Generic Circumscriptions in Geoglossomycetes

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Persoonia 31, 2013: 101–111 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158513X671235 Generic circumscriptions in Geoglossomycetes V.P. Hustad1,2, A.N. Miller 2, B.T.M. Dentinger 3, P.F. Cannon 3 Key words Abstract The class Geoglossomycetes is a recently created class of Ascomycota, currently comprised of one family (GeoglossaceaeF#)"+#$%&#'&"&()#*Geoglossum, Nothomitra, Sarcoleotia, Thuemenidium and Trichoglos­ Ascomycota sum). These fungi, commonly known as earth tongues, have long been a subject of mycological research. However, earth tongues the taxonomy within the group has historically been hindered by the lack of reliable morphological characters, Geoglossum uncertain ecological associations, and the inability to grow these fungi in culture. The phylogenetic relationships of Microglossum Geoglossomycetes were investigated by conducting maximum likelihood and Bayesian analyses using a 4­gene phylogenetics dataset (ITS, LSU, MCM7, RPB1). Five well­supported monophyletic clades were found that did not correspond systematics exactly with the currently recognised genera, necessitating a taxonomic revision of the group. Two new genera are proposed: Glutinoglossum to accommodate G. glutinosum and the newly described species G. heptaseptatum, and Sabuloglossum to accommodate S. arenarium. The type species of Thuemenidium, traditionally included within the Geoglossaceae;#!0#2,"$(<&+#)0#4&:,"'!"'#-,#)#0&1)()-&#:!"&)'&#-.)-#!0#,":8#+!0-)"-:8#(&:)-&+#-,#Geoglossomycetes. Article info Received: 19 October 2012; Accepted: 24 February 2013; Published: 24 July 2013. INTRODUCTION 2011), clear ecological connections between these fungi and plant hosts are lacking. Furthermore, the ascospores of these Schoch et al. (2009b) created the class Geoglossomycetes taxa do not germinate in culture, and their anamorphic states and the order Geoglossales to contain three genera (Geoglos­ (if they exist) are unknown (Wang et al. 2006). sum, Sarcoleotia and Trichoglossum) in Geoglossaceae, which Despite being the focus of a number of morphological stud­ was previously placed in Leotiomycetes. Fifty­three species ies, modern molecular phylogenetic analyses of Geoglosso­ !"#$%&#'&"&()#*Geoglossum (22 species), Nothomitra (3 spe­ mycetes are sparse. GenBank currently houses sequences cies), Sarcoleotia (4 species), Thuemenidium (5 species), and from only 17 of 53 Geoglossomycetes. Preliminary molecular Trichoglossum (19 species)) are currently accepted in Geo­ 0-9+!&0#*@$0-&(#A#B!<4(,9'.#677C;#D)"'#&-#):>#677EF#!"+!2)-&# glosso mycetes (Kirk et al. 2008, Hustad et al. 2011); though that Geoglossaceae (as circumscribed at the time) does not many synonyms, dubious names and invalid names have been form a monophyletic clade within Leotiomycetes leading these published in the group to date. Furthermore, several varieties authors to propose removal of several taxa from Geoglossa­ )"+#,-.&(#!"/()01&2!$2#-)3)#.)%&#4&&"#(&2,'"!0&+#5!-.!"#-.&# ceae. These studies suggest that the inoperculate method of genera Geoglossum and Trichoglossum. )0290#+&.!02&"2&#!0#",-#)#09/$2!&"-:8#0!'"!$2)"-#2.)()2-&(#-,# Geoglossomycetes are typically characterised by large, dark, continue to group all earth tongues within Leotiomycetes and club­shaped, terrestrial ascocarps with a fertile hymenium ori­ that several taxa form a separate monophyletic clade basal to ginating at the apex of the ascocarp, eventually intergrading Leotiomycetes deserving of a higher taxonomic rank. Sandnes with (Geoglossum and Trichoglossum) or abruptly terminating at (2006) examined nrDNA and found Geoglossum, Sarcoleotia (Nothomitra and Sarcoleotia) a sterile stipe. Geoglossomycetes and Trichoglossum to form a monophyletic clade. Using a ascospores range from dark brown to black, fusiform and multi­ GH'&"&#1.8:,'&"8#5!-.#$%&#!"'(,91#01&2!&0;#I2.,2.#&-#):># septate (Geoglossum and Trichoglossum), to light­coloured to (2009b) found these genera to form a monophyletic group hyaline, ellipsoid­fusiform and sparsely septate (Nothomitra and basal to Leotiomycetes and proposed the class Geoglosso­ Sarcoleotia). Many morphological characters used to separate mycetes and order Geoglossales to contain Geoglossum, taxa are ambiguous within the group, as evidenced by more Sarcoleotia and Trichoglossum within a single family, the -.)"#677#8&)(0#,/#2,"/90!"'#2:)00!$2)-!,"#)-#",-#,":8#-.&#01&­ Geoglossaceae. Ohenoja et al. (2010) recognised the wide 2!&0#:&%&:;#49-#):0,#)-#.!'.&(#-)3,",<!2#()"=0>#?+&"-!