Homework 9. Solutions. 1 Let V Be a Connection on N-Dimensional

Total Page:16

File Type:pdf, Size:1020Kb

Homework 9. Solutions. 1 Let V Be a Connection on N-Dimensional Homework 9. Solutions. r f i g 1 Let be a connection on n-dimensional manifold M and R rmn be the components of the curvature tensor of a connection r in local coordinates (x1; x2; : : : ; xn). a) For arbitrary vector fields A; B and D calculate the vector field (rArB − rBrA) D − rCD ; where the vector field C is a commutator of vector fields A and B: ( ) @ @Bi(x) @Ai(x) @ C = Ci = [A; B] = Am − Bm : (1:0) @xi @xm @xm @xi b) Calculate the vector field (rArB − rBrA) D in the case if for vector fields A and B components Ai and Bm are constants (in the local coordinates (x1; : : : ; xn)) (You have to express the answers in terms of components of the vector fields and components of the i curvature tensor R rmn.) m m a) According to the definition of the curvature tensor for every vector fields X = X @m; Y = Y @m m and Z = Z @m we have that R(X; Y)Z = ( ) R m n r r r − r r − r r i m n (X @m;Y @n)(Z @r) = X Y Y X [X;Y] Z = Z R rmnX Y @i : Hence for vector fields A; B; C = [A; B] and we have that ( ) r r − r r − r r r − r r − r R r i m n A B B A [A;B] D = ( A B B A) D CD = (A; B)D = D R rmnA B @i : (1:1) b) in the case if in the local coordinates (x1; : : : ; xn) for vector fields A and B components Ai and Bm are constants then the commutator of these vector fields C = [A; B] vanishes: C = 0 (see the formula (1.0)). Hence according to the formula (1.1) above we have that r r − r r − r r r − r r R r i m n ( A B B A) D CD = ( A B B A) D = (A; B)D = D R rmnA B @i : 2) Calculate Riemann curvature tensor for the cylindircal surface( x2 + y2 = a2 in E3. x = a cos ' Solution. Cylinder surface in standard coordinates ('; h) is y = a sin ' and Riemannian metric G = z = h 2 2 2 i dh + a d' . Christoffel symbols Γkm of Levi-Civita connection in coordinates ('; h) vanish since in these coordinates all components of matrix of metric are constants (see Levi-Civita formula!). Hence Riemann curvature tensor i i i p − i − i p R kmn = @mΓnk + ΓmpΓnk @nΓmk ΓnpΓmk vanishes too. Note that the fact that Christoffel symbols vanish in some coordiantes does not mean that they vanish in any coordinates. Riemann curvature is a tensor: if it vanishes in some coordinates then it vanishes in any coordinates. i i 3 We know that If Rkmn is Riemann curvature tensor for Riemannian manifold (M; G) (Rkmn us curvature tensor for Levi-Civita connection on M) then the following identities hold: Rikmn = −Riknm;Rikmn = −Rkimn ;Rikmn = Rmnik (∗) a) Show that Riemann curvature tensor for 2-dimensional Riemannian manifold (M; G) possesses only one non-trivial component. 1 Solution. It follows from identities (*) that all components of curvature tensor may be expressed through component R1212. Indeed if R1212 = a then due to identities: R1212 = −R1221 = −R2112 = R2121 = a and all other components (for 2-dimensional case) vanish: R1111 = R1112 = R1121 = R1122 = R1211 = R1222 = R2111 = R2122 = R2211 = R2212 = R2221 = R2222 = 0 : 4) If (M; G) is surface in E3 then R R K = = 1212 ; 2 det g i where K is Gaussian curvature of the surface, and Rkmn Riemann curvature tensor with respect to induced metric, R R1212 a) Prove by straightforward calculations that 2 = det g ∗ R R1212 f g b ) Prove that K = 2 = det g . (It is convenient to choose the orthonormal basis e; f and use derivation formula.) Solution: Show