International Journal of Molecular Sciences Article Discovery of a Novel Triazolopyridine Derivative as a Tankyrase Inhibitor Hwani Ryu 1, Ky-Youb Nam 2, Hyo Jeong Kim 1, Jie-Young Song 1 , Sang-Gu Hwang 1 , Jae Sung Kim 1 , Joon Kim 3,* and Jiyeon Ahn 1,* 1 Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea;
[email protected] (H.R.);
[email protected] (H.J.K.);
[email protected] (J.-Y.S.);
[email protected] (S.-G.H.);
[email protected] (J.S.K.) 2 Department of Research Center, Pharos I&BT Co., Ltd., Anyang 14059, Korea;
[email protected] 3 Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea * Correspondence:
[email protected] (J.K.);
[email protected] (J.A.); Tel.: +82-2-970-1311 (J.A.) Abstract: More than 80% of colorectal cancer patients have adenomatous polyposis coli (APC) mutations, which induce abnormal WNT/β-catenin activation. Tankyrase (TNKS) mediates the release of active β-catenin, which occurs regardless of the ligand that translocates into the nucleus by AXIN degradation via the ubiquitin-proteasome pathway. Therefore, TNKS inhibition has emerged as an attractive strategy for cancer therapy. In this study, we identified pyridine derivatives by evaluating in vitro TNKS enzyme activity and investigated N-([1,2,4]triazolo[4,3-a]pyridin-3-yl)-1-(2- cyanophenyl)piperidine-4-carboxamide (TI-12403) as a novel TNKS inhibitor. TI-12403 stabilized β β AXIN2, reduced active -catenin, and downregulated -catenin target genes in COLO320DM and DLD-1 cells.