$2)-!,"#,/# separation between Geoglossum and the type species of species is frequently compromised by a lack of appreciation Thuemenidium, although they did not complete the taxonomic that spore pigmentation and septation may not develop until a work necessary to revise the latter genus. Recently, Hustad very late stage. Geoglossomycetes have been reported from et al. (2011) included Notho mitra in Geoglossomycetes based every continent except Antarctica and are common components on a 3­gene phylogeny. of many temperate and tropical mycobiota. Although previously !+&"-!$&+#!"#<,:&29:)(#&"%!(,"<&"-):#0)<1:&0#,/#0,!:#.81.)&#)"+# Taxa assigned to Geoglossomycetes are considered to be of root endophytes (Bergemann & Garbelotto 2006, Wang et al. 2,"0&(%)-!,"#0!'"!$2)"2&#!"#0&%&():#J9(,1&)"#2,9"-(!&0>#K.&(&;# many species are typical members of ‘unimproved grassland’ 1 Department of Plant Biology, University of Illinois, 505 S. Goodwin Ave., (non­intensively managed semi­natural grassland habitats that Urbana, IL 61801, USA; have not been treated with nitrogen fertiliser). The number of corresponding author e­mail: [email protected]. species present, along with those from three other fungal groups 2 Illinois Natural History Survey, University of Illinois, 1816 S. Oak St., Champaign, IL 61820, USA. (the Clavariaceae, Entolomataceae and Hygrophoraceae) 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK. has been used as a proxy for grassland health, impacting on © 2013 Naturalis Biodiversity Center & Centraalbureau voor Schimmelcultures You are free to share ­ to copy, distribute and transmit the work, under the following conditions: Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non­commercial: You may not use this work for commercial purposes. No derivative works: You may not alter, transform, or build upon this work. For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by­nc­nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. 102 Persoonia – Volume 31, 2013 conservation value assessments (Newton et al. 2003, Gen­ in this analysis was the RNA polymerase II subunit 1 (RPB1) ney et al. 2009). Thuemenidium atropurpureum, until recently gene. RPB1 codes the largest subunit of RNA polymerase II, assumed to be part of the Geoglossomycetes clade, is listed the polymerase responsible for synthesising messenger RNA under UK legislation (under its synonym Geoglossum atro­ in eukaryotes. RPB1 was shown by Schoch et al. (2009a) to purpureum) as a UK Priority species (http://jncc.defra.gov. have the highest per­site informativeness (Townsend 2007) uk/_speciespages/2290.pdf) within the national Biodiversity across six genes in the Ascomycota. The primers RPB1af and Action Plan. Species of Geoglossomycetes are included in the T@\C2(#*Q)-.&"8#&-#):>#6776F#5&(&#90&+#/,(#)<1:!$2)-!,"#)"+# Norwegian (Kålås et al. 2010), Swedish (Gärdenfors 2010) and sequencing of the RPB1 gene. Swiss (Senn­Irlet et al. 2007) Red Data Lists. Phylogenetic analyses The goal of this study was to examine the phylogenetic rela­ tionships within Geoglossomycetes and its component genera Alignments of individual genes were created manually by eye in using a robust 4­gene phylogeny with the largest sampling of I&U9&"2.&(#[>Y#,(#48#90!"'#Q902:&#%>#Z>]#*J+')(#677[F#!"#I&)H species to date. view v. 4.2 (Galtier et al. 1996). Ambiguous regions were removed from the individual gene datasets using Gblocks v. 0.91b (Cas­ tresana 2000) under the following parameters: minimum number MATERIALS AND METHODS of sequences for both conserved and flanking regions = 22, Morphological analysis maximum number of contiguous nonconserved positions = 8, minimum length of a block = 10, and allowed gap positions in 30 I1&2!<&"0#5&(&#!+&"-!$&+#4)0&+#,"#-.&#<,(1.,:,'8#,/#)02,­ sequences. The Akaike Information Criterion (AIC) (Posada & mata and microscopic characters using the pertinent literature Buckley 2004), implemented using jModelTest v. 0.1.1 (Posada (e.g., Massee 1897, Durand 1908, Imai 1941, Nannfeldt 1942, 677VF;#+&-&(<!"&+#NKT^?^N#)0#-.&#4&0-H$-#<,+&:#,/#&%,:9-!,"# Mains 1954, Maas Geesteranus 1964, Roobeek 2008, along for all four genes and this model was used in both maximum with original species descriptions). Mature ascospores were likelihood and Bayesian inference. Maximum likelihood (ML) obtained for measurement by tapping ascomata in a drop of analyses were performed using PhyML (Guindon & Gascuel water on a slide (Mains 1954). Ascomata were hand­sectioned 2003) under the GTR substitution model with six rate classes and squash­mounted in water and images of micromorphologi­ and invariable sites optimised. An unrooted BioNJ starting tree cal characters were captured
Recommended publications
  • Systematics, Barcoding and Ecology of Fungi from Waxcap Grasslands in Britain