it. Using results of previous exercise we see that i 2 22 21 22 22 R11 = R 1i1 = R 121 = g R2121 + g R1121 = g R1212 = g a ; i 1 11 12 11 11 R22 = R 2i2 = R 212 = g R1212 + g R2221 = g R1212 = g a i 1 12 − 12 − 12 R12 = R21 = R 1i2 = R 112 = g R2112 = g R1212 = g a Thus ( ) g22 −g12 R = a : ik −g21 g11 Hence i km km 11 12 21 22 R = R kimg = Rkmg = g R11 + g R12 + g R21 + g R22 = 2a 2R (g11g22 − g12g12) = 2a det g−1 = ; 1212 det g ( ) g11 g12 − 2 jj jj jj jj where det g = det = g11g22 g12 (matrices gik and gik are inverse). We see that R = g21 g22 2a 2R1212 det g = det g . ∗ It remains to prove that Gaussian curvature is equal to R=2 or that it is equal to R1212 det g. Choose three unit vector fields e; f; g such that e; f form orthonormal basis on points of surface M and n = e × f. According to the definition of curvature calculate R(e; f)e = rerf e − rf ree − r[e;f]e : (∗∗) Using derivation formulae one can calculate this expression and come to the following answer 1): R(e; f)e = rerf e − rf ree − r[e;f]e = da(e; f)f : 1) These calculations are little bit difficult. They are following: note that since the induced connection is symmetrical connection then: ref − rf e − [e; f] = 0 hence [e; f] = ref − rf e = −a(e)e − a(f)f. Thus we see that R(e; f)e = rerf e − rf ree − r[e;f]e = re (a(f)f) − rf (a(e)f) + ra(e)e+a(f)f e = @ea(f)f + a(f)ref − @f a(e)f − a(e)rf f + a(e)ree + a(f)rf e = @ea(f)f − a(f)a(e)e − @f a(e)f + a(e)a(f)e + a(e)a(e)f + a(f)a(f)f = [@ea(f)f − @f a(e)f − a [−a(e)e − a(f)f]] f = = [@ea(f)f − @f a(e)f − a ([e; f])] f = da(e; f)f : 2 Recall that we established that for Gaussian curvature K = b ^ c(e; f) = −da(e; f). Hence we come to the relation: R(e; f)e = da(e; f) = −Kf : This means that 2 − R112 = K ( ) 1 0 Note that in the basis e; f Riemannian metric is . Hence R2 = R = −R , det g = 1. Thus 0 1 112 2112 1212 we come to the relation R R K = 1212 = : det g 2 3.
Recommended publications
  • 2. Chern Connections and Chern Curvatures1
    1 2. Chern connections and Chern curvatures1 Let V be a complex vector space with dimC V = n. A hermitian metric h on V is h : V £ V ¡¡! C such that h(av; bu) = abh(v; u) h(a1v1 + a2v2; u) = a1h(v1; u) + a2h(v2; u) h(v; u) = h(u; v) h(u; u) > 0; u 6= 0 where v; v1; v2; u 2 V and a; b; a1; a2 2 C. If we ¯x a basis feig of V , and set hij = h(ei; ej) then ¤ ¤ ¤ ¤ h = hijei ­ ej 2 V ­ V ¤ ¤ ¤ ¤ where ei 2 V is the dual of ei and ei 2 V is the conjugate dual of ei, i.e. X ¤ ei ( ajej) = ai It is obvious that (hij) is a hermitian positive matrix. De¯nition 0.1. A complex vector bundle E is said to be hermitian if there is a positive de¯nite hermitian tensor h on E. r Let ' : EjU ¡¡! U £ C be a trivilization and e = (e1; ¢ ¢ ¢ ; er) be the corresponding frame. The r hermitian metric h is represented by a positive hermitian matrix (hij) 2 ¡(­; EndC ) such that hei(x); ej(x)i = hij(x); x 2 U Then hermitian metric on the chart (U; ') could be written as X ¤ ¤ h = hijei ­ ej For example, there are two charts (U; ') and (V; Ã). We set g = à ± '¡1 :(U \ V ) £ Cr ¡¡! (U \ V ) £ Cr and g is represented by matrix (gij). On U \ V , we have X X X ¡1 ¡1 ¡1 ¡1 ¡1 ei(x) = ' (x; "i) = à ± à ± ' (x; "i) = à (x; gij"j) = gijà (x; "j) = gije~j(x) j j For the metric X ~ hij = hei(x); ej(x)i = hgike~k(x); gjle~l(x)i = gikhklgjl k;l that is h = g ¢ h~ ¢ g¤ 12008.04.30 If there are some errors, please contact to: [email protected] 2 Example 0.2 (Fubini-Study metric on holomorphic tangent bundle T 1;0Pn).
