Topographic Skills in Acquired and Developmental Prosopagnosia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RELIGIOUS BELIEFS COMPENSATE for PURPOSE When
RELIGIOUS BELIEFS COMPENSATE FOR PURPOSE 1 When God is your only friend: Religious beliefs compensate for purpose in life in the socially disconnected Todd Chan, Nicholas Michalak, & Oscar Ybarra Department of Psychology University of Michigan 530 Church St., Ann Arbor, MI, 48109-1043 Author notes Data and materials are available at osf.io/h6wuv. Corresponding Author: Todd Chan ([email protected]) RELIGIOUS BELIEFS COMPENSATE FOR PURPOSE 2 Abstract Objective: Social relationships supply purpose to life. How can socially disconnected people, who show lower levels of purpose, compensate for purpose in life? We propose that religious beliefs can compensate for the purpose in life that social relationships would otherwise provide, through (a) providing greater purpose to turn to, and (b) providing divine figures that can substitute for social relationships. Method: In three studies, we analyze three nationally representative and longitudinal datasets (N = 19775) using moderated regression and cross- lagged panel analyses. Results: Consistent with our hypotheses, religious beliefs were of minimal influence on purpose in life for socially connected individuals, who already held higher levels of purpose than socially disconnected individuals. However, for socially disconnected individuals, being highly religious predicted higher levels of purpose in life. Conclusions: Results suggest that although people primarily derive purpose from social relationships, socially disconnected individuals may leverage their religious beliefs for purpose and social comfort until they can reconnect. Keywords: religion; loneliness; social disconnection; interpersonal relationships; purpose RELIGIOUS BELIEFS COMPENSATE FOR PURPOSE 3 When God is your only friend: Religious beliefs compensate for purpose in life in the socially disconnected Purpose drives people forward. To have purpose means people feel that their life consists of plans, goals, and direction that make life worth living (Reker, Peacock, & Wong, 1987). -
Prosopagnosia with Topographical Difficulties 1
CORE Metadata, citation and similar papers at core.ac.uk Provided by Bournemouth University Research Online Prosopagnosia with topographical difficulties 1 Running Head: PROSOPAGNOSIA WITH TOPOGRAPHICAL DIFFICULTIES Developmental Prosopagnosia with Concurrent Topographical Difficulties: A Case Report and Virtual Reality Training Programme Sarah Bate, Amanda Adams, Rachel Bennetts & Hannah Line Department of Psychology, Bournemouth University, UK Word count: 6858 Address for correspondence: Dr Sarah Bate Department of Psychology Faculty of Science and Technology Poole House Bournemouth University Fern Barrow Poole BH12 5BB United Kingdom Telephone: +44 (0) 1202 961918 Fax: +44 (0) 1202 965314 Email: [email protected] Prosopagnosia with topographical difficulties 2 Abstract Several neuropsychological case studies report brain-damaged individuals with concurrent impairments in face recognition (i.e. prosopagnosia) and topographical orientation. Recently, individuals with a developmental form of topographical disorientation have also been described, and several case reports of individuals with developmental prosopagnosia provide anecdotal evidence of concurrent navigational difficulties. Clearly, the co-occurrence of these difficulties can exacerbate the negative psychosocial consequences associated with each condition. This paper presents the first detailed case report of an individual (FN) with developmental prosopagnosia alongside difficulties in topographical orientation. FN’s performance on an extensive navigational battery indicated -
The Brain Compass: a Perspective on How Self-Motion Updates the Head Direction Cell Attractor
bioRxiv preprint doi: https://doi.org/10.1101/189464; this version posted September 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The brain compass: a perspective on how self-motion updates the head direction cell attractor Jean Laurens, Dora E. Angelaki Dept. of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA This study was supported by National Institutes of Health grants R21 NS098146 and R01- DC004260. Address for correspondence: Angelaki, Dora Department of Neuroscience Baylor College of Medicine One Baylor Plaza Houston, TX 77030 Office: (713) 798-1469 E-mail: [email protected] ABSTRACT Head Direction cells form an internal compass that signals head azimuth orientation even in the absence of visual landmarks. It is well accepted that head direction properties are generated through a ring attractor that is updated using rotation self-motion cues. The properties and origin of this self-motion velocity drive remain, however, unknown. We propose a unified, quantitative framework whereby the attractor velocity input represents a multisensory self-motion estimate computed through an internal model that uses sensory prediction error based on vestibular, visual, and somatosensory cues to improve on-line motor drive. We show how context- dependent strength of recurrent connections within the attractor itself, rather than the self- motion input, explain differences in head direction cell firing between free foraging and restrained movements. We also summarize recent findings on how head tilt relative to gravity influences the azimuth coding of head direction cells, and explain why and how these effects reflect an updating self-motion velocity drive that is not purely egocentric. -
