phi) are what you think they are far from the central mass M • Something funny seems to happen for r=2M. But … locally there is nothing special there (only at r=0): r=0: real/intrinsic singularity r=2M: apparent singularity (can be removed with other coordinates) Important caveat: the Schwarzschild solution is NOT what is called maximal. With coordinates change we can get the Kruskal solution, which is. “Maximal”= ability to continue geodesics until infinity or an intrinsic singularity Schwarzschild metric (for BHs with no spin nor electric charge) • r=2M (event horizon) is not special for its LOCAL properties (curvature, etc) but rather for its GLOBAL properties: r<=2M are closed trapped surfaces which cannot communicate with the outside world [dr/dt=0 at r=2M even for light] Fun fact: for null geodesics (=light) we see that +/- = light going out/in One can even integrate this: t=infinite for even light to fall into the BH! This is what an observatory at infinity sees … (Penrose, 1969) Schwarzschild metric (digression) • But the object itself does fall into the BH. -
A Critique of Covariant Emergent Gravity
Prepared for submission to JCAP A Critique of Covariant Emergent Gravity Kirill Zatrimaylov Scuola Normale Superiore and I.N.F.N. Piazza dei Cavalieri 7, 56126, Pisa, Italy E-mail: [email protected] Abstract. I address some problems encountered in the formulation of relativistic models encompassing the MOND phenomenology of radial acceleration. I explore scalar and vector theories with fractional kinetic terms and f(R)-type gravity, demanding that the energy density be bounded from below and that superluminal modes be absent, but also that some consistency constraints with observational results hold. I identify configurations whose energy is unbounded from below and formulate some no-go statements for vector field models and arXiv:2003.10410v1 [gr-qc] 23 Mar 2020 modified gravity theories. Finally, I discuss superfluid dark matter as a hybrid theory lying between CDM and modified gravity, highlighting some difficulties present also in this case, which appears preferable to the others. Contents 1 Introduction1 2 A Brief Overview of MOND3 3 Covariant Theories with Fractional Kinetic Terms6 3.1 Scalar 8 3.2 Vector 9 3.3 Tensor 15 4 Fractional Kinetic Terms from Spontaneous Symmetry Breaking 19 5 Conclusions 20 1 Introduction MOND (Modified Newtonian dynamics), proposed by M. Milgrom in 1981 [1], was meant originally as an alternative to the cold dark matter paradigm: it aims to explain phenomena usually attributed to dark matter via Newtonian laws (either the law of gravity or the law of inertia) that are modified at large distances and small accelerations. Until recently, its actual significance has been somewhat obscure, since it does account for one class of observations (galaxy rotation curves) without addressing other key issues (CMB, primordial structure formation, and displacement between luminous and dark matter components in galaxy cluster collisions). -
Some Comments on the Tests of General Relativity
Some Comments on the Tests of General Relativity. M. Anyon and J. Dunning-Davies, Department of Physics, University of Hull, Hull HU6 7RX, England. Email: [email protected] Abstract A brief outline of the history of the discrepancies within Newtonian mechanics at the end of the 19th Century is given. The framework of General Relativity is briefly described and the famous ‘tests’ of General Relativity (GR) are considered and alternative solutions are discussed, with particular attention concentrating on the advance of the perihelion of the planet Mercury. The implications for the claims of relativity are discussed, all with reference to both pre and post 1915 publications. 1 Introduction The aim of this article is to address the notion that the well known classic ‘tests of general relativity’ - The Anomalous Precession of the Perihelion of the Planet Mercury, The Gravitational Red-shift and The Gravitational Deflection of Light-rays - may be explained and derived with no reference to Einstein’s theory of general relativity. The intention is to provide evidence that these phenomena can be explained and interpreted without the framework of general relativity, by using both modern sources and publications, as well as work that was published prior to Einstein’s work. By providing evidence that these phenomena could, and were explained, via classical mechanics before 1915, it will be possible to make a case against those that say anyone who questions general relativity is ‘obviously’ mistaken. Theories of the Relativity of Motion. The General Theory of Relativity (GR), proposed by Albert Einstein in 1915, was heralded as one of the most ground-breaking and complicated theories in physics when it was first published, and is still considered one of the greatest physical and mathematical theories of the universe at large today. -
Hawking Radiation As Perceived by Different Observers L C Barbado, C Barceló, L J Garay