    [Show full text]
  • Differential Geometry: Curvature and Holonomy Austin Christian
    University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-5-2015 Differential Geometry: Curvature and Holonomy Austin Christian Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Mathematics Commons Recommended Citation Christian, Austin, "Differential Geometry: Curvature and Holonomy" (2015). Math Theses. Paper 5. http://hdl.handle.net/10950/266 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. DIFFERENTIAL GEOMETRY: CURVATURE AND HOLONOMY by AUSTIN CHRISTIAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics David Milan, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler May 2015 c Copyright by Austin Christian 2015 All rights reserved Acknowledgments There are a number of people that have contributed to this project, whether or not they were aware of their contribution. For taking me on as a student and learning differential geometry with me, I am deeply indebted to my advisor, David Milan. Without himself being a geometer, he has helped me to develop an invaluable intuition for the field, and the freedom he has afforded me to study things that I find interesting has given me ample room to grow. For introducing me to differential geometry in the first place, I owe a great deal of thanks to my undergraduate advisor, Robert Huff; our many fruitful conversations, mathematical and otherwise, con- tinue to affect my approach to mathematics.
    [Show full text]
  • A Geodesic Connection in Fréchet Geometry
    A geodesic connection in Fr´echet Geometry Ali Suri Abstract. In this paper first we propose a formula to lift a connection on M to its higher order tangent bundles T rM, r 2 N. More precisely, for a given connection r on T rM, r 2 N [ f0g, we construct the connection rc on T r+1M. Setting rci = rci−1 c, we show that rc1 = lim rci exists − and it is a connection on the Fr´echet manifold T 1M = lim T iM and the − geodesics with respect to rc1 exist. In the next step, we will consider a Riemannian manifold (M; g) with its Levi-Civita connection r. Under suitable conditions this procedure i gives a sequence of Riemannian manifolds f(T M, gi)gi2N equipped with ci c1 a sequence of Riemannian connections fr gi2N. Then we show that r produces the curves which are the (local) length minimizer of T 1M. M.S.C. 2010: 58A05, 58B20. Key words: Complete lift; spray; geodesic; Fr´echet manifolds; Banach manifold; connection. 1 Introduction In the first section we remind the bijective correspondence between linear connections and homogeneous sprays. Then using the results of [6] for complete lift of sprays, we propose a formula to lift a connection on M to its higher order tangent bundles T rM, r 2 N. More precisely, for a given connection r on T rM, r 2 N [ f0g, we construct its associated spray S and then we lift it to a homogeneous spray Sc on T r+1M [6]. Then, using the bijective correspondence between connections and sprays, we derive the connection rc on T r+1M from Sc.
    [Show full text]
  • Math 396. Covariant Derivative, Parallel Transport, and General Relativity
    Math 396. Covariant derivative, parallel transport, and General Relativity 1. Motivation Let M be a smooth manifold with corners, and let (E, ∇) be a C∞ vector bundle with connection over M. Let γ : I → M be a smooth map from a nontrivial interval to M (a “path” in M); keep in mind that γ may not be injective and that its velocity may be zero at a rather arbitrary closed subset of I (so we cannot necessarily extend the standard coordinate on I near each t0 ∈ I to part of a local coordinate system on M near γ(t0)). In pseudo-Riemannian geometry E = TM and ∇ is a specific connection arising from the metric tensor (the Levi-Civita connection; see §4). A very fundamental concept is that of a (smooth) section along γ for a vector bundle on M. Before we give the official definition, we consider an example. Example 1.1. To each t0 ∈ I there is associated a velocity vector 0 ∗ γ (t0) = dγ(t0)(∂t|t0 ) ∈ Tγ(t0)(M) = (γ (TM))(t0). Hence, we get a set-theoretic section of the pullback bundle γ∗(TM) → I by assigning to each time 0 t0 the velocity vector γ (t0) at that time. This is not just a set-theoretic section, but a smooth section. Indeed, this problem is local, so pick t0 ∈ I and an open U ⊆ M containing γ(J) for an open ∞ neighborhood J ⊆ I around t0, with J and U so small that U admits a C coordinate system {x1, . , xn}. Let γi = xi ◦ γ|J ; these are smooth functions on J since γ is a smooth map from I into M.
