bioRxiv preprint doi: https://doi.org/10.1101/332890; this version posted May 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. DIFFERENTIAL EFFECTS OF EXTENDED EXERCISE AND MEMANTINE TREATMENT ON ADULT NEUROGENESIS IN MALE AND FEMALE RATS Shaina P Cahill, John Darby Cole, Ru Qi Yu, Jack Clemans-Gibbon, Jason S Snyder* Department of Psychology Djavad Mowafaghian Centre for Brain Health University of British Columbia Vancouver, BC, Canada *Corresponding author email:
[email protected] bioRxiv preprint doi: https://doi.org/10.1101/332890; this version posted May 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. ABSTRACT The creation of new neurons in adulthood has potential for treating a number of disorders that are characterized by neurodegeneration or impaired plasticity. Animal models of reduced neurogenesis, and studies of the volume and structural integrity of the hippocampus in humans, suggest a possible therapeutic role for adult neurogenesis in age-related cognitive decline, depression, and schizophrenia. Research over the past 20 years has identified a number of approaches for enhancing adult neurogenesis, such as exercise, NMDA receptor antagonists, antidepressant drugs and environmental enrichment. However, despite the chronic nature of many disorders that impact the human hippocampus, most animal studies have only examined the efficacy of neurogenic treatments over relatively short timescales (~1 month or less).