The Three Meanings of Meaning in Life: Distinguishing Coherence, Purpose, and Significance
The Journal of Positive Psychology Dedicated to furthering research and promoting good practice ISSN: 1743-9760 (Print) 1743-9779 (Online) Journal homepage: http://www.tandfonline.com/loi/rpos20 The three meanings of meaning in life: Distinguishing coherence, purpose, and significance Frank Martela & Michael F. Steger To cite this article: Frank Martela & Michael F. Steger (2016) The three meanings of meaning in life: Distinguishing coherence, purpose, and significance, The Journal of Positive Psychology, 11:5, 531-545, DOI: 10.1080/17439760.2015.1137623 To link to this article: http://dx.doi.org/10.1080/17439760.2015.1137623 Published online: 27 Jan 2016. Submit your article to this journal Article views: 425 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=rpos20 Download by: [Colorado State University] Date: 06 July 2016, At: 11:55 The Journal of Positive Psychology, 2016 Vol. 11, No. 5, 531–545, http://dx.doi.org/10.1080/17439760.2015.1137623 The three meanings of meaning in life: Distinguishing coherence, purpose, and significance Frank Martelaa* and Michael F. Stegerb,c aFaculty of Theology, University of Helsinki, P.O. Box 4, Helsinki 00014, Finland; bDepartment of Psychology, Colorado State University, 1876 Campus Delivery, Fort Collins, CO 80523-1876, USA; cSchool of Behavioural Sciences, North-West University, Vanderbijlpark, South Africa (Received 25 June 2015; accepted 3 December 2015) Despite growing interest in meaning in life, many have voiced their concern over the conceptual refinement of the con- struct itself. Researchers seem to have two main ways to understand what meaning in life means: coherence and pur- pose, with a third way, significance, gaining increasing attention. -
Direction Giving and Following 1 Running Head
Direction giving and following 1 Running head: DIRECTION GIVING AND FOLLOWING Direction Giving and Following in the Service of Wayfinding in a Complex Indoor Environment Alycia M. Hund and Amanda J. Padgitt Illinois State University Direction giving and following 2 Abstract We examined how sense of direction, descriptive feature content, and gender relate to direction giving and following during wayfinding in a complex indoor environment. In Experiment 1, participants provided directions to destinations. Participants with a good sense of direction provided more distances, marginally more correct descriptions, and marginally fewer straight references than those with a poor sense of direction. In Experiment 2, participants rated the effectiveness of these directions. Directions that were rated highly contained more descriptive features than did directions that were rated less highly. In open-ended responses, positive mentions of landmarks and negative mentions of cardinal descriptors were frequent. In Experiment 3, participants navigated faster when following the worst-rated directions than when following the best-rated directions. Keywords: wayfinding, sense of direction, direction giving, direction following Direction giving and following 3 Direction Giving and Following in the Service of Wayfinding in a Complex Indoor Environment Finding our way through the environment is essential to human functioning. Often, people give and follow directions to facilitate wayfinding. For example, a college freshman may ask another student or a university staff member how to get to a classroom or office in a campus building. It is no surprise that spatial skills and strategies differ across individuals (e.g., Hegarty, Montello, Richardson, Ishikawa, & Lovelace, 2006; Kato & Takeuchi, 2003; Lawton, 1996; Prestopnik & Roskos-Ewoldsen, 2000). -
Human Sense of Direction and Wayfinding
Human Sense of Direction and Wayfinding Edward H. Cornell, Autumn Sorenson, and Teresa Mio Department of Psychology, University of Alberta One of the oldest beliefs about human wayfinding is that some people have a natural ability that distinguishes them from others. In four experiments, we asked adults to rate their own sense of direction, a promising index of orientation skills despite its simplicity and reliance on self-assessment. There were small to moderate correlations between self-ratings and accuracy of pointing to imagined landmarks, accuracy of path choices during a route reversal and detour, speed at executing shortcuts, and accuracy of choices of halls within a building complex. Although we did not find consistent gender differences in actual wayfinding, effects across experiments indicate that females rated their sense of direction as worse than males. Deliberations by females may have affected the speed of some of their performances. The results suggest that self-evaluation of sense of direction is associated with evaluation of one’s familiarity with features of particular environments, as well as memories of successes and failures in recent wayfinding efforts. Key Words: orientation, spatial cognition, wayfinding. ver a century has passed since the construct of a outside. Table 1 previews the different experimental human sense of direction began to be described paradigms and predictions that groups with self-ratings of O in scientific literature (Darwin, in Romanes a good sense of direction (GSOD) are better at orienting 1883). As we shall see, having a sense of direction has been and wayfinding than groups with self-ratings of a poor associated with an ability to discriminate fine-grained sense of direction (PSOD). -