    [Show full text]
  • 1 the Levi-Civita Connection and Its Curva- Ture
    Department of Mathematics Geometry of Manifolds, 18.966 Spring 2005 Lecture Notes 1 The Levi-Civita Connection and its curva- ture In this lecture we introduce the most important connection. This is the Levi-Civita connection in the tangent bundle of a Riemannian manifold. 1.1 The Einstein summation convention and the Ricci Calculus When dealing with tensors on a manifold it is convient to use the following conventions. When we choose a local frame for the tangent bundle we write e1, . en for this basis. We always index bases of the tangent bundle with indices down. We write then a typical tangent vector n X i X = X ei. i=1 Einstein’s convention says that when we see indices both up and down we assume that we are summing over them so he would write i X = X ei while a one form would be written as i θ = aie where ei is the dual co-frame field. For example when we have coordinates x1, x2, . , xn then we get a basis for the tangent bundle ∂/∂x1, . , ∂/∂xn 1 More generally a typical tensor would be written as i l j k T = T jk ei ⊗ e ⊗ e ⊗ el Note that in general unless the tensor has some extra symmetries the order of the indices matters. The lower indices indicate that under a change of j frame fi = Ci ej a lower index changes the same way and is called covariant while an upper index changes by the inverse matrix. For example the dual i coframe field to the fi, called f is given by i i j f = D je i j i j i where D j is the inverse matrix to C i (so that D jC k = δk.) The compo- nents of the tensor T above in the fi basis are thus i l i0 l0 i j0 k0 l T jk = T j0k0 D i0 C jC kD l0 Notice that of course summing over a repeated upper and lower index results in a quantity that is independent of any choices.
    [Show full text]
  • 3. Introducing Riemannian Geometry
    3. Introducing Riemannian Geometry We have yet to meet the star of the show. There is one object that we can place on a manifold whose importance dwarfs all others, at least when it comes to understanding gravity. This is the metric. The existence of a metric brings a whole host of new concepts to the table which, collectively, are called Riemannian geometry.Infact,strictlyspeakingwewillneeda slightly di↵erent kind of metric for our study of gravity, one which, like the Minkowski metric, has some strange minus signs. This is referred to as Lorentzian Geometry and a slightly better name for this section would be “Introducing Riemannian and Lorentzian Geometry”. However, for our immediate purposes the di↵erences are minor. The novelties of Lorentzian geometry will become more pronounced later in the course when we explore some of the physical consequences such as horizons. 3.1 The Metric In Section 1, we informally introduced the metric as a way to measure distances between points. It does, indeed, provide this service but it is not its initial purpose. Instead, the metric is an inner product on each vector space Tp(M). Definition:Ametric g is a (0, 2) tensor field that is: Symmetric: g(X, Y )=g(Y,X). • Non-Degenerate: If, for any p M, g(X, Y ) =0forallY T (M)thenX =0. • 2 p 2 p p With a choice of coordinates, we can write the metric as g = g (x) dxµ dx⌫ µ⌫ ⌦ The object g is often written as a line element ds2 and this expression is abbreviated as 2 µ ⌫ ds = gµ⌫(x) dx dx This is the form that we saw previously in (1.4).
    [Show full text]
  • Basics of the Differential Geometry of Surfaces
    Chapter 20 Basics of the Differential Geometry of Surfaces 20.1 Introduction The purpose of this chapter is to introduce the reader to some elementary concepts of the differential geometry of surfaces. Our goal is rather modest: We simply want to introduce the concepts needed to understand the notion of Gaussian curvature, mean curvature, principal curvatures, and geodesic lines. Almost all of the material presented in this chapter is based on lectures given by Eugenio Calabi in an upper undergraduate differential geometry course offered in the fall of 1994. Most of the topics covered in this course have been included, except a presentation of the global Gauss–Bonnet–Hopf theorem, some material on special coordinate systems, and Hilbert’s theorem on surfaces of constant negative curvature. What is a surface? A precise answer cannot really be given without introducing the concept of a manifold. An informal answer is to say that a surface is a set of points in R3 such that for every point p on the surface there is a small (perhaps very small) neighborhood U of p that is continuously deformable into a little flat open disk. Thus, a surface should really have some topology. Also,locally,unlessthe point p is “singular,” the surface looks like a plane. Properties of surfaces can be classified into local properties and global prop- erties.Intheolderliterature,thestudyoflocalpropertieswascalled geometry in the small,andthestudyofglobalpropertieswascalledgeometry in the large.Lo- cal properties are the properties that hold in a small neighborhood of a point on a surface. Curvature is a local property. Local properties canbestudiedmoreconve- niently by assuming that the surface is parametrized locally.