    Systematics, Barcoding and Ecology of Fungi from Waxcap Grasslands in Britain

    Project report to DEFRA 1: 3 December 2010 Systematics, barcoding and ecology of fungi from waxcap grasslands in Britain Collaborations An important component of the project is to bring together professional scientists and specialist volunteers to contribute specimens and ecological data, and later on to explore ways of improving the existing recording and monitoring schemes. The project will provide valuable data to aid decision-making for conservation management, for example designation of SSSIs and establishment of red data lists. The first action was therefore to publicize the project to potential collaborators, and emails and verbal communications took place both directly with known collectors/recording groups and through the British Mycological Society. Excluding those named in the project application, 33 individuals/recording groups have provided specimens and/or identification data. Our initial request was for all species of Hygrocybe and Geoglossaceae. While a number of these are common and widespread, there are concerns that existing species concepts are too broad and are masking cryptic taxa. Along with specimens that we have collected ourselves, we have received a total of 213 collections belonging to 34 species/varieties of Hygrocybe and four species of Geoglossaceae. The collections have come from 27 different vice-counties in England, Wales and Scotland. Much of the field season was poor for waxcap species, although a number of species fruited abnormally late in the year. With this in mind, we are very happy with the response we have received from field workers, and there has been a widespread welcome for our project. We are confident that our field collaborators will continue to support our work throughout the project period and beyond.
  • LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N

    LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N

    Journal of the Lundy Field Society, 2, 2010 LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N. HEDGER1, J. DAVID GEORGE2, GARETH W. GRIFFITH3, DILUKA PEIRIS1 1School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1M 8JS 2Natural History Museum, Cromwell Road, London, SW7 5BD 3Institute of Biological Environmental and Rural Sciences, University of Aberystwyth, SY23 3DD Corresponding author, e-mail: [email protected] ABSTRACT The results of four five-day field surveys of fungi carried out yearly on Lundy from 2004-08 are reported and the results compared with the previous survey by ourselves in 2003 and to records made prior to 2003 by members of the LFS. 240 taxa were identified of which 159 appear to be new records for the island. Seasonal distribution, habitat and resource preferences are discussed. Keywords: Fungi, ecology, biodiversity, conservation, grassland INTRODUCTION Hedger & George (2004) published a list of 108 taxa of fungi found on Lundy during a five-day survey carried out in October 2003. They also included in this paper the records of 95 species of fungi made from 1970 onwards, mostly abstracted from the Annual Reports of the Lundy Field Society, and found that their own survey had added 70 additional records, giving a total of 156 taxa. They concluded that further surveys would undoubtedly add to the database, especially since the autumn of 2003 had been exceptionally dry, and as a consequence the fruiting of the larger fleshy fungi on Lundy, especially the grassland species, had been very poor, resulting in under-recording. Further five-day surveys were therefore carried out each year from 2004-08, three in the autumn, 8-12 November 2004, 4-9 November 2007, 3-11 November 2008, one in winter, 23-27 January 2006 and one in spring, 9-16 April 2005.
  • The Ascomycota

    The Ascomycota

    Papers and Proceedings of the Royal Society of Tasmania, Volume 139, 2005 49 A PRELIMINARY CENSUS OF THE MACROFUNGI OF MT WELLINGTON, TASMANIA – THE ASCOMYCOTA by Genevieve M. Gates and David A. Ratkowsky (with one appendix) Gates, G. M. & Ratkowsky, D. A. 2005 (16:xii): A preliminary census of the macrofungi of Mt Wellington, Tasmania – the Ascomycota. Papers and Proceedings of the Royal Society of Tasmania 139: 49–52. ISSN 0080-4703. School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia (GMG*); School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia (DAR). *Author for correspondence. This work continues the process of documenting the macrofungi of Mt Wellington. Two earlier publications were concerned with the gilled and non-gilled Basidiomycota, respectively, excluding the sequestrate species. The present work deals with the non-sequestrate Ascomycota, of which 42 species were found on Mt Wellington. Key Words: Macrofungi, Mt Wellington (Tasmania), Ascomycota, cup fungi, disc fungi. INTRODUCTION For the purposes of this survey, all Ascomycota having a conspicuous fruiting body were considered, excluding Two earlier papers in the preliminary documentation of the endophytes. Material collected during forays was described macrofungi of Mt Wellington, Tasmania, were confined macroscopically shortly after collection, and examined to the ‘agarics’ (gilled fungi) and the non-gilled species, microscopically to obtain details such as the size of the
  • Plant Life Magill’S Encyclopedia of Science

    Plant Life Magill’S Encyclopedia of Science

    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
  • The Fungi of Slapton Ley National Nature Reserve and Environs

    The Fungi of Slapton Ley National Nature Reserve and Environs

    THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546).
  • Preliminary Classification of Leotiomycetes

    Preliminary Classification of Leotiomycetes

    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
  • Geoglossoid Fungi in Slovakia II. Trichoglossum Octopartitum, a New Species for the Country

    Geoglossoid Fungi in Slovakia II. Trichoglossum Octopartitum, a New Species for the Country