Improving Cognitive Mapping by Training for People with a Poor Sense of Direction Toru Ishikawa1,2* and Yiren Zhou1
Ishikawa and Zhou Cognitive Research: Principles and Implications (2020) 5:39 Cognitive Research: Principles https://doi.org/10.1186/s41235-020-00238-1 and Implications ORIGINAL ARTICLE Open Access Improving cognitive mapping by training for people with a poor sense of direction Toru Ishikawa1,2* and Yiren Zhou1 Abstract The skill of spatial learning and orientation is fundamental in humans and differs widely among individuals. Despite its importance, however, the malleability of this skill through practice has scarcely been studied empirically, in contrast to psychometric spatial ability. Thus, this article examines the possibility of improving the accuracy of configurational understanding of the environment by training. A total of 40 adults with a poor sense of direction participated in the experiment; and were randomly assigned to either a condition in which they received feedback only or a condition in which they additionally practiced allocentric spatial updating. Participants walked one route in each session, once a week for 6 weeks, and conducted spatial tasks designed to assess their knowledge of the route. A total of 20 people with an average sense of direction also participated as a comparison group. Results showed that training in allocentric spatial updating improved the accuracy of direction estimates, although the size of the effect was limited: the improvement was not large enough to equate the performance in the groups with a poor versus average sense of direction. The two groups, however, did not differ in spatial skill in mental rotation or path integration. Feedback was effective for improving accuracy in straight-line distance estimates and sketch maps: repeated trials with feedback led to improved accuracy by the sixth session to a level comparable to the group with an average sense of direction. -
The Psychology of Purpose
The Psychology of Purpose February 2018 Created by the members of the Adolescent Moral Development Lab at Claremont Graduate University for Prosocial Consulting and the John Templeton Foundation 1 Table of Contents I. Defining Purpose ......................................................................................................................................... 3 II. Measuring Purpose .................................................................................................................................... 6 III. The Benefits of Purpose ........................................................................................................................ 10 IV. The Development of Purpose ................................................................................................................ 13 V. Fostering Purpose ..................................................................................................................................... 17 VI. Purpose Among Diverse Groups ........................................................................................................... 22 VII. Annotated Bibliography ........................................................................................................................ 27 2 I. DEFINING PURPOSE The purpose of life is not to be happy. It is to be useful, to be honorable, to be compassionate, to have it make some difference that you have lived and lived well. – Ralph Waldo Emerson You probably have your own conception of what a purpose in life -
Everyday Taxi Drivers: Do Better Navigators Have Larger Hippocampi? RUNNING TITLE: EVERYDAY TAXI DRIVERS
bioRxiv preprint doi: https://doi.org/10.1101/431155; this version posted January 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Title: Everyday taxi drivers: Do better navigators have larger hippocampi? RUNNING TITLE: EVERYDAY TAXI DRIVERS Steven M. Weisberga, Nora S. Newcombeb, & Anjan Chatterjeec aUniversity of Pennsylvania, bTemple University Steven M. Weisberg ([email protected]), Anjan Chatterjee ([email protected]), Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104. Nora S. Newcombe ([email protected]), Department of Psychology, Temple University, Philadelphia, PA 19122. Declarations of interest: none Correspondence concerning this article should be addressed to Steven M. Weisberg, at Center for Cognitive Neuroscience, University of Pennsylvania, Philadelphia, PA 19104 USA. Email: [email protected]. Phone: 610-212-3113. bioRxiv preprint doi: https://doi.org/10.1101/431155; this version posted January 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. EVERYDAY TAXI DRIVERS 1 Abstract Work with non-human animals and human navigation experts (London taxi drivers) suggests that the size of the hippocampus, particularly the right posterior hippocampus in humans, relates to navigation expertise. Similar observations, sometimes implicating other sections of the hippocampus, have been made for aging populations and for people with neurodegenerative diseases that affect the hippocampus. -
And Scene-Selective Brain Areas Based on Their