    [Show full text]
  • WHAT IS a CONNECTION, and WHAT IS IT GOOD FOR? Contents 1. Introduction 2 2. the Search for a Good Directional Derivative 3 3. F
    WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR? TIMOTHY E. GOLDBERG Abstract. In the study of differentiable manifolds, there are several different objects that go by the name of \connection". I will describe some of these objects, and show how they are related to each other. The motivation for many notions of a connection is the search for a sufficiently nice directional derivative, and this will be my starting point as well. The story will by necessity include many supporting characters from differential geometry, all of whom will receive a brief but hopefully sufficient introduction. I apologize for my ungrammatical title. Contents 1. Introduction 2 2. The search for a good directional derivative 3 3. Fiber bundles and Ehresmann connections 7 4. A quick word about curvature 10 5. Principal bundles and principal bundle connections 11 6. Associated bundles 14 7. Vector bundles and Koszul connections 15 8. The tangent bundle 18 References 19 Date: 26 March 2008. 1 1. Introduction In the study of differentiable manifolds, there are several different objects that go by the name of \connection", and this has been confusing me for some time now. One solution to this dilemma was to promise myself that I would some day present a talk about connections in the Olivetti Club at Cornell University. That day has come, and this document contains my notes for this talk. In the interests of brevity, I do not include too many technical details, and instead refer the reader to some lovely references. My main references were [2], [4], and [5].
    [Show full text]
  • Lecture 8: the Sectional and Ricci Curvatures
    LECTURE 8: THE SECTIONAL AND RICCI CURVATURES 1. The Sectional Curvature We start with some simple linear algebra. As usual we denote by ⊗2(^2V ∗) the set of 4-tensors that is anti-symmetric with respect to the first two entries and with respect to the last two entries. Lemma 1.1. Suppose T 2 ⊗2(^2V ∗), X; Y 2 V . Let X0 = aX +bY; Y 0 = cX +dY , then T (X0;Y 0;X0;Y 0) = (ad − bc)2T (X; Y; X; Y ): Proof. This follows from a very simple computation: T (X0;Y 0;X0;Y 0) = T (aX + bY; cX + dY; aX + bY; cX + dY ) = (ad − bc)T (X; Y; aX + bY; cX + dY ) = (ad − bc)2T (X; Y; X; Y ): 1 Now suppose (M; g) is a Riemannian manifold. Recall that 2 g ^ g is a curvature- like tensor, such that 1 g ^ g(X ;Y ;X ;Y ) = hX ;X ihY ;Y i − hX ;Y i2: 2 p p p p p p p p p p 1 Applying the previous lemma to Rm and 2 g ^ g, we immediately get Proposition 1.2. The quantity Rm(Xp;Yp;Xp;Yp) K(Xp;Yp) := 2 hXp;XpihYp;Ypi − hXp;Ypi depends only on the two dimensional plane Πp = span(Xp;Yp) ⊂ TpM, i.e. it is independent of the choices of basis fXp;Ypg of Πp. Definition 1.3. We will call K(Πp) = K(Xp;Yp) the sectional curvature of (M; g) at p with respect to the plane Πp. Remark. The sectional curvature K is NOT a function on M (for dim M > 2), but a function on the Grassmann bundle Gm;2(M) of M.