    CZECH MYCOL. 62(1): 13–18, 2010 Geoglossoid fungi in Slovakia II. Trichoglossum octopartitum, a new species for the country 1* 1 2 VIKTOR KUČERA , PAVEL LIZOŇ and IVONA KAUTMANOVÁ 1 Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK–845 23, Bratislava, Slovakia; [email protected], [email protected] 2 Natural History Museum, Slovak National Museum, Vajanského nábr. 2, SK–810 06 Bratislava, Slovakia; [email protected] *corresponding author Kučera V., Lizoň P. and Kautmanová I. (2010): Geoglossoid fungi in Slovakia II. Trichoglossum octopartitum, a new species for the country. – Czech Mycol. 62(1): 13–18. Some recent Slovak collections of Trichoglossum were identified as the rare species T. octoparti- tum. The species had not been reported before from Slovakia or central Europe. The identification was confirmed by comparing the collections with the type material originating from Belize. Key words: Ascomycetes, grassland fungi, biodiversity, description, taxonomy. Kučera V., Lizoň P. a Kautmanová I. (2010): Geoglossoidné huby Slovenska II. Tri- choglossum octopartitum, nový druh pre naše územie. – Czech Mycol. 62(1): 13–18. Niektoré recentné slovenské zbery rodu Trichoglossum sme určili ako T. octopartitum. Tento druh nebol doteraz udávaný zo Slovenska, ani zo strednej Európy. Určenie bolo overené aj porovnaním s typovým materiálom z Belize. INTRODUCTION Since the rediscovery of Trichoglossum hirsutum (Pers.) Boud. in 1994 (Mráz 1997), several geoglossoid fungi new to Slovakia have been collected and identi- fied. In Trichoglossum, for example, Trichoglossum walteri (Berk.) E.J. Durand was reported in 2001 (Ripková et al. 2007) and Trichoglossum variabile (E.J. Durand) Nannf. in 2005 (Kučera et al.
  • Tile Geoglossaceae of Sweden **

    Tile Geoglossaceae of Sweden **

    ARKIV FOR· BOTANIK. BAND 30 A. N:o 4. Tile Geoglossaceae of Sweden (with Regard also to the Surrounding CQuntries). By J. A. NANNFELDT. With 5 plates and 6 figures in the text. Communicated June 4th, 1941, by NILS E. SVEDELIUS and ROB. E. FRIES. There are hardly any Discomycetes that have been the subject of so many monographs as the Geoglossaceae. Already in 1875, COOKE (1875 a, 1875 b) published two monographic studies, and some years later he described and illustrated in his Mycographia (COOKE 1879) the majority of the species known at that time. In 1897, MAssEE published a world monograph of the family, though this paper - as so many other publications by the same author - is mainly a compi­ lation. DURA.ND'S monog-raph (1908, with a supplement in 19~1) of the North American species is a model of accuracy and thoroughness, and indispensable also for other parts of the world. This monograph was the base for a pamphlet by LLOYD (1916) on the Geoglossaceae of the world. If we add v. LUYK'S revision (1919) of the Geoglossaceae in the Rijks­ herbarium at Leiden, with all PERSOON'S specimens, SINDEN & FITZPATRICK'S paper (1930) on a new species of T1'ichoglos8ttrli, IMAI'S studies (1934, 1936 a, 1936 b, 1938) on Japanese species of certain genera, his list of the Norwegian Geoglos8aceae (IMA.I 1940), and MAIN'S papers (1936, 19~0) with descriptions of several new American species, the most important contri­ butions of recent date to the taxonomy of the family have been mentioned.
  • 9B Taxonomy to Genus

    9B Taxonomy to Genus

    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
  • The Genome of Xylona Heveae Provides a Window Into Fungal Endophytism