Hawking radiation as perceived by different observers L C Barbado, C Barceló, L J Garay To cite this version: L C Barbado, C Barceló, L J Garay. Hawking radiation as perceived by different observers. Classical and Quantum Gravity, IOP Publishing, 2011, 10 (12), pp.125021. 10.1088/0264-9381/28/12/125021. hal-00710459 HAL Id: hal-00710459 https://hal.archives-ouvertes.fr/hal-00710459 Submitted on 21 Jun 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Confidential: not for distribution. Submitted to IOP Publishing for peer review 24 March 2011 Hawking radiation as perceived by different observers LCBarbado1,CBarcel´o1 and L J Garay2,3 1 Instituto de Astrof´ısica de Andaluc´ıa(CSIC),GlorietadelaAstronom´ıa, 18008 Granada, Spain 2 Departamento de F´ısica Te´orica II, Universidad Complutense de Madrid, 28040 Madrid, Spain 3 Instituto de Estructura de la Materia (CSIC), Serrano 121, 28006 Madrid, Spain E-mail: [email protected], [email protected], [email protected] Abstract. We use a method recently introduced in Barcel´o et al, 10.1103/Phys- RevD.83.041501, to analyse Hawking radiation in a Schwarzschild black hole as per- ceived by different observers in the system. -
Study Guide PHYSICS 534 (Revised Edition 2001)
Student Study Guide PHYSICS 534 (Revised Edition 2001) Leonardo da Vinci 1452 - 1519 Student Study Guide Physics 534 (Revised Edition - 2000) This Study Guide was written by a committee of Physics teachers to help students prepare for the Physics 534 theory/written examination. The contents of the Guide are: • Problem-Solving Strategy • Module 1: The Nature of Light • Module 3: Mechanics • Psst... You want to see the answers to the exam? • Appendices: Equations and Table of Trigonometric Ratios The section on Problem-Solving Strategies presents students with examples of an effective strategy for answering constructed-response type questions. The two Modules are presented in sections that cover one or more objectives of the program. These sections include Key Concepts, Examples and Sample Questions. The answers and solutions to the Sample Questions may be found at the end of the Guide. Objectives have occasionally been grouped together or presented in an order different from the MEQ program at the discretion of the authors. The last section takes student through an entire examination, showing the reasoning steps that lead to the correct answers. The Guide is designed as a study tool for students and is not to be considered as an official course program. For a more detailed description of the course content and learning activities, please refer to the document 16-3177A, Secondary School Curriculum Physics 534: The Discovery of Matter and Energy, published by the Gouvernement du Québec, Ministère de l’Éducation 1992 ISBN: 2-550-23345-X. 1999-2000 Physics 534 Study Guide Committee Physics Teachers Patrick Elbaz Royal Vale School Ron Craigwell Beaconsfield High School Louise Ogilvie Laurentian Regional High School Andre Vamvakas Lauren Hill Academy Irwin Worshell Lindsay Place High School Project Coordinator Jan Farrell Science Action Plan Committee This project was funded by the Science Action Plan Committee (SAPCO) and the Ministère de l’Éducation: Services à la communauté anglophone – Direction des politiques et des projets (SCA-DPP). -
One Or Several Populations of Fast Radio Burst Sources?
One or several populations of fast radio burst sources? M. Caleb1, L. G. Spitler2 & B. W. Stappers1 1Jodrell Bank Centre for Astrophysics, the University of Manchester, Manchester, UK. 2Max-Planck-Institut fu¨r Radioastronomie, Bonn, Germany. arXiv:1811.00360v1 [astro-ph.HE] 1 Nov 2018 1 To date, one repeating and many apparently non-repeating fast radio bursts have been de- tected. This dichotomy has driven discussions about whether fast radio bursts stem from a single population of sources or two or more different populations. Here we present the arguments for and against. The field of fast radio bursts (FRBs) has increasingly gained momentum over the last decade. Overall, the FRBs discovered to date show a remarkable diversity of observed properties (see ref 1, http://frbcat.org and Fig. 1). Intrinsic properties that tell us something about the source itself, such as polarization and burst profile shape, as well as extrinsic properties that tell us something about the source’s environment, such as the magnitude of Faraday rotation and multi-path propagation effects, do not yet present a coherent picture. Perhaps the most striking difference is between FRB 121102, the sole repeating FRB2, and the more than 60 FRBs that have so far not been seen to repeat. The observed dichotomy suggests that we should consider the existence of multiple source populations, but it does not yet require it. Most FRBs to date have been discovered with single-pixel telescopes with relatively large angular resolutions. As a result, the non-repeating FRBs have typically been localized to no bet- ter than a few to tens of arcminutes on the sky (Fig.