    [Show full text]
  • AN INTRODUCTION to the CURVATURE of SURFACES by PHILIP ANTHONY BARILE a Thesis Submitted to the Graduate School-Camden Rutgers
    AN INTRODUCTION TO THE CURVATURE OF SURFACES By PHILIP ANTHONY BARILE A thesis submitted to the Graduate School-Camden Rutgers, The State University Of New Jersey in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Mathematics written under the direction of Haydee Herrera and approved by Camden, NJ January 2009 ABSTRACT OF THE THESIS An Introduction to the Curvature of Surfaces by PHILIP ANTHONY BARILE Thesis Director: Haydee Herrera Curvature is fundamental to the study of differential geometry. It describes different geometrical and topological properties of a surface in R3. Two types of curvature are discussed in this paper: intrinsic and extrinsic. Numerous examples are given which motivate definitions, properties and theorems concerning curvature. ii 1 1 Introduction For surfaces in R3, there are several different ways to measure curvature. Some curvature, like normal curvature, has the property such that it depends on how we embed the surface in R3. Normal curvature is extrinsic; that is, it could not be measured by being on the surface. On the other hand, another measurement of curvature, namely Gauss curvature, does not depend on how we embed the surface in R3. Gauss curvature is intrinsic; that is, it can be measured from on the surface. In order to engage in a discussion about curvature of surfaces, we must introduce some important concepts such as regular surfaces, the tangent plane, the first and second fundamental form, and the Gauss Map. Sections 2,3 and 4 introduce these preliminaries, however, their importance should not be understated as they lay the groundwork for more subtle and advanced topics in differential geometry.
    [Show full text]
  • GEOMETRIC INTERPRETATIONS of CURVATURE Contents 1. Notation and Summation Conventions 1 2. Affine Connections 1 3. Parallel Tran
    GEOMETRIC INTERPRETATIONS OF CURVATURE ZHENGQU WAN Abstract. This is an expository paper on geometric meaning of various kinds of curvature on a Riemann manifold. Contents 1. Notation and Summation Conventions 1 2. Affine Connections 1 3. Parallel Transport 3 4. Geodesics and the Exponential Map 4 5. Riemannian Curvature Tensor 5 6. Taylor Expansion of the Metric in Normal Coordinates and the Geometric Interpretation of Ricci and Scalar Curvature 9 Acknowledgments 13 References 13 1. Notation and Summation Conventions We assume knowledge of the basic theory of smooth manifolds, vector fields and tensors. We will assume all manifolds are smooth, i.e. C1, second countable and Hausdorff. All functions, curves and vector fields will also be smooth unless otherwise stated. Einstein summation convention will be adopted in this paper. In some cases, the index types on either side of an equation will not match and @ so a summation will be needed. The tangent vector field @xi induced by local i coordinates (x ) will be denoted as @i. 2. Affine Connections Riemann curvature is a measure of the noncommutativity of parallel transporta- tion of tangent vectors. To define parallel transport, we need the notion of affine connections. Definition 2.1. Let M be an n-dimensional manifold. An affine connection, or connection, is a map r : X(M) × X(M) ! X(M), where X(M) denotes the space of smooth vector fields, such that for vector fields V1;V2; V; W1;W2 2 X(M) and function f : M! R, (1) r(fV1 + V2;W ) = fr(V1;W ) + r(V2;W ), (2) r(V; aW1 + W2) = ar(V; W1) + r(V; W2), for all a 2 R.
    [Show full text]
  • The Riemann Curvature Tensor
    The Riemann Curvature Tensor Jennifer Cox May 6, 2019 Project Advisor: Dr. Jonathan Walters Abstract A tensor is a mathematical object that has applications in areas including physics, psychology, and artificial intelligence. The Riemann curvature tensor is a tool used to describe the curvature of n-dimensional spaces such as Riemannian manifolds in the field of differential geometry. The Riemann tensor plays an important role in the theories of general relativity and gravity as well as the curvature of spacetime. This paper will provide an overview of tensors and tensor operations. In particular, properties of the Riemann tensor will be examined. Calculations of the Riemann tensor for several two and three dimensional surfaces such as that of the sphere and torus will be demonstrated. The relationship between the Riemann tensor for the 2-sphere and 3-sphere will be studied, and it will be shown that these tensors satisfy the general equation of the Riemann tensor for an n-dimensional sphere. The connection between the Gaussian curvature and the Riemann curvature tensor will also be shown using Gauss's Theorem Egregium. Keywords: tensor, tensors, Riemann tensor, Riemann curvature tensor, curvature 1 Introduction Coordinate systems are the basis of analytic geometry and are necessary to solve geomet- ric problems using algebraic methods. The introduction of coordinate systems allowed for the blending of algebraic and geometric methods that eventually led to the development of calculus. Reliance on coordinate systems, however, can result in a loss of geometric insight and an unnecessary increase in the complexity of relevant expressions. Tensor calculus is an effective framework that will avoid the cons of relying on coordinate systems.
    [Show full text]