www.nature.com/scientificreports OPEN A functional dissociation of face-, body- and scene-selective brain areas based on their response to Received: 2 March 2018 Accepted: 7 May 2019 moving and static stimuli Published: xx xx xxxx David Pitcher1, Geena Ianni2,3 & Leslie G. Ungerleider3 The human brain contains areas that respond selectively to faces, bodies and scenes. Neuroimaging studies have shown that a subset of these areas preferentially respond more to moving than static stimuli, but the reasons for this functional dissociation remain unclear. In the present study, we simultaneously mapped the responses to motion in face-, body- and scene-selective areas in the right hemisphere using moving and static stimuli. Participants (N = 22) were scanned using functional magnetic resonance imaging (fMRI) while viewing videos containing bodies, faces, objects, scenes or scrambled objects, and static pictures from the beginning, middle and end of each video. Results demonstrated that lateral areas, including face-selective areas in the posterior and anterior superior temporal sulcus (STS), the extrastriate body area (EBA) and the occipital place area (OPA) responded more to moving than static stimuli. By contrast, there was no diference between the response to moving and static stimuli in ventral and medial category-selective areas, including the fusiform face area (FFA), occipital face area (OFA), amygdala, fusiform body area (FBA), retrosplenial complex (RSC) and parahippocampal place area (PPA). This functional dissociation between lateral and ventral/medial brain areas that respond selectively to diferent visual categories suggests that face-, body- and scene- selective networks may be functionally organized along a common dimension. Neuroimaging studies report multiple areas in the human brain that selectively respond to faces, bodies and scenes. -
The Navigation System of the Brain 2014 Nobel Prize in Physiology Or Medicine
GENERAL ¨ ARTICLE The Navigation System of the Brain 2014 Nobel Prize in Physiology or Medicine Prasanna Venkhatesh V “It is fair to say that, in general, no problems have been exhausted; instead, men have been exhausted by the prob- lems. Soil that appears impoverished to one researcher re- veals its fertility to another. Fresh talent approaching the analysis of a problem without prejudice will always see new possibilities – some aspect not considered by those who believe that a subject is fully understood. Our knowledge is so frag- Prasanna Venkhatesh V is currently a graduate mentary that unexpected findings appear in even the most student at the Center for fully explored topics. We must bear in mind that because Neuroscience working with science relentlessly differentiates, the minutiae of today often Aditya Murthy. He is become important principles tomorrow.” working on voluntary control of reaching and – Santiago Ramon y Cajal pointing movements. His research interests include The ability to navigate in space is one of the fundamental func- movement control, neural basis of animal behaviour, tions of the brain. It depends on the ability to have a sense of optogenetics and social position which in turn is interlinked with the sense of direction, neuroscience. distance and the knowledge of the earlier positions through which one has travelled. You depend on it for your everyday activities ranging from finding your car in a parking lot to commuting to your workplace. The 2014 Nobel Prize in Physiology or Medicine was awarded to John O’Keefe, May-Britt Moser and Edvard Moser for their discoveries of nerve cells in the brain that consti- tute a positioning system that enables one to have a sense of position and navigation (Figure 1). -
The Functional Neuroanatomy of Human Face Perception
VS03CH08-GrillSpector ARI 11 August 2017 6:36 Annual Review of Vision Science The Functional Neuroanatomy of Human Face Perception Kalanit Grill-Spector,1,2 Kevin S. Weiner,1 Kendrick Kay,3 and Jesse Gomez4 1Department of Psychology, Stanford University, Stanford, California 94305; email: [email protected] 2Stanford Neurosciences Institute, Stanford University, Stanford, California 94305 3Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455 4Neurosciences Program, Stanford University School of Medicine, Stanford, California 94305 Annu. Rev. Vis. Sci. 2017. 3:167–96 Keywords First published as a Review in Advance on July 17, face recognition, fMRI, face network, FFA, ventral stream, mid-fusiform 2017 sulcus, population receptive fields The Annual Review of Vision Science is online at vision.annualreviews.org Abstract Access provided by 76.21.3.180 on 09/20/17. For personal use only. https://doi.org/10.1146/annurev-vision-102016- Face perception is critical for normal social functioning and is mediated Annu. Rev. Vis. Sci. 2017.3:167-196. Downloaded from www.annualreviews.org 061214 by a network of regions in the ventral visual stream. In this review, we Copyright c 2017 by Annual Reviews. ⃝ describe recent neuroimaging findings regarding the macro- and micro- All rights reserved scopic anatomical features of the ventral face network, the characteristics of white matter connections, and basic computations performed by population ANNUAL receptive fields within face-selective regions composing this network. We REVIEWS Further emphasize the importance of the neural tissue properties and white matter Click here to view this article's online features: connections of each region, as these anatomical properties may be tightly t%PXOMPBEmHVSFTBT115TMJEFT linked to the functional characteristics of the ventral face network.