New Pharmaceutical Applications for Macromolecular Binders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toxin Inhibitors for the Treatment of Clostridium Difficile Infection
Research Collection Doctoral Thesis Toxin Inhibitors for the Treatment of Clostridium difficile Infection Author(s): Ivarsson, Mattias E. Publication Date: 2014 Permanent Link: https://doi.org/10.3929/ethz-a-010345630 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 22210 Toxin Inhibitors for the Treatment of Clostridium difficile Infection A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Mattias Emanuel IVARSSON MSc in Biomedical Engineering, ETH Zurich born on 10.3.1987 citizen of Zurich, Switzerland accepted on the recommendation of Prof. Jean-Christophe Leroux, examiner Prof. Bastien Castagner, co-examiner Prof. Wolf-Dietrich Hardt, co-examiner 2014 Abstract Clostridium difficile is a bacterial pathogen causing life-threatening infections that are the leading cause of hospital-acquired diarrhea. Recommended treatments for C. difficile infection (CDI) are limited to three antibiotics, which have unsatisfactory cure rates and lead to unacceptably high recurrence. The aim of the doctoral work presented herein was to explore the development of two novel therapeutic approaches against CDI. A variety of innovative therapeutic and prophylactic options against CDI are currently already in clinical trials, ranging from intestinal microbiota regeneration therapies to vaccines. These are presented and discussed in Chapter 1 of this thesis. Protein toxins constitute the main virulence factors of several species of bacteria and have proven to be attractive targets for drug development. Lead candidates that target bacterial toxins range from small molecules to polymeric binders, and act at each of the multiple steps in the process of toxin- mediated pathogenicity. -
Study Protocol for Which Astellas Is the Sponsor
A Phase 3, Multicenter, Investigator-blind, Randomized, Parallel Group Study to Investigate the Safety and Efficacy of Fidaxomicin Oral Suspension or Tablets Taken q12h, and Vancomycin Oral Liquid or Capsules Taken q6h, for 10 Days in Pediatric Subjects with Clostridium difficile-associated Diarrhea The SUNSHINE Study ISN/Protocol 2819-CL-0202 ClinicalTrials.gov Identifier: NCT02218372 Date of Protocol Version 3.0: 21 Jul 2015 Sponsor: Astellas Pharma Europe B.V. Sylviusweg 62 2333 BE Leiden The Netherlands Sponsor: APEB ISN/Protocol 2819-CL-0202 EudraCT number 2013-000508-40 - CONFIDENTIAL - A Phase 3, Multicenter, Investigator-blind, Randomized, Parallel Group Study to Investigate the Safety and Efficacy of Fidaxomicin Oral Suspension or Tablets Taken q12h, and Vancomycin Oral Liquid or Capsules Taken q6h, for 10 Days in Pediatric Subjects with Clostridium difficile-associated Diarrhea The SUNSHINE Study ISN/Protocol 2819-CL-0202 Version 3.0 Incorporating Substantial Amendment 2 [See Attachment 1] 21 July 2015 EudraCT 2013-000508-40 Sponsor: Astellas Pharma Europe B.V. (APEB) Sylviusweg 62 2333 BE Leiden The Netherlands Protocol History: Version 1.0 [17Sep2013] Version 1.1 Incorporating Non-Substantial Amendment 1 [05Jun2014] Version 2.0 Incorporating Substantial Amendment 1 [21Nov2014] Investigator: Investigator information is on file at Astellas -------------------------------------------------------------------------------------------------------------------------------------- This confidential document is the property of the Sponsor. No unpublished information contained in this document may be disclosed without prior written approval of the Sponsor. 21 Jul 2015 Astellas Page 1 of 116 Version 3.0 Incorporating Substantial Amendments 1 & 2 Sponsor: APEB ISN/Protocol 2819-CL-0202 EudraCT number 2013-000508-40 - CONFIDENTIAL - Table of Contents I. -
Non-Systemic Drugs: a Critical Review
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central 1434 Current Pharmaceutical Design, 2012, 18, 1434-1445 Non-Systemic Drugs: A Critical Review Dominique Charmot* Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, CA 94555, USA Abstract: Non-systemic drugs act within the intestinal lumen without reaching the systemic circulation. The first generation included po- lymeric resins that sequester phosphate ions, potassium ions, or bile acids for the treatment of electrolyte imbalances or hypercholestere- mia. The field has evolved towards non-absorbable small molecules or peptides targeting luminal enzymes or transporters for the treat- ment of mineral metabolism disorders, diabetes, gastrointestinal (GI) disorders, and enteric infections. From a drug design and develop- ment perspective, non-systemic agents offer novel opportunities to address unmet medical needs while minimizing toxicity risks, but also present new challenges, including developing a better understanding and control of non-transcellular leakage pathways into the systemic circulation. The pharmacokinetic-pharmacodynamic relationship of drugs acting in the GI tract can be complex due to the variability of intestinal transit, interaction with chyme, and the complex environment of the surface epithelia. We review the main classes of non- absorbable agents at various stages of development, and their therapeutic potential and limitations. The rapid progress in the identifica- tion of intestinal receptors and transporters, their -
Non-Systemic Drugs: a Critical Review
1434 Current Pharmaceutical Design, 2012, 18, 1434-1445 Non-Systemic Drugs: A Critical Review Dominique Charmot* Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, CA 94555, USA Abstract: Non-systemic drugs act within the intestinal lumen without reaching the systemic circulation. The first generation included po- lymeric resins that sequester phosphate ions, potassium ions, or bile acids for the treatment of electrolyte imbalances or hypercholestere- mia. The field has evolved towards non-absorbable small molecules or peptides targeting luminal enzymes or transporters for the treat- ment of mineral metabolism disorders, diabetes, gastrointestinal (GI) disorders, and enteric infections. From a drug design and develop- ment perspective, non-systemic agents offer novel opportunities to address unmet medical needs while minimizing toxicity risks, but also present new challenges, including developing a better understanding and control of non-transcellular leakage pathways into the systemic circulation. The pharmacokinetic-pharmacodynamic relationship of drugs acting in the GI tract can be complex due to the variability of intestinal transit, interaction with chyme, and the complex environment of the surface epithelia. We review the main classes of non- absorbable agents at various stages of development, and their therapeutic potential and limitations. The rapid progress in the identifica- tion of intestinal receptors and transporters, their functional characterization and role in metabolic and inflammatory disorders, will un- doubtedly renew interest in the development of novel, safe, non-systemic therapeutics. Keywords: Non-systemic drugs, non-absorbed drugs, gastrointestinal tract, absorption, tight-junctions. 1. INTRODUCTION The terms non-systemic and non-absorbed have been used in- Non-absorbable drugs are a unique subset of orally adminis- terchangeably for drugs of very different absorption profiles and tered agents that exert their therapeutic effects locally in the GI metabolism pathways, and we will use the same terms throughout tract.