    The Genome of Xylona Heveae Provides a Window Into Fungal Endophytism

    fungal biology 120 (2016) 26e42 journal homepage: www.elsevier.com/locate/funbio The genome of Xylona heveae provides a window into fungal endophytism Romina GAZISa,*, Alan KUOb, Robert RILEYb, Kurt LABUTTIb, Anna LIPZENb, Junyan LINb, Mojgan AMIREBRAHIMIb, Cedar N. HESSEc,d, Joseph W. SPATAFORAc, Bernard HENRISSATe,f,g, Matthieu HAINAUTe, Igor V. GRIGORIEVb, David S. HIBBETTa aClark University, Biology Department, 950 Main Street, Worcester, MA 01610, USA bUS Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA cOregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331, USA dLos Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA eAix-Marseille Universite, CNRS, UMR 7257, Marseille, France fAix-Marseille Universite, Architecture et Fonction des Macromolecules Biologiques, 13288 Marseille cedex 9, France gKing Abdulaziz University, Department of Biological Sciences, Jeddah 21589, Saudi Arabia article info abstract Article history: Xylona heveae has only been isolated as an endophyte of rubber trees. In an effort to under- Received 12 August 2015 stand the genetic basis of endophytism, we compared the genome contents of X. heveae Received in revised form and 36 other Ascomycota with diverse lifestyles and nutritional modes. We focused on 18 September 2015 genes that are known to be important in the hostefungus interaction interface and that Accepted 5 October 2015 presumably have a role in determining the lifestyle of a fungus. We used phylogenomic Available online 22 October 2015 data to infer the higher-level phylogenetic position of the Xylonomycetes, and mined ITS Corresponding Editor: sequences to explore its taxonomic and ecological diversity. The X.
  • CABI Staff Publications in 2015 Scientific Publications Aguirre-Hudson, B., Cannon, PF and Minter, DW

    CABI Staff Publications in 2015 Scientific Publications Aguirre-Hudson, B., Cannon, PF and Minter, DW

    CABI staff publications in 2015 Scientific publications Aguirre-Hudson, B., Cannon, P.F. and Minter, D.W. (2015) Leptorhaphis atomaria . IMI Descriptions of Fungi and Bacteria 2054, unpaginated. Aguirre-Hudson, B., Cannon, P.F. and Minter, D.W. (2015) Tomasellia gelatinosa . IMI Descriptions of Fungi and Bacteria 2060, unpaginated. Aguirre-Hudson, B., Cannon, P.F. and Minter, D.W. (2015) Leptorhaphis epidermidis . IMI Descriptions of Fungi and Bacteria 2055, unpaginated. Aguirre-Hudson, B., Cannon, P.F. and Minter, D.W. (2015) Leptorhaphis laricis . IMI Descriptions of Fungi and Bacteria 2056, unpaginated. Aguirre-Hudson, B., Cannon, P.F. and Minter, D.W. (2015) Mycomicrothelia confusa . IMI Descriptions of Fungi and Bacteria 2057, unpaginated. Ahmad, S. , Pozzebon, A. and Duso, C. (2015) Predation on heterospecific larvae by adult females of Kampimodromus aberrans , Amblyseius andersoni , Typhlodromus pyri and Phytoseius finitimus (Acari: Phytoseiidae). Experimental and Applied Acarology 67(1), 1–20. doi:10.1007/s10493-015-9940-1 Akiri, M. , Boateng, D. and Agwanda, C. (2015) Mainstreaming gender and youth in smallholder sustainable coffee supply chain in Kenya. Journal of Economics and Sustainable Development 6(18), 76–86. Alokit, C. , Tukahirwa, B., Oruka, D., Okotel, M., Bukenya, C. and Mulema, J. [2015] Reaching out to farmers with plant health clinics in Uganda. Uganda Journal of Agricultural Sciences 15(1) (2014), 15–26. Araujo, J.P.M., Evans, H.C. , Geiser, D.M., Mackay, W.P. and Hughes, D.P. (2015) Unravelling the diversity behind the Ophiocordyceps unilateralis (Ophiocordycipitaceae) complex: three new species of zombie-ant fungi from the Brazilian Amazon. Phytotaxa 220, 224–238.
  • A Higher-Level Phylogenetic Classification of the Fungi

    A Higher-Level Phylogenetic Classification of the Fungi

    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,